首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solutions of N-nitrosamines, N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosomorpholine and N-nitrosopyrrolidine in phosphate buffer (pH 7.4) were irradiated by ultraviolet (UV) light at room temperature. The N-nitrosamines were extensively degraded due to irradiation for 120 min in a time-dependent fashion as monitored by UV-absorption or high performance liquid chromatographic analysis. Carbon-centered radicals were generated from four N-nitrosamines during the short time irradiation of 10–60 s as monitored by electron spin resonance (ESR) technique using 5,5-dimethyl-1-pyrroline N-oxide and N-tert-butyl-α-phenylnitrone as spin traps. Nitric oxide (NO) was generated during the short time irradiation as monitored by ESR technique using cysteine-Fe(II) complex, N-methyl-d-glucamine dithiocarbamate and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Significant amounts of nitrite (4–16%) from four N-nitrosamines and also a significant amount of nitrate (4%) was produced from N-nitrosodimethylamine during the irradiation time of 120 min. Released NO from the N-nitrosamines must be converted into nitrite through intermediary reactive nitrogen oxide species including nitrogen dioxide and dinitrogen trioxide in contact with dissolved oxygen.  相似文献   

2.
By using the ESR spin trapping technique with the N-methyl-D-glucamine dithiocarbamate (MGD)2-Fe(II) complex, the generation of nitric oxide (NO), a gaseous free radical, was observed in NO spin trapping solution bubbled with the filtered main-stream of cigarette smoke. The ESR signal with a three-line spectrum characteristic of an NO radical, which was not observed immediately after bubbling of smoke, started rapidly increasing with time up to around 25 min after the last addition of ferrous ions Fe(II), and then slowly approached a peak value dependent on the burned cigarette mass and on the smoking speed. The production of NO was, however, much affected by air oxidation and enhanced by the addition of ascorbic acid. A certain concentration of sodium nitrite (NaNO2) solution, in which nitrite NO2- is assumed as the main origin of the NO, mimicked closely the time course of NO generation resulting from the smoke of one cigarette. The cigarette smoke that was passed through alkaline pyrogallol solution as a deoxidizer; however, it exhibited an unchanged intensity of NO signal throughout the measurement. These results strongly suggest that NO would be gradually reproduced from NO2- in the reductive aqueous solution containing excess Fe(II) through NO2, which is initially formed and is concomitantly oxidized from NO in cigarette smoke.  相似文献   

3.
This present study examined the effects of high concentrations of nitric oxide (NO*) and peroxynitrite (ONOO-) on superoxide (O2*-) production from formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated polymorphonuclear leukocytes (PMNs) by using electron spin resonance (ESR) and spin trapping with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO). We demonstrated that ONOO- (100 microM) decreased the ESR signal of DEPMPO-OOH from fMLP-activated PMNs, indicating the inhibition of O2*- generation, while it enhanced the signal of DEPMPO-OH. Inhibition of the respiratory burst was also observed when PMNs were pre-exposed to high concentrations of NO* (100 microM), generated by the NO* donor NOR-1, 30 min prior to stimulation with fMLP. NOR-1 inhibited O2*- generation more effectively under conditions in which ONOO-was formed concurrently. The ability of high concentrations of either ONOO- or NO* to inhibit O2*-generation from fMLP-stimulated PMNs is relevant to pathophysiological conditions, such as severe inflammation, in which NO* or ONOO- production can be significantly elevated.  相似文献   

4.
Oxygen free radicals have been proposed to be major causative agents in secondary brain damage in traumatic and ischemic brain injury. Edarabone (3-methyl-1-phenyl-2-pyrazolin-5-one), a powerful antioxidative radical scavenger, is the only drug currently available in clinical practice for the treatment of cerebral infarction. There has been increasing interest in the role of nitric oxide (NO(*)) as a causative agent in brain injury. In the present study, we investigated the scavenging effect of Edarabone on nitric oxide (NO(*)), using an electron spin resonance (ESR) method. NO(*) was generated from 1-hydroxy-2-oxo-3-(N-3-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC-7), and analyzed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy (carboxy-PTI) produced from the reaction between 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (carboxy-PTIO) and NO(*). Edarabone directly scavenged NO(*) in a dose-dependent manner. These ESR studies indicate that Edarabone has a direct NO(*) scavenging activity and the additional possibility of novel neuroprotective activities against brain injury and focal cerebral ischemia.  相似文献   

