首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 144 毫秒
1.
Uptake and desorption kinetics of methylglucose and pentachlorophenol (PCP) by needles of Picea abies (L.) Karst. were studied. Uptake of methylglucose was very rapid, equilibrium was obtained within 2 h and the amounts of methylglucose associated with the needles could be completely desorbed within 8 h. In contrast, PCP uptake was steady for several hours and the amounts of PCP taken up could only partially be desorbed again. Needles treated with NaN3 prior to uptake measurements, showed no methylglucose uptake at all, whereas PCP uptake was not affected. Thus it is concluded that the hydrophilic methylglucose was taken up solely by epiphytic microorganisms, whereas the lipophilic PCP was taken up into the needle interior in significant amounts. Consequences of these results on studies of foliar uptake of chemicals are pointed out.  相似文献   

2.

Background and Aims

Vascular epiphytes have to acquire nutrients from atmospheric wash out, stem-flow, canopy soils and trapped litter. Physiological studies on the adaptations to nutrient acquisition and plant utilization of nutrients have focused on phosphorus and nitrogen; potassium, as a third highly abundant nutrient element, has received minor attention. In the present study, potassium uptake kinetics by leaves, within-plant distribution and nutrient accumulation were analysed to gain an improved understanding of physiological adaptations to non-terrestrial nutrient supply of plants.

Methods

Radioactively labelled 86RbCl was used as an analogue to study uptake kinetics of potassium absorbed from tanks of epiphytes, its plant distribution and the correlation between uptake efficiency and abundance of trichomes, functioning as uptake organs of leaves. Potassium in leaves was additionally analysed by atomic absorption spectroscopy to assess plant responses to potassium deficiency.

Key Results

Labelled rubidium was taken up from tanks over a wide range of concentrations, 0·01–90 mm, which was achieved by two uptake systems. In four tank epiphytes, the high-affinity transporters had average Km values of 41·2 µm, and the low-affinity transporters average Km values of 44·8 mm. Further analysis in Vriesea splenriet showed that high-affinity uptake of rubidium was an ATP-dependent process, while low-affinity uptake was mediated by a K+-channel. The kinetic properties of both types of transporters are comparable with those of potassium transporters in roots of terrestrial plants. Specific differences in uptake velocities of epiphytes are correlated with the abundance of trichomes on their leaf surfaces. The main sinks for potassium were fully grown leaves. These leaves thus function as internal potassium sources, which allow growth to be maintained during periods of low external potassium availability.

Conclusions

Vascular epiphytes possess effective mechanisms to take up potassium from both highly diluted and highly concentrated solutions, enabling the plant to incorporate this nutrient element quickly and almost quantitatively from tank solutions. A surplus not needed for current metabolism is stored, i.e. plants show luxury consumption.  相似文献   

3.

Background and Aims

Vascular epiphytes which can be abundant in tree crowns of tropical forests have to cope with low and highly intermittent water and nutrient supply from rainwater, throughfall and stem flow. Phosphorus rather than nitrogen has been suggested as the most limiting nutrient element, but, unlike nitrogen, this element has received little attention in physiological studies. This motivated the present report, in which phosphate uptake kinetics by leaves and roots, the subsequent distribution within plants and the metabolic fate of phosphate were studied as a step towards an improved understanding of physiological adaptations to the conditions of tree canopies.

Methods

Radioactively labelled [32P]phosphate was used to study uptake kinetics and plant distribution of phosphorus absorbed from bromeliad tanks. The metabolism of low molecular phosphorus metabolites was analysed by thin-layer chromatography followed by autoradiography.

Key Results

Uptake of phosphate from tanks is an ATP-dependent process. The kinetics of phosphorus uptake suggest that epiphytes possess effective phosphate transporters. The Km value of 1·05 µm determined for leaves of the bromeliad Aechmea fasciata is comparable with values obtained for the high affinity phosphate transporters in roots of terrestrial plants. In this species, young leaves are the main sink for phosphate absorbed from tank water. Within these leaves, phosphate is then allocated from the basal uptake zone into distal sections of the leaves. More than 80 % of the phosphate incorporated into leaves is not used in metabolism but stored as phytin.

