首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the improvement of therapeutic efficacy in photodynamic therapy (PDT) by using a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD-MA), we previously prepared polyethylene glycol (PEG)-modified liposomes encapsulating BPD-MA (PEG-Lip BPD-MA). PEGylation of liposomes enhanced the accumulation of BPD-MA in tumor tissue at 3 h after injection of it into Meth-A-sarcoma-bearing mice, but, unexpectedly, decreased the suitability of the drug for PDT when laser irradiation was performed at 3 h after the injection of the liposomal photosensitizer. To improve the bioavailability of PEG-Lip BPD-MA, we endowed the liposomes with active-targeting characteristics by using Ala-Pro-Arg-Pro-Gly (APRPG) pentapeptide, which had earlier been isolated as a peptide specific to angiogenic endothelial cells. APRPG-PEG-modified liposomal BPD-MA (APRPG-PEG-Lip BPD-MA) accumulated in tumor tissue similarly as PEG-Lip BPD-MA and to an approx. 4-fold higher degree than BPD-MA delivered with non-modified liposomes at 3 h after the injection of the drugs into tumor-bearing mice. On the contrary, unlike the treatment with PEG-Lip BPD-MA, APRPG-PEG-Lip BPD-MA treatment strongly suppressed tumor growth after laser irradiation at 3 h after injection. Finally, we observed vasculature damage in the dorsal air sac angiogenesis model by APRPG-PEG-Lip BPD-MA-mediated PDT. The present results suggest that antiangiogenic PDT is an efficient modality for tumor treatment and that tumor neovessel-targeted, long-circulating liposomes are a useful carrier for delivering photosensitizer to angiogenic endothelial cells.  相似文献   

2.
For the improvement of therapeutic efficacy in photodynamic therapy (PDT) by using a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD-MA), we previously prepared polyethylene glycol (PEG)-modified liposomes encapsulating BPD-MA (PEG-Lip BPD-MA). PEGylation of liposomes enhanced the accumulation of BPD-MA in tumor tissue at 3 h after injection of it into Meth-A-sarcoma-bearing mice, but, unexpectedly, decreased the suitability of the drug for PDT when laser irradiation was performed at 3 h after the injection of the liposomal photosensitizer. To improve the bioavailability of PEG-Lip BPD-MA, we endowed the liposomes with active-targeting characteristics by using Ala-Pro-Arg-Pro-Gly (APRPG) pentapeptide, which had earlier been isolated as a peptide specific to angiogenic endothelial cells. APRPG-PEG-modified liposomal BPD-MA (APRPG-PEG-Lip BPD-MA) accumulated in tumor tissue similarly as PEG-Lip BPD-MA and to an approx. 4-fold higher degree than BPD-MA delivered with non-modified liposomes at 3 h after the injection of the drugs into tumor-bearing mice. On the contrary, unlike the treatment with PEG-Lip BPD-MA, APRPG-PEG-Lip BPD-MA treatment strongly suppressed tumor growth after laser irradiation at 3 h after injection. Finally, we observed vasculature damage in the dorsal air sac angiogenesis model by APRPG-PEG-Lip BPD-MA-mediated PDT. The present results suggest that antiangiogenic PDT is an efficient modality for tumor treatment and that tumor neovessel-targeted, long-circulating liposomes are a useful carrier for delivering photosensitizer to angiogenic endothelial cells.  相似文献   

3.
To evaluate photodynamic therapy with verteporfin combined with intravitreal bevacizumab in minimally classic and occult choroidal neovascularization secondary to age-related macular degeneration. 46 eyes of 46 patients (mean age 74.5) included in this prospective, noncomparative, interventional case series. Median follow-up was 24 weeks (12-36). Verteporfin photodynamic therapy (PDT) was followed by 0.05 mL (1.25 mg) of bevacizumab injected intravitreally within 24 hours and again after 6 weeks. Whole procedure was repeated in 3-month intervals in case of leakage. Visual acuity (VA) improved in majority of patients (baseline VA 1.041 log MAR) by mean increase of 1.45 lines (last follow-up) (p = 0.001). Central foveal thickness (CFT) and total macular volume (TMV) decreased by 53 microm (p = 0.03) and 1.04 mm3 (p < 0.001) respectively. No serious complications were observed. Combined treatment may improve outcome of monotherapy. Significant improvement in VA, CFT and TMA was noted in majority of patients and maintained during follow-up.  相似文献   

