首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In budding yeast, diffusible mating pheromones initiate a signaling pathway that culminates in several responses, including cell cycle arrest. Only a handful of genes required for the interface between pheromone response and the cell cycle have been identified, among them FAR1 and FAR3; of these, only FAR1 has been extensively characterized. In an effort to learn about the mechanism by which Far3 acts, we used the two-hybrid method to identify interacting proteins. We identified five previously uncharacterized open reading frames, dubbed FAR7, FAR8, FAR9, FAR10, and FAR11, that cause a far3-like pheromone arrest defect when disrupted. Using two-hybrid and coimmunoprecipitation analysis, we found that all six Far proteins interact with each other. Moreover, velocity sedimentation experiments suggest that Far3 and Far7 to Far11 form a complex. The phenotype of a sextuple far3far7-far11 mutant is no more severe than any single mutant. Thus, FAR3 and FAR7 to FAR11 all participate in the same pathway leading to G1 arrest. These mutants initially arrest in response to pheromone but resume budding after 10 h. Under these conditions, wild-type cells fail to resume budding even after several days whereas far1 mutant cells resume budding within 1 h. We conclude that the FAR3-dependent arrest pathway is functionally distinct from that which employs FAR1.  相似文献   

7.
8.
9.
The yeast Saccharomyces cerevisiae has three G1 cyclin (CLN) genes with overlapping functions. To analyze the functions of the various CLN genes, we examined mutations that result in lethality in conjunction with loss of cln1 and cln2. We have isolated alleles of RAD27/ERC11/YKL510, the yeast homolog of the gene encoding flap endonuclease 1, FEN-1.cln1 cln2 rad27/erc11 cells arrest in S phase; this cell cycle arrest is suppressed by the expression of CLN1 or CLN2 but not by that of CLN3 or the hyperactive CLN3-2. rad27/erc11 mutants are also defective in DNA damage repair, as determined by their increased sensitivity to a DNA-damaging agent, increased mitotic recombination rates, and increased spontaneous mutation rates. Unlike the block in cell cycle progression, these phenotypes are not suppressed by CLN1 or CLN2. CLN1 and CLN2 may activate an RAD27/ERC11-independent pathway specific for DNA synthesis that CLN3 is incapable of activating. Alternatively, CLN1 and CLN2 may be capable of overriding a checkpoint response which otherwise causes cln1 cln2 rad27/erc11 cells to arrest. These results imply that CLN1 and CLN2 have a role in the regulation of DNA replication. Consistent with this, GAL-CLN1 expression in checkpoint-deficient, mec1-1 mutant cells results in both cell death and increased chromosome loss among survivors, suggesting that CLN1 overexpression either activates defective DNA replication or leads to insensitivity to DNA damage.  相似文献   

10.
11.
12.
13.
The chronological lifespan of eukaryotic organisms is extended by the mutational inactivation of conserved growth-signaling pathways that regulate progression into and through the cell cycle. Here we show that in the budding yeast S. cerevisiae, these and other lifespan-extending conditions, including caloric restriction and osmotic stress, increase the efficiency with which nutrient-depleted cells establish or maintain a cell cycle arrest in G1. Proteins required for efficient G1 arrest and longevity when nutrients are limiting include the DNA replication stress response proteins Mec1 and Rad53. Ectopic expression of CLN3 encoding a G1 cyclin downregulated during nutrient depletion increases the frequency with which nutrient depleted cells arrest growth in S phase instead of G1. Ectopic expression of CLN3 also shortens chronological lifespan in concert with age-dependent increases in genome instability and apoptosis. These findings indicate that replication stress is an important determinant of chronological lifespan in budding yeast. Protection from replication stress by growth-inhibitory effects of caloric restriction, osmotic and other stresses may contribute to hormesis effects on lifespan. Replication stress also likely impacts the longevity of higher eukaryotes, including humans.  相似文献   