Conclusions

Tank epiphytes are adapted to low and intermittent nutrient supply by different mechanisms. They possess an effective mechanism to take up phosphate, minimizing dilution and loss of phosphorus captured in the tank. Available phosphorus is taken up from the tank solution almost quantitatively, and the surplus not needed for current metabolism is accumulated in reserves, i.e. plants show luxury consumption. Young, developing leaves are preferentially supplied with this nutrient element. Taken together, these features allow epiphytes the efficient use of scarce and variable nutrient supplies.Key words: Epiphytic bromeliads, phosphorus uptake, forest canopies, luxury consumption, phytotelms, plant nutrition, Aechmea fasciata  相似文献   

4.
P. Moss 《Plant and Soil》1963,18(1):124-132
Summary The effect of potassium ions on a River Estate soil-water system was investigated by equilibrating the soil with 0.0001 to 0.02M KCl solutions. Soil solutions were obtained from soil samples prepared over a wide range of solution/soil ratios, both within and outside the field range. The soil-soil solution equilibrium remained undisturbed over the field range of solution/soil ratios, 0.25 to 1.0, for the 0.0001M 0.0002M, and 0.0005M KCl systems. Values of pK–1/2p(Ca+Mg) for these systems tended to decrease at ratios greater than 1.0 and with increasing strength of the KCl-equilibrating solutions. This is suggested to be due to the increasing potassium release from the soil with increasing solution/soil ratio for the 0.0001M KCl system and the increasing amounts of potassium present in the 0.0002M, 0.0005M, and 0.02M KCl systems.Both release and uptake of potassium were shown to be functions of the potassium concentration of the equilibrium soil solution. A value K0, was defined as the concentration of potassium in the soil solution when potassium was neither released nor taken up by the soil. It is suggested that if this value is known, measurement of the soil solution potassiujm concentration under any particular conditions would indicate whether potassium was being released or taken up by the soil.It was deduced that the exchange complex of this soil had to be 62 per cent saturated with potassium before fixation occurred.  相似文献   

5.
Changes in glucose transport and metabolism in skeletal muscles of the obese-diabetic mice (db/db) was characterized using the perfused mouse hindquarter preparation. Metabolism of [5-3H]glucose, uptake of 3-O-[methyl-3H]glucose (methylglucose) and [2-14C]deoxyglucose (deoxyglucose) was studied under resting, electrically stimulated contracting, and insulin-stimulated conditions. Basal rate of methylglucose uptake was 255 ± 18 and 180 ± 9 μl/15 min per ml intracellular fluid space for lean and db/db mice, respectively. The V? of methylglucose transport was decreased with no change in Km in the db/db mice. Both electrical stimulation and insulin (1/mU/ml) increased methylglucose uptake rate 2-fold in both lean and obese mice. We observed no significant change in insulin sensitivity in the db/db mice in stimulating methylglucose uptake which was subnormal under all conditions. Similar results were obtained using deoxyglucose. Likewise, uptake of glucose and 3H2O production from [5-3H]glucose were significantly reduced, both at rest and during electrically stimulated contraction in the db/db mouse. However, lactate production in the electrically stimulated db/db mouse preparations was not significantly different from that in the lean mice. These data suggest a major contribution from an impaired glucose transport activity to the reduction in glucose metabolism in the db/db mouse skeletal muscle.  相似文献   

6.
The potential importance of CO2 derived from host tree respiration at night as a substrate for night time CO2 uptake during CAM was investigated in the subtropical and tropical epiphytic vine Hoya carnosa in a subtropical rainforest in north-eastern Taiwan. Individuals were examined within the canopies of host trees in open, exposed situations, as well as in dense forests. Although night time CO2 concentrations were higher near the epiphytic vines at night, relative to those measured during the day, presumably the result of CO2 added to the canopy air by the host tree, no evidence for substantial use of this CO2 was found. In particular, stable carbon isotope ratios of H. carnosa were not substantially lower than those of many other CAM plants, as would be expected if host-respired CO2 were an important source of CO2 for these CAM epiphytes. Furthermore, laboratory measurements of diel CO2 exchange revealed a substantial contribution of daytime CO2 uptake in these vines, which should also result in lower carbon isotope values than those characteristic of a CAM plant lacking daytime CO2 uptake. Overall, we found that host-respired CO2 does not contribute substantially to the carbon budget of this epiphytic CAM plant. This finding does not support the hypothesis that CAM may have evolved in tropical epiphytes in response to diel changes in the CO2 concentrations within the host tree canopy.  相似文献   