4.
To evaluate the efficacy and safety of intravitreal bevacizumab in treatment of minimally classic and occult choroidal neovascularization secondary to age-related macular disease 48 eyes of 48 patients (mean age of 74.8) included in this prospective, noncomparative, interventional case series. Median follow-up was 18 weeks (6-24). Intravitreal bevacizumab injection of 0.05 mL (1.25 mg) was administered at baseline and in 6 week intervals until leakage resolved, and repeated in case of leakage recurrence. Visual acuity (VA) improved in the majority of patients (mean baseline VA = 1.078 log MAR) by mean increase of 1.32 lines (last follow-up) (p = 0.001). Central foveal thickness and total macular volume decreased by 51 microm (p = 0.01) and 0.84 mm3 (p < 0.0001) respectively. No serious complications were observed. As initial therapy, intravitreal bevacizumab appears to be safe and effective. A significant functional and anatomical improvement was noted in majority of patients and maintained during follow-up.  相似文献   

5.
6.
7.
Photodynamic therapy with the pro-drug 5-aminolaevulinic acid (ALA-PDT) is being used for the treatment of Barrett's oesophagus. We postulated that a first early course of ALA-PDT would increase protoporphyrin IX (PPIX) accumulation and thus the efficacy of a second course of ALA-PDT, by manipulating ferrochelatase (FC) and porphobilinogen deaminase (PBG-d) activity. Human EBV-transformed lymphoblastoid cells were used as a model of human tumour cells for the ability to form haem is present in all cells. After a single course of illumination (633 nm, 100 mW/cm2) the FC activity decreased significantly whereas the PBG-d activity did not change. During continued incubation with ALA following the first illumination, cells accumulated up to four times more PPIX than non-illuminated controls [220% +/- 30% versus (vs) 55% +/- 5%; p<0.001]. Two illuminations resulted in more cell death than one illumination (97% +/- 1% vs 80% +/- 2%; p<0.001). Since a second course of ALA-PDT within 3 hr after the first course resulted in a four fold increase in PPIX accumulation and significantly more cell death, we propose that a two course ALA-PDT scheme might improve the efficacy of this treatment for Barrett's oesophagus.  相似文献   

8.
9.
The present study reports a detailed investigation into the interaction of [Cr(phen)2(dppz)]3+ and [Cr(phen)3]3+ with transferrin, the key protein for the transport of Fe3+ in blood plasma; its cycle holds promise as an attractive system for strategies of drug targeting to tumor tissues. This can allow us to understand further the role of both complexes as sensitizers in photodynamic therapy (PDT). Chromium(III) complexes, [Cr(phen)2(dppz)]3+ and [Cr(phen)3]3+, (phen = 1,10-phenanthroline and dppz = dipyridophenazine), where dppz is a planar bidentate ligand with an extended π system, have been found to bind strongly with apotransferrin (apoTf) with an intrinsic binding constant, Kb, of (1.8 ± 0.3) × 105 M− 1 and (1.1 ± 0.1) × 105 M− 1 at 299 K, for apoTf-[Cr(phen)2(dppz)]3+ and apoTf-[Cr(phen)3]3+, respectively. The interactions of apoTf with the different Cr(III) complexes were assessed employing UV-visible absorption, fluorescence and circular dichroism spectroscopy. The relative fluorescence intensity of the protein decreased when the increasing concentration of Cr(III) complex was added, suggesting that perturbation around the Trp and Tyr residues took place. The analysis of the thermodynamic parameters ΔG, ΔH, ΔS indicated that the presence of the Cr(III) complex stabilizes the protein with a strong entropic contribution. The binding distances and transfer efficiencies for apoTf-[Cr(phen)2(dppz)]3+ and apoTf-[Cr(phen)3]3+ binding reactions were calculated according to Föster theory of non-radiation energy transfer. All these experimental results suggest that [Cr(phen)2(dppz)]3+ and [Cr(phen)3]3+ bind strongly to apoTf indicating that this protein could act as a carrier of these complexes for further applications in PDT.  相似文献   

