首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total body Irradiation (TBI) is often used for conditioning, prior to bone marrow transplantation. Doses of 8–14 Gy in 1–8 fractions over 1–4 days are administered using low dose rate external beam radiotherapy (EBRT). When necessary, consolidation EBRT using conventional doses, fractionation and dose rate is given. The irradiated volume usually contains critical organs such as spinal cord. The purpose of this study was to assess the biologic effect of TBI on the spinal cord in terms of EQD2 (equivalent dose given in fractions of 2 Gy). EQD2 values were calculated using the linear-quadratic generalized incomplete repair (IR) model that incorporates IR between fractions and low dose rate irradiation corrections and accounts for mono and bi-exponential repair. Three fractionation schemes were studied as function of dose rate: 8 Gy in 1 and 2 fractions and 12 Gy in 8 fractions. For the 12 Gy in 8 fractions scheme, the influence of dose rate on EQD2 was limited because the effect of IR between fractions dominates. For the 8 Gy in 1 fraction scheme, significant sparing of the spinal cord may be achieved for low dose rate (5–20 cGy/min). The extent of effects depends on the parameters used. The IR model provides a useful mathematical framework for examination of the effects of fractionated treatments of varying dose rate. Reliable experimental data are needed for accurate assessment of radiation damage to the spinal cord following fractionated low dose rate TBI.  相似文献   

2.
These experiments were designed to study the kinetics and magnitude of cell repair and repopulation in tissues whose damage results in the tumor bed effect. The right hind thighs of mice were irradiated with single doses or two equal gamma-ray fractions. Interfraction intervals ranging from 30 min to 24 h (to measure the kinetics of repair from sublethal damage) and 6 and 12 weeks (to determine the extent of repopulation) were used. One day after the second radiation dose 5 X 10(5) FSA tumor cells were inoculated into the center of the irradiated field. Radiation dose-response curves were obtained by calculating the time required for tumors to reach 12 mm diameter. No recovery occurred within 6 h of the radiation delivery as measured by this assay. Some recovery, 3.2-4.6 Gy above a single radiation dose, occurred when the interval between two fractions was 24 h. With increasing interfraction intervals of 6 and 12 weeks further dose sparing occurred in the amount of 5.0-6.9 and 7.5-8.3 Gy, respectively. The data suggest that repopulation is the major contributor to the radiation dose-sparing recovery of stromal tissue and that some proliferative response may occur as early as 1 day after the first irradiation.  相似文献   

3.
Measurements of renal damage in the mouse were made to determine if there was an equal effect per fraction during a course of repeated 240-kVp X-ray doses. An X-ray dose of 2 Gy was given 2, 8, 14, or 20 times with interfraction intervals of 12 h. Some animals were also irradiated with twenty 2-Gy doses using a 5-h interfraction interval. The underlying effect per fraction (-logeSF of the notional target cell population) was determined from the additional top-up dose of d(4)-Be neutrons needed to produce measurable renal impairment assessed by decreased clearance from the plasma of [51Cr]EDTA and by a reduction in the hematocrit at 25, 29, 33, and 39 weeks after treatment. There was no significant influence of the time of assay on the values of underlying effect measured. A mean value of underlying effect was therefore calculated for the two different assays of each mouse, from the measurements at the four times. This gave approximately 40 estimates (one for each animal assessed) with each assay of the effectiveness of 2-Gy fractions in each of the four fractionation schedules, a total of 321 determinations in the study with 12-h intervals. Regression analysis showed that there was no significant trend in underlying effect per fraction with number of fractions, i.e., the damage per fraction was constant regardless of the number of fractions used. With underlying effect normalized to 1 unit of damage for a single 2-Gy dose, the slope of this plot was -0.0013 per fraction2 +/- 0.0097 (95% CL). The assumption of equal effect per fraction was therefore not invalidated in the kidney of the mouse. With a 5- instead of a 12-h interfraction interval, the 20-fraction schedule was 7% more effective as measured by the two assays analyzed together; this was significant at P = 0.0001. This shows that 5 h is not sufficient time between fractions for full repair to occur in the kidney, and underlines the need for intervals of at least 6 h between the doses in clinical radiotherapy using more than one fraction per day. The data are consistent with an alpha/beta ratio approximately 1.6 Gy, with a repair half-time approximately 1.3 h. However, these experiments were not designed to determine these parameters and their values should be regarded only as rough estimates.  相似文献   