7.
8.
Fusarium oxysporum grown in a low phosphate medium was found to take up several times as much K from KH2PO4 as from KCI solutions. Large amounts of phosphate also were taken up from KH2PO4. Similar large uptakes of Na and phosphate took place from solutions of NaH2PO4. Substantial quanties of phosphate were taken up from solutions of Ca(H2PO4)2 in the absence of any appreciable Ca uptake. When the fungus was grown in a medium containing high phosphate, little or no uptake of phosphate from KH2PO4 solutions occured and the K Uptake was at the same level as from KCI solutions. During large phosphate uptake sizable reductions in the organic acid content of the fungal cells were observed. Much, but not all, of the data could be explained on the basis of maintenance of charge balance within the cells. – The respiratory rate of fungus, grown in a low P medium, was markedly increased in KH2PO4 solution. Fungus, grown in a medium with high phosphate, had a higher respiratory rate which showed only a slight response to KH2PO4 solution. Fungus, grown in a medium with high phosphate, had a higher respiratory rate which showed only a slight response to KH2PO4.  相似文献   

9.
The total uptake and relative distribution of Na+ along the root was investigated in excised barley roots (Hordeum vulgare L. cv. Union) of 6-day-old plants cultured on 0.25 mM CaSO4. One technique involved cutting the roots at harvest time after different uptake periods into different segments each 2 cm long. These segments were ashed and sodium was measured by flame photometry. For each experiment two treatments were done, one containing calcium in the uptake solution and one without calcium. A second technique involved the measurement of sodium transport, using labelled 22Na+ solution. Although no significant differences could be found between the calcium containing and the calciumless treatments at 24 h, there were clearcut differences for the first 6 to 8 h. The effect of calcium on the first stages of the sodium uptake was a large accumulation of sodium in the part close to the apex with a translocation close to nil; whereas the sodium taken up in the absence of calcium did not accumulate in such large amounts in the apex region but was immediately transported basipetally.  相似文献   

10.
During a seven-month period the effect of different nitrogen (N) availability in soil on growth and nutrient uptake was studied in three-year-old Norway spruce (Picea abies [L.] Karst.) trees. The plants were grown in pots on N-poor forest soil supplied with various amounts and forms (inorganic and organic) of N. Increasing supply of inorganic N (as NH4NO3) increased the formation of new shoots and shoot dry weight. The root/shoot dry weight ratio of new growth was drastically decreased from 1.6 in plants without N supply to 0.5 in plants supplied with high levels of NH4NO3. This decrease in root/shoot dry weight ratio was associated with distinct changes in root morphology in favour of shorter and thicker roots. The addition of keratin as organic N source did neither affect growth nor root morphology of the trees. The amount of N taken up by plants was closely related to the supply of inorganic N, and trees supplied with highest levels of NH4NO3 also had the highest N contents in the dry matter of needles and roots. In contrast, N contents in needles of trees grown without additional N, or with keratin supply, were in the deficiency range. Supply of NH4NO3 decreased the contents of phosphate (P) and potassium (K) and therefore markedly increased N/P and N/K ratios in the needles. On the other hand, the contents of calcium (Ca), magnesium (Mg), and manganese (Mn) in the needles were increased in the plants supplied with inorganic N, suggesting high soil availability and promotion of uptake of these divalent cations by high nitrate uptake. The observed effects on root/shoot dry weight ratio, root morphology, and mineral nutrient composition of the needles indicated that high inorganic N supply may increase above-ground productivity but at the same time decrease the tolerance of trees against soil-borne (e.g. deficiency of other mineral nutrients) stress factors. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