10.
In the present study, the effects of photodynamic therapy (PDT) with verteporfin on tumor blood flow and tumor regrowth were compared as verteporfin distributed in different compartments within the RIF-1 tumor. Tissue distribution of verteporfin was examined by fluorescence microscopy, and blood flow measurements were taken with a laser Doppler system. It was found that, at 15 min after drug administration, when verteporfin was mainly confined within the vasculature, PDT induced a complete arrest of blood flow by 6 h after treatment. PDT treatment at a longer drug-light interval (3 h), which allowed the drug to diffuse to the tumor interstitium, caused significantly less flow decrease, only to 50% of the initial flow in 6 h. A histological study and Hoechst 33342 staining of functional tumor vasculature confirmed the primary vascular damage and the decrease in tumor perfusion. The regrowth rate of tumors treated with 15-min interval PDT was 64% of that of the control group. However, when tumors were treated with 3-h interval PDT, the regrowth rate was not significantly different from that of the control, indicating that only the 15-min interval PDT caused serious damage to the tumor vascular bed. These results support the hypothesis that temporal pharmacokinetic changes in the distribution of the photosensitizer between the tumor parenchyma and blood vessels can significantly alter the tumor target of PDT.  相似文献   

11.
We have developed a spatially distributed mathematical model of angiogenic tumor growth in tissue with account of interstitial fluid dynamics and bevacizumab monotherapy. In this model the process of neovascularization is initiated by tumor cells in a state of metabolic stress, vascular endothelial growth factor (VEGF) being its main mediator. The model takes into consideration the convection flows arising in dense tissue due to active proliferation and migration of tumor cells as well as interstitial fluid inflow from blood vascular system, its outflow through lymphatic system and redistribution in the area of tumor growth. The work considers the diffusive approximation of interstitial fluid dynamics in tumor and normal tissue. Numerical study of the model showed that in absence of therapy a peritumoral edema is formed due to the increase of interstitial fluid inflow from angiogenic capillaries. In the case of rapid interstitial fluid outflow through lymphatic system and its fast transport from necrotic zone to normal tissue the regimes of full growth stop are observed in case of low-invasive tumor. Under bevacizumab monotherapy the peritumoral edema vanishes and low-invasive tumor may not only decelerate its growth, but also start shrinking for a large range of parameters.  相似文献   

12.
Tumor growth and metastasis are critically dependent on the formation of new blood vessels. The present study found that extracellular matrix protein 1 (ECM1), a newly described secretory glycoprotein, promotes angiogenesis. This was initially suggested by in situ hybridization studies of mouse embryos indicating that the ECM1 message was associated with blood vessels and its expression pattern was similar to that of flk-1, a recognized marker for endothelium. More direct evidence for the role of ECM1 in angiogenesis was provided by the fact that highly purified recombinant ECM1 stimulated the proliferation of cultured endothelial cells and promoted blood vessel formation in the chorioallantoic membrane of chicken embryos. Immunohistochemical staining with specific antibodies indicated that ECM1 was expressed by the human breast cancer cell lines MDA-435 and LCC15, both of which are highly tumorigenic. In addition, staining of tissue sections from patients with breast cancer revealed that ECM1 was present in a significant proportion of primary and secondary tumors. Collectively, the results of this study suggest that ECM1 possesses angiogenic properties that may promote tumor progression.  相似文献   

13.
We examined the effect of exogenous IL-10 on the sensitivity of rat W14 and W31 tumor cells to natural killer (NK) cell-mediated cytotoxicity in relation to previously identified NK target structure (NKTS) expressed on these cells. We also examined the effect of endogenous interleukin-10 (IL-10) on rat IL-10 cDNA-introduced W31 cells (W31T-H, a high-IL-10-producer clone; W31T-L, a low-IL-10-producer clone). Both exogenous and endogenous IL-10 had no effect on the proliferative activity of these cells, but incubation of cells with recombinant human (rh) IL-10 resulted in a dose-dependent decrease in the expression of NKTS recognized by mAb 109. The expression level of NKTS on W31T-H cells was dramatically decreased compared with that on W31T-L cells and parental W31 cells. In addition, treatment of W31 cells with the culture supernatants of W31T-H cells could downregulate the expression of the NKTS. Moreover, NK sensitivity of W31T-H was suppressed down to a level equivalent to that of W31 cells pretreated with exogenous rhIL-10, and cytolysis could no longer be inhibited by mAb 109. We previously demonstrated that IL-10 downregulated MHC class I expression in this model. Nevertheless, NK susceptibility was also decreased. Taken together, these results suggest that the IL-10-mediated decrease in NKTS expression has a larger effect than decreased MHC class I expression on NK sensitivity. Thus, our data reveal a novel mechanism for an IL-10-mediated escape of tumor cells from host immune surveillance by downregulation of NKTS expression.  相似文献   