4.
The kinetics of repair of sublethal damage in mouse lung was studied after fractionated doses of 137Cs gamma-rays. A wide range of doses per fraction (1.7-12 Gy) was given with interfraction intervals ranging from 0.5 to 24 h. The data were analysed by a direct method of analysis using the incomplete repair model. The half-time of repair (T1/2) was 0.76 h for the pneumonitis phase of damage (up to 8 months) and 0.65 h for the later phase of damage up to 12 months. The rate of repair was dependent on fraction size for both phases of lung damage and was faster after large dose fractions than after small fractions. The T1/2 was 0.6 h (95 per cent c.1. 0.53, 0.69) for doses per fraction greater than 5 Gy and 0.83 h (95 per cent c.1 0.76, 0.92) for doses per fraction of 2 Gy. Repair was nearly complete by 6 h, at least for the pneumonitis phase of damage. To the extent that extrapolation of these data to humans may be valid, these results imply that treatments with multiple fractions per day that involve the lung will not be limited by the necessity for interfraction intervals much longer than 6 h.  相似文献   

5.
Spheroids grown from the human cell line EF8 of a lung metastasis of a human malignant fibrous histiocytoma were given fractionated irradiation with 60Co gamma rays at passages 31 and 32. The mean diameter of the spheroids at the time of treatment was 250 microns. Growth delay was used as the end point in these studies. Two experiments were carried out to determine the capacity and kinetics of repair of sublethal damage. In the first experiment, one, two, and five fractions were given at three or four dose levels with fixed intervals of 360 min. In the second experiment, schedules with two and four dose fractions and intervals of 0, 20, 60, 120, and 360 min were used, each at two dose levels. Data analysis was performed by a direct method based on the alpha/beta model and first-order repair kinetics of radiation damage. In both experiments, the alpha/beta value of EF8 spheroids was estimated to be about 8 (6-10) Gy. The rate constant of repair, mu, and its 95% confidence interval were estimated to be 0.62 (0.40-0.84) 10(-2) min-1, equivalent to a half-time of repair (T1/2) of 112 (83-172) min. A more detailed analysis of the data of the second experiment revealed a significant dependence of the rate constant of repair, mu, on the total radiation effect induced by the fractionated radiation treatments with short overall times. With increasing level of effect, mu decreased. These data indicate that the half-time of recovery of a human tumor can be longer than that of the surrounding normal tissue, in this case lung, at least for a limited range of doses and for some fractionation schedules.  相似文献   

6.
Two rat tumor cell lines which differ significantly in radiosensitivity, a rhabdomyosarcoma (R-1) and a ureter carcinoma (RUC-2), were treated with multiple fractions per day and low-dose-rate gamma radiation. The purpose of these experiments was to investigate (i) the influence of fraction size and interfraction interval on repair of sublethal damage (SD) and (ii) whether low-dose-rate irradiation can be simulated by giving multiple fractions per day which might be applied in clinical treatments. In both cell lines, multiple doses were given at 1- to 4-hr intervals. SD repair was at a maximum in 2 hr but did not reach the theoretically expected level. For both cell lines, survival at higher total doses was different from that theoretically expected if repair of SD was assumed to be completed and at the maximum level. To account for the observation that less than complete repair of SD occurred, theoretical survival curves were calculated with the assumption of a constant but less than 100% level of SD repair. Experimental data correlated well with these calculated curves. There were only very small differences in survival after the different multiple fractions per day regimens. Survival after irradiation at a dose rate of 1.00 Gy/hr was found to be similar to that after multiple fractions per day.  相似文献   

7.
脊髓损伤(spinalcordinjury,SCI)是一种严重的损伤,它对患者的影响是相当持久的,SCI治疗的难点主要是由于损伤后脊髓中的微环境不利于神经细胞的再生、轴突的生长和新突触的形成,从而影响了脊髓组织的修复。现在SCI治疗的策略就是要改善损伤脊髓微环境,减少不利因素,从而促进脊髓结构修复和功能重建。本研究综述近年来逐渐发展起来的药物及靶向治疗方法,为SCI的新治疗提供参考依据,真正提高患者的生活质量。  相似文献   