5.
No decrease in iron-sulphur centers was found in cultured macrophage cells (J774) after the treatment with nitric oxide (10(-7) M NO/10(7) cells) during 5 min. The center content was controlled by the electron spin resonance (ESR) method. The macrophages pretreated with dithionite + methyl viologen showed the formation of dinitrosyl iron complexes (DNIC) with a characteristic ESR signal at g approximately 2.03. The data suggest that loosely bound nonheme iron (free iron) mostly contributes to the formation of these complexes. Iron from iron-containing proteins does not release from these centers under the direct action of nitric oxide. The iron-sulphur centers can be destroyed by the products of nitric oxide oxidation (NO2, N2O3, etc.) as oxidizing and acid agents.  相似文献   

6.
Among nitrogen oxides, NO and NO2 are free radicals and show a variety of biological effects. NO2 is a strongly oxidizing toxicant, although NO, not oxidizing as NO2, is toxic in that it interacts with hemoglobin to form nitrosyl-and methemoglobin. Nitrosylhemoglobin shows a characteristic electron spin resonance (ESR) signal due to an odd electron localized on the nitrogen atom of NO and reacts with oxygen to yield nitrate and methemoglobin, which is rapidly reduced by methemoglobin reductase in red cells. NO was found to inhibit the reductase activity. Part of NO inhaled in the body is oxidized by oxygen to NO2, which easily dissolves in water and converts to nitrite. The nitrite oxyhemoglobin autocatalytically after a lag. The mechanism of the oxidation, particularly the involvement of superoxide, was controversial. The stoichiometry of the reaction has now been established using nitrate ion electrode and a methemoglobin free radical was detected by ESR during the oxidation. Complete inhibition of the autocatalysis by aniline or aminopyrine suggests that the radical catalyzes conversion of nitrite to NO2, which oxidizes oxyhemoglobin. Recently NO was shown to be one of endothelium- derived relaxing factors and the relaxation induced by the factor was inhibited by hemoglobin and potentiated by superoxide dismutase.  相似文献   

7.
Nitrite is reduced to nitric oxide (NO) in the oral cavity. The NO generated can react with molecular oxygen producing reactive nitrogen species. In this study, reduction of nitrite to NO was observed in bacterial fractions of saliva and whole saliva. Formation of reactive nitrogen species from NO was detected by measuring the transformation of 4,5-diaminofluorescein (DAF-2) to triazolfluorescein (DAF-2T). The transformation was fast in bacterial fractions but slow in whole saliva. Salivary components such as ascorbate, glutathione, uric acid and thiocyanate inhibited the transformation of DAF-2 to DAF-2T in bacterial fractions without affecting nitrite-dependent NO production. The inhibition was deduced to be due to scavenging of reactive nitrogen species, which were formed from NO, by the above reagents. The transformation of DAF-2 to DAF-2T was faster in bacterial fractions and whole saliva which were prepared 1-4 h after tooth brushing than those prepared immediately after toothbrushing. Increase in the rate as a function of time after toothbrushing seemed to be due to the increase in population of bacteria which could reduce nitrite to NO. The results obtained in this study suggest that reactive nitrogen species derived from NO are continuously formed in the oral cavity and that the reactive nitrogen species are effectively scavenged by salivary redox components in saliva but the scavenging is not complete.  相似文献   

8.
Nitrite may be generated by bacteria in urine during urinary tract infections. Acidification of nitrite results in the formation of nitric oxide (NO) and other reactive nitrogen oxides, which are toxic to a variety of microorganisms. We have studied NO formation and bacterial growth in mildly acidified human urine containing nitrite and the reducing agent vitamin C. Urine collected from healthy subjects was incubated in closed syringes at different pH values with varying amounts of nitrite and/or ascorbic acid added. NO generation was measured in headspace gas using a chemiluminescence technique. A similar setup was also used to study the growth of three strains of bacteria in urine. Mildly acidified nitrite-containing urine generated large amounts of NO and this production was greatly potentiated by ascorbic acid. The growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus saprophyticus was markedly reduced by the addition of nitrite to acidified urine. This inhibition was enhanced by ascorbic acid. In conclusion, we show that the growth of three common urinary pathogens is markedly inhibited in mildly acidified urine when nitrite is present. The bacteriostatic effect of acidified nitrite is likely related to the release of NO and other toxic reactive nitrogen intermediates. These results may help to explain the well-known beneficial effects of urinary acidification with, e.g., vitamin C in treatment and prevention of urinary tract infection.  相似文献   