11.
Direct uptake of organic nitrogen (ON) compounds, rather than inorganic N, by plant roots has been hypothesized to constitute a significant pathway for plant nutrition. The aim of this study was to test whether tomatoes (Solanum lycopersicum cv. Huying932) can take up ON directly from the soil by using 15NH4Cl, K15NO3, 1, 2-13C215N-glycine labeling techniques. The 13C and 15N in the plants increased significantly indicating that a portion of the glycine-N was taken up in the form of intact amino acids by the tomatoes within 48 h after injection into the soil. Regression analysis of excess 13C against excess 15N showed that approximately 21% of the supplied glycine-N was taken up intact by the tomatoes. Atom% excesses of 15N and 13C in the roots were higher than in any shoots. Results also indicated rapid turnover of amino acids (e.g., glycine) by soil microorganisms, and the poor competitive ability of tomatoes in absorbing amino acids from the soil solution. This implies that tomatoes can take up ON in an intact form from the soil despite the rapid turnover of organic N usually found under such conditions. Given the influence of climatic change and N pollution, further studies investigating the functional ecological implications of ON in horticultural ecosystems are warranted.  相似文献   

12.
The uptake of phenol by pure cultures of Pseudomonas putida growing on phenol in continuous culture has been studied. The purpose of the experiments was to determine the kinetic parameters governing uptake of phenol by organisms growing on phenol in the high-conversion range by measuring uptake rates per unit biomass per unit time at various phenol concentrations. The microorganisms used were taken from a chemostat at residence times of 8, 5.25, 3.85, 3.2, 3, and 2.7h. The Monod–Haldane model and modifications of it were applied to the data and the best kinetic parameters were determined by nonlinear least-squares techniques. The best model was a two-parameters simplification of Monod–Haldane in which μ = K1S/(K2 + S2). The value of K1 was found to increase monotonically with the value of phenol concentration in the original chemostat with an apparent induction “threshold” of 0.1 mg/L.  相似文献   

13.
Abstract: The carotid injection technique, used previously to quantitate the kinetics of blood-brain barrier transport of metabolic substrates, may be modified to analyze the rate of cerebral glucose utilization. A 0.2-ml solution of [14C]glucose (GF) and [3H]methylglucose (M), an internal reference, is rapidly injected into the carotid artery, followed by microwave fixation of brain at various times up to 4 min after injection. The brain radioactivity is separated into a fraction containing neutral hexoses (GF and M) and a fraction containing metabolites of glucose. The GF/M ratio is related to the rate constant (k3) of brain glucose utilization by the simple, linear equation: In(GF/M) = In(GF°/M°) –k3t, where GF°/M°= the brain uptake index of glucose, relative to methylglucose, at 5-15 s after injection, and t= the time after carotid injection, e.g., 1–4 min. It is assumed that (a) the rate of influx due to recirculation of label is minimal during the 4-min circulation period; and (b) the rate constants of glucose efflux (k2) and methylglucose efflux (k2*) are identical. Independent estimates of k2 and k2* showed these parameters to be identical: k2= 0.14 + 0.08 min-I; k2*= 0.14 ± 0.02 min-I. A logarithmic plot of GF/M ratios versus time was linear (r = 0.99), and was described by the slope k2= 0.21 ± 0.02 min?1. Assuming glucose is uniformly distributed in brain, then the glycolytic rate = k3× brain glucose = (0.21 min?1) (2.6 μmol g?1) = 0.55 μmol min?1 g?1 for the cortex of the barbiturate-anesthetized rat. These studies provide the basis for a simple method of measurement of regional brain glycolysis that does not require either the use of correction factors, e.g., the lumped constant, or the use of differentially labeled glucose.  相似文献   