8.
THE EFFECT OF HYPOCHOLESTEREMIC AGENTS ON MYELINOGENESIS   总被引:4,自引:1,他引:3  
Abstract— Three drugs known to inhibit biosynthesis of cholesterol, Clofibrate, 20, 25-diazacholesterol and AY-9944 were administered by stomach intubation to suckling rats. At weaning the rats were killed and subcellular fractions, including myelin, were prepared from the brains and spinal cords and analysed for sterol content. Central nervous tissue fractions from Clofibrate-treated rats showed some decrease in total sterols, but the sterol species were qualitatively normal. AY-9944 given to rats caused high amounts of 7-dehydro-cholesterol to accumulate in all brain and spinal cord fractions with the highest amounts (32–38 percent of total sterols) in myelin. In diazasterol-treated rats desmosterol reached 48 per cent of the sterols of myelin. A group of rats was allowed to survive after the final drug intake (21 days) and their brain and spinal cord sterol content followed up to 60 days. At 30 days the proportion of dehydrocholesterol or desmosterol comprised over half the total myelin sterol. By 60 days of age the 7-dehydrocholesterol had almost completely disappeared from all fractions while substantial amounts of desmosterol were retained in myelin. Myelination was retarded by treatment with AY-9944 and 20, 25-diazasterol, possibly by the limited amount of sterols available. The metabolism of the abnormal myelin constituents in drug-treated animals is discussed in relation to the molecular structure of the myelin membrane.  相似文献   

9.
The dose-response curve for reciprocal translocations induced by X-rays in spermatognial stem cells, and observed in primary spermatocytes of mice, is “hymp-shaped”, with a maximum yield at about 600 R. To test the hypothesis that the decrease in yield with increasing dose above 600 R is a consequence of the different sensitivities of cells in different stages of the cell cycle to both cell killing and chromosome aberration induction, several fractionation experiments were carried out.A total dose of 2800 R was given in repeated doses of 400 R, separated by 8-week intervals. The yield of translocations is that expected for additivity; for example, the yield at 1600 R is approximately equal to that for four separate 400-R doses.When the total dose (500 R) which gives a translocation yield on the ascending part of the dose-response curve is given as two equal fractions separated by intervals of 30, 90, or 150 min, the translocation yield decreases with increasing interval. However, when a total dose (1000 R) which would give a translocation yield on the descending part of the dose-response curve is given in two equal fractions separated by intervals of from 30 min to 6 weeks, the response is different; the translocation yield increases with intervals up to 18 h, then decreases with intervals up to 4 weeks, and finally increases again to a yield equal to additivity with an interval of 6 weeks. These changes in translocation yield with changes in interval between the two doses are explained in terms of the differential sensitivity of cells to killing and aberration induction in the different phases of the cell cycle, and by assuming that the cells surviving the first dose and repopulating the testis different cycle characteristics from normal cells.  相似文献   

10.
The sensitivity of the rat spinal cord to single and split doses of radiation and the resulting relative biological effectiveness (RBE) were determined for carbon-ion irradiations (12C) in the plateau and Bragg-peak regions. The cranial part of the cervical and thoracic spinal cords of 180 rats were irradiated with one or two fractions of 12C ions or photons, respectively. Dose-response curves for the end point symptomatic myelopathy were established, and the resulting values for the ED50 (dose for 50% complication probability) were used to determine the RBEs. A median latency for myelopathy of 167 days (range, 121-288 days) was found. The ED50 values were 17.1 +/- 0.8 Gy, 24.9 +/- 0.7 Gy (one and two fractions, 12C plateau) and 13.9 +/- 0.8, 15.8 +/- 0.7 Gy (one and two fractions, 12C Bragg peak), respectively. For photons we obtained ED50 values of 24.5 +/- 0.8 Gy for single doses and 34.2 +/- 0.7 Gy when two fractions were applied. The corresponding RBEs were 1.43 +/- 0.08, 1.37 +/- 0.12 (one and two fractions, 12C plateau) and 1.76 +/- 0.05, 2.16 +/- 0.11 (one and two fractions, 12C Bragg peak), respectively. Hematoxylin and eosin staining revealed necrosis of the white matter in the spinal cord in all symptomatic animals. In summary, from one- and two-fraction photon, 12C plateau and Bragg-peak irradiation of the rat spinal cord, we have established RBEs as well as the individual ED50's. From the latter there is a clear indication of repair processes for fractionated photons and 12C plateau ions which are significantly reduced by using Bragg-peak ions. Additional studies are being carried with 6 and 18 fractions to further refine and define the RBE and ED50 values and estimate the alpha/beta ratios.  相似文献   

11.
《Biophysical journal》2020,118(2):448-463
Severe injury to the mammalian spinal cord results in permanent loss of function due to the formation of a glial-fibrotic scar. Both the chemical composition and the mechanical properties of the scar tissue have been implicated to inhibit neuronal regrowth and functional recovery. By contrast, adult zebrafish are able to repair spinal cord tissue and restore motor function after complete spinal cord transection owing to a complex cellular response that includes axon regrowth and is accompanied by neurogenesis. The mechanical mechanisms contributing to successful spinal cord repair in adult zebrafish are, however, currently unknown. Here, we employ atomic force microscopy-enabled nanoindentation to determine the spatial distributions of apparent elastic moduli of living spinal cord tissue sections obtained from uninjured zebrafish and at distinct time points after complete spinal cord transection. In uninjured specimens, spinal gray matter regions were stiffer than white matter regions. During regeneration after transection, the spinal cord tissues displayed a significant increase of the respective apparent elastic moduli that transiently obliterated the mechanical difference between the two types of matter before returning to baseline values after the completion of repair. Tissue stiffness correlated variably with cell number density, oligodendrocyte interconnectivity, axonal orientation, and vascularization. This work constitutes the first quantitative mapping of the spatiotemporal changes of spinal cord tissue stiffness in regenerating adult zebrafish and provides the tissue mechanical basis for future studies into the role of mechanosensing in spinal cord repair.  相似文献   