9.
The measurement of nitric oxide (NO) by electron spin resonance (ESR) is complicated by potentially toxic spin-trapping agents, which may affect the NO-producing cells per se and/or cause artifacts and systemic side effects. These problems can be addressed by preventing direct interaction between the agent and the biological system. In the present study, we utilized Teflon as a barrier between the spin trap and the living cell, since the material is permeable to gas only. Our aim was to investigate if NO could diffuse across the membrane in sufficient amounts to be trapped and quantified by ESR. We used standard microdialysis equipment and specially designed dialysis probes, or tubing, with Teflon membranes. Sodium nitroprusside was used as a NO donor and Fe-N-dithiocarboxysarcosine (Fe(DTCS)2) as a spin trap. NO readily diffuses through Teflon and could be quantified in concentrations considerably below 50 nM in a reproducible and accurate manner. In cell cultures of activated murine macrophages, NO synthesis from iNOS could be monitored and we noted a huge increase in NO concentration by superoxide dismutase. We conclude that spin trapping of NO by Fe(DTCS)2 across Teflon membranes is an attractive approach for quantifying and monitoring nitric oxide production without interfering with cell viability.  相似文献   

10.
A saturated nitric oxide (NO) solution (1.88 mM) infused i.v. in the anesthetized pig at a dose of 68 nmol/kg/min for 24 min resulted in a time-dependent increase of nitrosylhemoglobin [HbFe(II)NO] as determined by electron spin resonance (ESR), reaching a C(max) of 7.99 +/- 0.42 microM at the end of the infusion, compared to 1.13 +/- 0.42 microM before (p < 0.01). This indicates that NO i.v. is efficiently bioconserved as HbFe(II)NO (approximately 34% of the NO dose) and to a greater extent than by the oxidative pathway (approximately 24% of the NO dose), as determined by measuring plasma nitrites/nitrates (chemiluminescence) and Met-Hb (ESR analysis). When the NO infusion was stopped, HbFe(II)NO declined with a t(1/2) of 15 min, indicating that it is a stable storage form of NO, able to deliver NO distally to the site of administration. No significant differences were observed in systemic and pulmonary vascular resistances during and after NO infusion, but PO(2) showed a significant decrease 15 and 30 min after the infusion. Thus, in normoxic/physiological conditions, HbFe(II)NO does not induce significant NO-dependent vasorelaxation.  相似文献   

11.
Nitric oxide (NO) synthesis and free radical generation from polymorphonuclear leukocytes (PMNs) play an important role in several pathological conditions. In the present study, regulation of NO synthesis has been investigated in the unstimulated and arachidonic-acid (AA)-stimulated rat PMNs. L-Citrulline formation or nitrite content was used as a marker of NO synthesis, while AA-induced free radical generation was assessed by flow cytometry using a dye, 2('),7(')-dichlorofluoreseindiacetate. L-Citrulline formation in the unstimulated PMNs increased in a time-dependent manner for up to 120 min. The increase was significantly less (25-55%) in AA-stimulated PMNs at all the time points. AA-induced free radical generation was maximum during the first 15 min followed by a time-dependent decrease. Interestingly, similar experiments under hyperoxic conditions did not exhibit any decrease in L-citrulline and nitrite formation after AA stimulation even though the free radical generation further increased. Scavenging or inhibition of free radicals by several types of interventions increased NO generation from AA-stimulated PMNs. The results of the present study suggest that the availability of oxygen, a common substrate for both NADPH oxidase and NOS, can inversely affect the synthesis of NO and PMNs seem to prefer oxygen utilization over NO synthesis for free radical generation.  相似文献   