14.
Samples of current-year and 1-year-old foliage were taken from Norway spruce (Picea abies (L.) Karst.) trees in April 1991, 4 months after a 3–4 year controlled fumigation with O3 and SO2 in the open at Liphook, south-east England. Trees were grown in seven plots, and treated in a factorial design with three levels of SO2 and two levels of O3 (ambient and c. 1.3 × ambient), with an extra ambient air plot. All statistical analyses were made on plot means. Leaf wettability, as measured by the contact angle of water droplets, was significantly affected by needle age and by SO2 treatment (P≤0–05. in older needles, decreasing with increasing SO2 concentration. There was no effect of O3 on wettability, and no effect of any treatment on amounts of surface wax extracted by immersion of needles in chloroform. Electrolyte leakage rates from detached current-year needles were not affected by prior exposure to O3, but decreased significantly (P= 0.034) with increasing exposure to SO2. There was no detectable effect of fumigation on the rate of water loss from detached needles. Similarly, there was no effect of fumigation on the dry weight/fresh weight ratio of needles. The total sulphur content of needles increased significantly (P≤0.0001) with exposure to SO2 and with needle age. Amounts of water-extractable sulphate, however, varied greatly among plots, but with no pattern with respect to fumigation treatment. It is concluded that leaf wettability and electrolyte leakage rates may be good indicators of the persistent effects of SO2 on Norway spruce growing in the open air, and that the observed changes in leaf surface properties in response to SO2 fumigation have implications for the processes, both biotic and abiotic, that occur on leaf surfaces.  相似文献   

15.
Mass spectromelry has been used to investigate the uptake of CO2 by two marine diatoms, Phaeodactylum tricornutum and Cyclotella sp. The time course of CO2 formation in the dark after addition of 100 mmol m?3 dissolved inorganic carbon (DIC) to cell suspensions showed that external carbonic anhydrase (CA) was not present in cells of P. tricornutum but was present in Cyclotella sp. In the absence of external CA, or when it was inhibited by 5 mmol m?3 acetazolamide, cells of both species preincubated with 100 mmol m?3 DIG rapidly depleted almost all of the free CO2 (3·2mmol m?31 at pH7·5) from the suspending medium within seconds of illumination and prior to the onset of steady-state photosynthesis. Addition of bovine CA quickly restored the HCO3?–CO2 equilibrium in the medium, indicating that the initial depletion of CO2 resulted from the selective uptake of CO2 rather than uptake of all DIG species. Transfer of cells to the dark caused a rapid increase in the CO2 concentration in the medium, largely as a result of the efflux of unfixed inorganic carbon from the cells. The measured CO2 uptake rates for both species accounted for 50% of the total DIG uptake at HCO3?–CO2 equilibrium, indicating that HCOHCO3? was also being taken up. These results indicate that both Phaeodactylum tricornutum and Cyclotella sp. have the capacity to transport CO2 actively against concentration and pH gradients.  相似文献   

16.
Throughfall nitrogen of a 15-year-old Picea abies (L.) Karst. (Norway spruce) stand in the Fichtelgebirge, Germany, was labeled with either 15N-ammonium or 15N-nitrate and uptake of these two tracers was followed during two successive growing seasons (1991 and 1992). 15N-labeling (62 mg 15N m-2 under conditions of 1.5 g N m-2 atmospheric nitrogen deposition) did not increase N concentrations in plant tissues. The 15N recovery within the entire stand (including soils) was 94%±6% of the applied 15N-ammonium tracer and 100%±6% of the applied 15N-nitrate tracer during the 1st year of investigation. This decreased to 80%±24% and 83%±20%, respectively, during the 2nd year. After 11 days, the 15N tracer was detectable in 1-year-old spruce needles and leaves of understory species. After 1 month, tracer was detectable in needle litter fall. At the end of the first growing season, more than 50% of the 15N taken up by spruce was assimilated in needles, and more than 20% in twigs. The relative distribution of recovered tracer of both 15N-ammonium and 15N-nitrate was similar within the different foliage age classes (recent to 11-year-old) and other compartments of the trees. 15N enrichment generally decreased with increasing tissue age. Roots accounted for up to 20% of the recovered 15N in spruce; no enrichment could be detected in stem wood. Although 15N-ammonium and 15N-nitrate were applied in the same molar quantities (15NH 4 + : 15NO 3 - =1:1), the tracers were diluted differently in the inorganic soil N pools (15NH 4 + /NH 4 + : 15NO 3 - /NO 3 - =1:9). Therefore the measured 15N amounts retained by the vegetation do not represent the actual fluxes of ammonium and nitrate in the soil solution. Use of the molar ammonium-to-nitrate ratio of 9:1 in the soil water extract to estimate 15N uptake from inorganic N pools resulted in a 2–4 times higher ammonium than nitrate uptake by P. abies.  相似文献   