12.
This retrospective study assessed the treatment planning data and clinical outcomes for 152 prostate cancer patients: 76 consecutive patients treated by carbon-ion radiation therapy and 76 consequtive patients treated by moderate hypo-fractionated intensity-modulated photon radiation therapy. These two modalities were compared using linear quadratic model equivalent doses in 2 Gy per fraction for rectal or rectal wall dose–volume histogram, 3.6 Gy per fraction-converted rectal dose–volume histogram, normal tissue complication probability model, and actual clinical outcomes. Carbon-ion radiation therapy was predicted to have a lower probability of rectal adverse events than intensity-modulated photon radiation therapy based on dose–volume histograms and normal tissue complication probability model. There was no difference in the clinical outcome of rectal adverse events between the two modalities compared in this study.  相似文献   

13.
Spinal cord injury causes immediate damage of nervous tissue accompanied by the loss of motor and sensory function. The limited self-repair ability of damaged nervous tissue underlies the need for reparative interventions to restore function after spinal cord injury. Blood vessels play a crucial role in spinal cord injury and repair. Injury-induced loss of local blood vessels and a compromised blood-brain barrier contribute to inflammation and ischemia and thus to the overall damage to the nervous tissue of the spinal cord. Lack of vasculature and leaking blood vessels impede endogenous tissue repair and limit prospective repair approaches. A reduction of blood vessel loss and the restoration of blood vessels so that they no longer leak might support recovery from spinal cord injury. The promotion of new blood vessel formation (i.e., angio- and vasculogenesis) might aid repair but also incorporates the danger of exacerbating tissue loss and thus functional impairment. The delicate interplay between cells and molecules that govern blood vessel repair and formation determines the extent of damage and the success of reparative interventions. This review deals with the cellular and molecular mechanisms underlying the role of blood vessels in spinal cord injury and repair.  相似文献   

14.
The response of mouse lung to repeated doses of 60Co gamma-rays of as low as 115 cGy per fraction was measured using death from pneumonitis between 80 and 120 days after irradiation as the endpoint. A fractionation interval of 3 h was maintained for most regimens but in the longer experiments some 12 h intervals were introduced for logistic reasons. The longest overall duration (for a 43 fraction regimen) was 8 days. The total doses required to produce 50 per cent mortality increased continuously as dose/fraction was decreased, even from 160 to 115 cGy per fraction. Of clinical relevance, the steepness of the isoeffect curve over the dose range 115-500 cGy indicates that the lung shows greater sparing from dose fractionation than is characteristic of more rapidly-responding normal tissues, resembling, in this respect, other more slowly-responding tissues such as spinal cord. The plot of the reciprocal of the LD50 values as a function of dose per fraction was non-linear, suggesting that a linear quadratic dose response model may not be appropriate or that repair of cellular injury in lung is not complete in 3 h, or both.  相似文献   

15.
Re-irradiation tolerance of the spinal cord depends upon the volume of the spinal cord irradiated, the total dose, the dose per fractional, the elapsed time between the treatments and the region of the spinal cord involved. Clinical data on the retreatment tolerance of the spinal cord are sparse and inconclusive. Radiobiological laboratory evidence has indicated the presence of long term recovery of the spinal cord damage. Fractionation sensitivity during reirradiation is comparable with the first session of radiation treatment. After an initial dose of 45 Gy, 50% recovery has been reported by Schultheiss and Stephens for an elapsed period of two years for re-irradiation considerations.  相似文献   

16.
Spinal cord injury results in a permanent neurological deficit due to tissue damage. Such a lesion is a barrier for "communication" between the brain and peripheral tissues, effectors as well as receptors. One of the primary goals of tissue engineering is to bridge the spinal cord injury and re-establish the damaged connections. Hydrogels are biocompatible implants used in spinal cord injury repair. They can create a permissive environment and bridge the lesion cavities by providing a scaffold for the regeneration of neurons and their axons, glia and other tissue elements. The advantage of using artificial materials is the possibility to modify their physical and chemical properties in order to develop the best implant suitable for spinal cord injury repair. As a result, several types of hydrogels have been tested in experimental studies so far. We review our work that has been done during the last 5 years with various types of hydrogels and their applications in experimental spinal cord injury repair.  相似文献   