12.
We have studied receptor-mediated generation of an activator of soluble guanylate cyclase in cultured mouse neuroblastoma cells (clone N1E-115) by ESR/spin trapping spectroscopy. A spin adduct was detected during the activation of muscarinic receptors by carbamylcholine in the presence of the spin trap 3,5-dibromo 4-nitrosobenzene sulphonate (DBNBS). The spin adduct does not correspond to that originating from the free radical nitric oxide or hydroxylamine. The same adduct was generated in cytosol preparations from N1E-115 cells incubated with L-arginine, NADPH, in the presence of calcium. The use of isotopically labelled guanidino-N15-L-arginine supported the generation of a DBNBS spin trapped adduct originating from the guanidino moiety of L-arginine. Superoxide dismutase (SOD) stabilized the precursor of the spin adduct as well as the activator of soluble guanylate cyclase derived from L-arginine. Our results provide direct evidence for the receptor-mediated formation of a diffusible precursor of NO. derived from L-arginine.  相似文献   

13.
In cultured macrophages (J 774 line) a decrease in iron-sulfur centers (ISC) was not observed after 5 min treatment with nitric oxide (NO) (10(-7) M NO/10(7) cells). The content of these centers was measured by electron spin resonance (ESR) spectroscopy at 16-60 K. However, the appearance of a characteristic ESR signal at g(av) = 2.03 indicated the formation of dinitrosyl iron complex (DNIC) in these cells. These findings suggest that loosely bound non-heme iron (free iron) but not iron from ISC is mainly involved in DNIC formation. ISC might release iron for DNIC formation after their destruction induced by the products of NO oxidation (NO2, N2O3, etc).  相似文献   

14.
Using a Langendorff-perfused rat heart preparation and selective electrodes, we determined nitric oxide (NO) and oxygen levels in cardiac tissue. An NO-selective electrode that was calibrated by electron spin resonance (ESR) spectroscopy was inserted into the middle of the myocardium in the left ventricle. Simultaneously, we used an O2-selective electrode to measure the partial pressure of oxygen (pO2) in the perfusate, Krebs-Henseleit (K-H) solution, that was ejected from the heart. After 30 min of aerobic control perfusion, hearts were subjected to 30 min of global ischemia followed by 30 min of reperfusion. Under ischemic conditions, with a gradually decreasing pO2, NO detected by an NO-sensitive electrode within the myocardium was gradually increased. The maximum concentration increases in NO and decreases in pO2 during global ischemia were +10.200 +/- 1.223 microM and -58.608 +/- 4.123 mmHg, respectively. NO and pO2 levels both recovered to pre-ischemia baseline values when perfusion was restarted after global ischemia (reperfusion). The presence of Nomega-nitro-L-arginine methyl ester (L-NAME, 10 mM), a NOS inhibitor, prevented ischemia/reperfusion-induced changes in NO. This study shows that an NO-selective electrode that is calibrated by ESR can provide accurate, real-time monitoring of cardiac NO in normal and ischemic myocardium.  相似文献   

15.
Real-time monitoring of spin-trapped oxygen-derived free radicals released by the isolated ischemic and reperfused rat heart has been achieved by ESR analysis of the coronary effluents using continuous flow detection and high-speed acquisition techniques. Two nitrone spin traps 5,5-dimethyl pyrroline 1-oxide (Me2PnO) and 3,3,5,5-tetramethyl pyrroline 1-oxide (MePnO) have been separately perfused at a concentration of 40 mM during a sequence of 50 min of low-flow ischemia (1 ml/min) followed by 30 min of global ischemia and subsequent reperfusion at the control flow rate (14 ml/min). ESR spectra were sequentially obtained in 5-min or 30-s blocks during low-flow ischemia and reperfusion, respectively. 1. The results show the formation of OH. free radicals in the ischemic and reperfused heart, as demonstrated by the observation of Me2PnO-OH (aN = aH = 14.9 G; g = 2.0053) and Me4PnO-OH (aN = 15.2 G, aH = 16.8 G; g = 2.0055) spin adducts. There is no evidence of significant biological carbon-centered or peroxyl free radicals spin-adduct formation in the coronary effluents or in lipid extracts analyzed after reflow. 2. The OH. generation began 15-20 min after the onset of ischemia and was moderate, peaking at 30-40 min. During reperfusion, an intense formation of OH. spin adducts was observed, with a maximum at 30-60 s and a further gradual decrease over the following 2 min. 3. Cumulative integrated values of the amount of spin adducts released during the ischemic period show a Me2PnO-OH level fourfold greater than that of Me4PnO-OH. It was 2.5 times greater during reflow, reflecting slower kinetics with the more stable Me4PnO. 4. The original ESR detection technique developed in this study allows accurate real-time quantitative monitoring of the oxygen-derived free radicals generated during myocardial injury. It might provide a quick and reliable new means for assessing the efficacy of free-radical inhibitors.  相似文献   