14.
15.
16.
The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast.   总被引:49,自引:0,他引:49  
K Nasmyth  L Dirick 《Cell》1991,66(5):995-1013
  相似文献   

17.
The GPA1 gene of Saccharomyces cerevisiae encodes a protein that is highly homologous to the alpha subunit of mammalian hetrotrimeric G proteins and is essential for haploid cell growth. A mutation of the GPA1 protein, GPA1Val-50, in which Gly-50 was replaced by valine, could complement the growth defect of a GPA1 disruption, gpal::HIS3. However, cells with gpa1::HIS3 expressing the GPA1Val-50 protein were supersensitive to alpha-factor in a short-term incubation but resumed growth after long-term incubation even after exposure to high concentrations of alpha-factor. The former phenotype associated with GPA1Val-50 is recessive, and the latter phenotype is dominant to GPA1+. The supersensitivity of GPA1Val-50 to alpha-factor was dependent on STE2 and STE4, which demonstrates that this GPA1Val-50-produced phenotype requires the mating-factor receptor and the beta subunit of the G protein. The double mutant of sst2-1 GPA1Val-50 recovered from division arrest, which suggested that SST2 is not required for recovery of the GPA1Val-50 mutant.  相似文献   

18.
19.
The rapamycin-sensitive (TOR) signalling pathway in Saccharomyces cerevisiae controls growth and cell proliferation in response to nutrient availability. Rapamycin treatment causes cells to arrest growth in G1 phase. The mechanism by which the inhibition of the TOR pathway regulates cell cycle progression is not completely understood. Here we show that rapamycin causes G1 arrest by a dual mechanism that comprises downregulation of the G1-cyclins Cln1-3 and upregulation of the Cdk inhibitor protein Sic1. The increase of Sic1 level is mostly independent of the downregulation of the G1 cyclins, being unaffected by ectopic CLN2 expression, but requires Sic1 phosphorylation of Thr173, because it is lost in cells expressing Sic1(T173A). Rapamycin-mediated Sic1 upregulation involves nuclear accumulation of a more stable, non-ubiquitinated protein. Either SIC1 deletion or CLN3 overexpression results in non-cell-cycle-specific arrest upon rapamycin treatment and makes cells sensitive to a sublethal dose of rapamycin and to nutrient starvation. In conclusion, our data indicate that Sic1 is involved in rapamycin-induced G1 arrest and that deregulated entrance into S phase severely decreases the ability of a cell to cope with starvation conditions induced by nutrient depletion or which are mimicked by rapamycin treatment.  相似文献   

20.
We have used affinity chromatography to identify proteins that interact with Nap1, a protein previously shown to play a role in mitosis. Our studies demonstrate that a highly conserved protein called Sda1 binds to Nap1 both in vitro and in vivo. Loss of Sda1 function causes cells to arrest uniformly as unbudded cells that do not increase significantly in size. Cells arrested by loss of Sda1 function have a 1N DNA content, fail to produce the G1 cyclin Cln2, and remain responsive to mating pheromone, indicating that they arrest in G1 before Start. Expression of CLN2 from a heterologous promoter in temperature-sensitive sda1 cells induces bud emergence and polarization of the actin cytoskeleton, but does not induce cell division, indicating that the sda1 cell cycle arrest phenotype is not due simply to a failure to produce the G1 cyclins. The Sda1 protein is absent from cells arrested in G0 and is expressed before Start when cells reenter the cell cycle, further suggesting that Sda1 functions before Start. Taken together, these findings reveal that Sda1 plays a critical role in G1 events. In addition, these findings suggest that Nap1 is likely to function during G1. Consistent with this, we have found that Nap1 is required for viability in cells lacking the redundant G1 cyclins Cln1 and Cln2. In contrast to a previous study, we have found no evidence that Sda1 is required for the assembly or function of the actin cytoskeleton. Further characterization of Sda1 is likely to provide important clues to the poorly understood mechanisms that control passage through G1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号