17.
—Congenital tremor, type AIII, is characterized by partial agenesis of the white matter of the CNS affecting mainly the spinal cord. The percentage water content of the fresh cord is consistently higher than normal and other parts of the CNS are sporadically affected. The total lipid content (mg/g fresh tissue) is markedly decreased in the cord but brain stem and cerebellum are less severely deficient; the cerebrum is barely deficient. Total amounts of cholesterol, cerebroside and phospholipid (mmol/part) are significantly reduced predominantly in cerebellum, brain stem and cord. Total DNA and protein contents are decreased to a significant extent only in spinal cord. Broadly similar lipid changes are found in fixed tissues. The data are consistent with sub-normal myelination, associated with a deficiency of oligodendrocytes.  相似文献   

18.
Examination of repaired spinal cord tracts has usually required separate groups of animals for anterograde and retrograde tracing owing to the incompatibility of techniques such as tissue fixation. However, anterograde and retrograde labeling of different animals subjected to the same repair may not allow accurate examination of that repair strategy because widely variable results can occur in animals subjected to the same strategy. We have developed a reliable method of labeling spinal cord motor tracts bidirectionally in the same animal using DiI, a lipophilic dye, to anterogradely label the corticospinal tract and Fluoro-Gold (FG) to retrogradely label cortical and brainstem neurons of several spinal cord motor tracts in normal and injured adult rats. Other tracer combinations (lipophilic dyes or fluorescent dextrans) were also investigated but were less effective. We also developed methods to minimize autofluorescence with the DiI/FG technique, and found that the DiI/FG technique is compatible with decalcification and immunohistochemistry for several markers relevant for studies of spinal cord regeneration. Thus, the use of anterograde DiI and retrograde FG is a novel technique for bidirectional labeling of the motor tracts of the adult spinal cord with fluorescent tracers and should be useful for demonstrating neurite regeneration in studies of spinal cord repair.(J Histochem Cytochem 49:1111-1122, 2001)  相似文献   

19.
An incomplete-repair (IR) model of survival after fractionated or continuous irradiation is derived from the concept of 'dose-equivalent' of incomplete repair. The model gives reasonably good predictions of the effect of interfraction interval, dose per fraction, and dose rate on cell survival in vivo and on tissue responses. This model is compared to the 'lethal, potentially lethal' (LPL) model after the latter has been generalized to an arbitrary number of fractions and to low dose-rate, continuous exposures. It is shown that the two models are equivalent, given certain constraints on the size of dose per fraction and dose rate. For example, in a particular cell line the equivalence of fractionation models breaks down if dose per fraction is well in excess of 4 Gy (the IR model employs the linear-quadratic survival model). The equivalence of low dose rate models breaks down for dose rates well in excess of 20 cGy/min. The assumptions on which the generalized LPL model is based are used to give a radiobiological interpretation to the incomplete-repair model. The larger beta/alpha ratio characteristic of late-responding normal tissues is interpreted in terms of the relatively faster fixation of potentially reparable lesions in the target cells of acutely responding tissues, on account of progression in the cell cycle. According to this interpretation the beta/alpha ratios estimated from isoeffective fractionation regimens are directly related to the parameters of clonogenic cell killing.  相似文献   

20.
Amir R  Devor M 《Biophysical journal》2003,84(4):2700-2708
The peculiar pseudounipolar geometry of primary sensory neurons can lead to ectopic generation of "extra spikes" in the region of the dorsal root ganglion potentially disrupting the fidelity of afferent signaling. We have used an explicit model of myelinated vertebrate sensory neurons to investigate the location and mechanism of extra spike formation, and its consequences for distortion of afferent impulse patterning. Extra spikes originate in the initial segment axon under conditions in which the soma spike becomes delayed and broadened. The broadened soma spike then re-excites membrane it has just passed over, initiating an extra spike which propagates outwards into the main conducting axon. Extra spike formation depends on cell geometry, electrical excitability, and the recent history of impulse activity. Extra spikes add to the impulse barrage traveling toward the spinal cord, but they also travel antidromically in the peripheral nerve colliding with and occluding normal orthodromic spikes. As a result there is no net increase in afferent spike number. However, extra spikes render firing more staccato by increasing the number of short and long interspike intervals in the train at the expense of intermediate intervals. There may also be more complex changes in the pattern of afferent spike trains, and hence in afferent signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号