16.
Nitrite is reduced to nitric oxide (NO) in the oral cavity. The NO generated can react with molecular oxygen producing reactive nitrogen species. In this study, reduction of nitrite to NO was observed in bacterial fractions of saliva and whole saliva. Formation of reactive nitrogen species from NO was detected by measuring the transformation of 4,5-diaminofluorescein (DAF-2) to triazolfluorescein (DAF-2T). The transformation was fast in bacterial fractions but slow in whole saliva. Salivary components such as ascorbate, glutathione, uric acid and thiocyanate inhibited the transformation of DAF-2 to DAF-2T in bacterial fractions without affecting nitrite-dependent NO production. The inhibition was deduced to be due to scavenging of reactive nitrogen species, which were formed from NO, by the above reagents. The transformation of DAF-2 to DAF-2T was faster in bacterial fractions and whole saliva which were prepared 1–4?h after tooth brushing than those prepared immediately after toothbrushing. Increase in the rate as a function of time after toothbrushing seemed to be due to the increase in population of bacteria which could reduce nitrite to NO. The results obtained in this study suggest that reactive nitrogen species derived from NO are continuously formed in the oral cavity and that the reactive nitrogen species are effectively scavenged by salivary redox components in saliva but the scavenging is not complete.  相似文献   

17.
The aim of this study was to assess the changes of coronary flow (CF) and nitrite outflow under inhibition of nitric oxide synthase (NOS) by Nomega-nitro-L-arginine monomethyl ester (L-NAME) or lipoxygenase (LOX) induced by nordihydroguaiaretic acid (NDGA) in isolated rat heart. The hearts of male Wistar albino rats (n=18, age 8 weeks, body mass 180-200 g) were retrograde perfused according to the Langendorff's technique at gradually increased constant coronary perfusion pressure (CPP) conditions (40-120 cm H2O) which induced flow-dependent nitric oxide (NO) release (nitrite outflow). The experiments were performed during control conditions, in the presence of NO synthesis inhibitor L-NAME (30 micromol/l) or nonspecific LOX inhibitor (NDGA, 0.1 mmol/l) which were administered separately or in combination. CF varied in autoregulatory range from 4.12+/-0.26 ml/min/g wt at 50 cm H2O to 5.22+/-0.26 ml/min/g wt at 90 cm H2O. In autoregulatory range, nitrite outflow varied from 2.05+/-0.17 nmol/min/g wt at 50 cm H2O to 2.52+/-0.21 nmol/min/g wt at 90 cm H2O and was strictly parallel with CPP/CF curve. The autoregulatory range of CF was significantly extended (40-100 cm H2O, 2.22+/-0.12 ml/min/g wt and 2.90+/-0.25 ml/min/g wt, respectively) under the influence of L-NAME. Hemodynamic effects were accompanied by significant decrease in nitrite outflow after L-NAME administration (0.56+/-0.11 nmol/min/g wt at 40 cm H2O to 1.45+/-0.14 nmol/min/g wt at 100 cm H2O). NDGA affected CF in the range of CPP 40-70 cm H2O only (from 42% at 50 cm H2O to 12% at 90 cm H2O, respectively) with no significant changes in nitrite outflow. When L-NAME was applied in combination with NDGA vs. NDGA only, CF was significantly reduced (from 34% at 50 cm H2O to 50% at 90 cm H2O, respectively) with parallel changes in nitrite outflow (from 40% at 50 cm H2O to 51% at 90 cm H2O, respectively). The results showed that CF and nitrite outflow could be decreased under L-NAME administration. Nonselective LOX inhibitor (NDGA) decreased control values of CF only at lower values of CPP but did not change nitrite outflow indicating antioxidant properties of NDGA. In addition, L-NAME decreased the effects induced by NDGA on CF and nitrite outflow indicating the role of NO.  相似文献   