14.
肿瘤光动力疗法诱导细胞凋亡机制研究进展   总被引:25,自引:0,他引:25  
肿瘤光动力疗法(Photodynamic Therapy,PDT)是利用光敏剂分子接受光照后产生多种活性氧物质(reactive oxyger,ROS),使细胞结构和功能受到损伤,而导致细胞凋亡的一种独特的肿瘤治疗方法,已受到越来越多的重视。本文对近几年有关PDT诱导肿瘤细胞凋亡方面的研究进展作了综述性介绍。  相似文献   

15.
BackgroundA promising strategy for cancer diagnosis and therapy is the development of an agent for multimodal imaging and treatment. In the present paper we report on two novel multifunctional agents prepared on the porphyrazine pigment platform using a gadolinium (III) cation chelated by red-fluorescent tetrapyrrole macrocycles (GdPz1 and GdPz2).MethodsSpectral and magnetic properties of the compounds were analyzed. Monitoring of GdPz1 and GdPz2 accumulation in the murine colon carcinoma CT26 was performed in vivo using fluorescence imaging and MRI. The photobleaching of GdPz1 or GdPz2 and tumor growth rate after photodynamic therapy (PDT) were assessed.ResultsGdPz1 and GdPz2 demonstrated the selective accumulation in tumor that was indicated by higher fluorescence intensity in the tumor area in comparison with the normal tissues. The results of MRI in vivo showed that GdPz1 or GdPz2 provided significant contrast enhancement of the tumor in T1 MR images. PDT with GdPz2 resulted in ~ 20% decrease in fluorescence intensity of the compound and the inhibition of tumor growth.ConclusionsWe assessed the efficiency of two innovative Gd(III) cation-porphyrazine chelates as bimodal MR and fluorescent probes and photosensitizers for PDT and showed their potentials for tumor diagnostics and treatment.General significanceWater-soluble structures simple in preparation and administration into the body represent special interest for theranostics of tumors. Novel porphyrazine macrocycles chelating a central gadolinium cation demonstrated a good prospect as effective multimodal agents, representing a new approach to MRI and fluorescence imaging guided PDT.  相似文献   

16.
17.
18.
Mice with advanced disseminated syngeneic tumor can be successfully treated with a combination of chemotherapy and adoptively transferred syngeneic immune cells. We have previously demonstrated that in vivo primed cells secondarily sensitized in vitro became more effective in tumor therapy, whereas primed cells cultured for 5 days without tumor stimulation became less effective than an equal number of uncultured fresh primed cells. Therefore, we examined stimulated and unstimulated cultures of tumor-primed cells for the presence of culture-induced suppressor cells, and determined whether in vivo tumor therapy with immune cells could be inhibited by concurrent inoculation of immune effector cells and cultured normal spleen cells, which contain culture-induced suppressor cells but are devoid of additional effector cells. The in vitro primary allogeneic response was suppressed by cultured normal spleen cells, or tumor-primed spleen cells previously cultured for 5 days with or without tumor stimulation. In vitro secondary sensitization to syngeneic tumor was suppressed by normal or tumor-primed cells that had previously been cultured for 5 days without stimulation. The majority of this suppression was mediated by T cells in the cultured populations. The efficacy of fresh tumor-primed cells, as well as primed cells secondarily sensitized in vitro, in adoptive chemoimmunotherapy of advanced tumor was diminished by concurrent inoculation of cultured normal cells. The cells mediating suppression of in vivo therapy required previous in vitro culture for induction, and were radiation sensitive.  相似文献   

19.
Two porphyrins, CoTPPS and MnTMPyPCl5, were tested for their photodynamic activity and potential novel use in a therapy of human cancers. We investigated an effect of photodynamic reaction (PDR), electroporation (EP) and their combination (electro-photodynamic reaction [EP-PDR]) on human colon adenocarcinoma cell lines (LoVo and resistant to doxorubicin LoVoDX), human breast adenocarcinoma (wild type MCF-7/WT and resistant to doxorubicin MCF-7/DOX), and human melanoma (Me45). The efficiency of macromolecules transport was examined with cytofluorymetry by assessing the degree of propidium iodide (PI) penetration. Additionally, cellular ultrastructure after EP was evaluated. We determined cyto- and photo-cytotoxic effect on the cells viability (MTT assay) after standard PDR and PDR combined with EP. Intracellular distribution and mitochondrial colocalization of both porphyrins was also performed. The experiments proved that both complexes exhibit desirable photodynamic properties on LoVo LoVoDX cells, and EP effectively supports photodynamic method in this type of cancer. The application of EP provided shorter time of incubation (only 10 min) and enhanced effect of applied therapy. The porphyrins did not affect the MCF-7 and Me45 cell lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号