18.
Mastication, which includes biting, is of great importance not only for the intake of food but also for the mental, physical and physiological functioning of the body. For example, biting suppresses the stress response. Although biting and nitric oxide (NO) appear to modulate brain dynamics during stress, the underlying mechanisms have not been elucidated. In this study, we examined the effect of biting during restraint stress on NO levels in the rat hypothalamus. To this end, we used NO-selective electrodes that were calibrated by electron spin resonance (ESR) spectroscopy. We implanted the electrodes and probes for perfusion of solutions into the brain of rats, near the hypothalamus. Saline containing 10 mM N-nitro-L-arginine methyl ester (L-NAME), which is one of the most commonly used inhibitors of nitric oxide synthase (NOS), was employed as the perfusate. L-NAME prevented increases in NO levels in the rat hypothalamus that were induced by restraint stress and biting. Hypothalamic NO levels in rats under restraint stress for 180 min were increased above levels observed in unrestrained control rats. The increase in hypothalamic NO (from 2.123 muM to 4.760 muM) during restraint stress was reduced after biting for 30 min. The decay rate of NO levels after biting was -0.584 pA/min (-0.071 muM/min). We conclude that: (i) it is possible to evaluate NO levels in vivo in rat brain; (ii) NO levels are increased by restraint stress; and (iii) this increase is prevented by biting behavior.  相似文献   

19.
Nitric oxide, a pivotal molecule in vascular homeostasis, is converted under aerobic conditions to nitrite. Recent studies have shown that myeloperoxidase (MPO), an abundant heme protein released by activated leukocytes, can oxidize nitrite (NO(2-)) to a radical species, most likely nitrogen dioxide. Furthermore, hypochlorous acid (HOCl), the major strong oxidant generated by MPO in the presence of physiological concentrations of chloride ions, can also react with nitrite, forming the reactive intermediate nitryl chloride. Since MPO and MPO-derived HOCl, as well as reactive nitrogen species, have been implicated in the pathogenesis of atherosclerosis through oxidative modification of low density lipoprotein (LDL), we investigated the effects of physiological concentrations of nitrite (12.5-200 microm) on MPO-mediated modification of LDL in the absence and presence of physiological chloride concentrations. Interestingly, nitrite concentrations as low as 12.5 and 25 microm significantly decreased MPO/H2O2)/Cl- -induced modification of apoB lysine residues, formation of N-chloramines, and increases in the relative electrophoretic mobility of LDL. In contrast, none of these markers of LDL atherogenic modification were affected by the MPO/H2O2/NO2-) system. Furthermore, experiments using ascorbate (12.5-200 microm) and the tyrosine analogue 4-hydroxyphenylacetic acid (12.5-200 microm), which are both substrates of MPO, indicated that nitrite inhibits MPO-mediated LDL modifications by trapping the enzyme in its inactive compound II form. These data offer a novel mechanism for a potential antiatherogenic effect of the nitric oxide congener nitrite.  相似文献   

20.
Nitric oxide (NO) formation in the liver and blood of the mouse following intraperitoneal treatment with nitroglycerin (glycerol trinitrate, GTN) was determined using electron spin resonance (ESR) spectroscopy. ESR signals of heme-NO complexes were detected at maximum levels within 5 min in the liver, but increased to a maximum level about 15-30 min later in the blood. GTN is not metabolized to release NO in vitro in the blood of the mouse. The hepatic microsomes which showed the heme-NO complexes ESR signals were incubated with mouse erythrocytes, with the result that a hemoglobin-NO signal was obtained from the erythrocytes. The activities of microsomal cytochrome P-450, the hepatic level of glutathione, and the reduction rate of nitroxide radicals in the in vivo liver, measured using L-band ESR spectroscopy, were temporarily decreased following GTN administration. In conclusion, NO in the liver could be scavenged by circulating erythrocytes, which might minimize NO-induced liver damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号