17.
Abstract: Adenosine, a putative inhibitory transmitter or modulator in the brain, is rapidly transported by rat cerebral cortical synaptosomes. The uptake may represent a facilitated diffusion process, which is saturable and temperature-dependent. In this study, the uptake process was very rapid, reaching completion within 60 s of incubation at 37°C, and had an apparent Km value of 0.9μM and a Vmax value of 5.26 pmol/mg protein/ 30 s. Over 70% of the adenosine taken up remained unchanged, whereas 14% was metabolized to inosine. Twelve percent of the adenosine was converted to nucleotides. Rapid uptake of adenosine into rat cerebral cortical synaptosomes was partially inhibited by replacing Na+ with choline chloride in the medium. Ca2+ ion is important for the uptake process, as inhibition of adenosine uptake occurs in the presence of either Co2- or EGTA. Rapid uptake of adenosine is apparently mediated by a nucleoside carrier, a conclusion based on its inhibition by a variety of purine and pyrimidine nucleosides. Uptake was inhibited by dipyridamole, hexobendine, papaverine, flurazepam, and morphine. Over 60% of the adenosine taken up by the rapid uptake system (30 s) was released by depolarizing agents. In contrast, only 30% of the adenosine taken up during a 15-min incubation period was released under the same conditions. [3H]Adenosine was the predominant purine released in the presence or absence of depolarizing agents. The basal and KCl-evoked release mechanisms were found to be at least partially Ca2+-dependent, however, the release of adenosine by veratridine was increased in the presence of EGTA. This finding is in agreement with the reported Ca2+-independent release of ATP from brain synaptosomes. The present findings suggest that there are at least two functional pools of adenosine in synaptosomes. Adenosine taken up by different uptake systems may be destined for different uses (metabolism or release) in the neuron.  相似文献   

18.
The light–nitrogen hypothesis suggests canopy photosynthesis is maximized when there is a positive relationship between irradiance received by foliage, its nitrogen content (per unit area Narea), and maximum rate of photosynthesis (Amax). Relationships among relative irradiance and Narea, allocation of nitrogen within the photosynthetic apparatus to Rubisco and chlorophyll, and Amax were examined in Pinus pinaster Ait. needles up to 6 years of age. Measurements were made before bud break in August 1998, and in May 1999 after the first ‘winter’ rains. In August, Narea in P. pinaster needles decreased from 5·1 to 5·7 g m?2 in sunlit 1‐year‐old needles to 2·3 g m?2 in shaded 6‐year‐old needles. In May, Narea was 5–40% less but spatial trends were the same. At both sampling dates, Amax was less in old shaded needles compared with young sunlit needles, and was thus consistent with the light–nitrogen hypothesis. Relationships between Narea and Amax were positive at both dates yet varied in strength and form. Allocation of nitrogen within the photosynthetic apparatus was qualitatively consistent with acclimation to light (i.e. Rubisco/Chl decreased with shading), but quantitatively suboptimal with respect to photosynthesis owing to consistent over‐investment in Rubisco. This over‐investment increased with height in the canopy and was greater in May than in August.  相似文献   

19.
The kinetics of radiocesium (137Cs) uptake by natural suspended matter collected from coastal waters in the southern Baltic has been studied under laboratory conditions. The uptake of radiocesium from seawater by the suspended matter took place immediately after introduction of the isotope and attained equilibrium within a few hours. Summer and winter suspended matter displayed equal Kd values, indicating similar sorption characteristics of radiocesium. The amounts of radiocesium sorbed from sea water were proportional to the suspended matter concentration studied,i.e. up to 312 mg dry wt dm–3. The relative uptake of radiocesium by live and dead plankton appeared to be the same. The desorption of radiocesium from dead plankton proceeded more rapidly and more intensively than sorption. There are no significant differences between the Kd values for plankton determined in laboratory experiments and those found for plankton populations under field conditions.  相似文献   

20.
Summary The freezing tolerance of cabbage petioles and asparagus shoot apexes was increased by preincubation with 0.8 M sugar solutions. In cabbage petioles with an initial freezing tolerance of –3 °C (temperature for 50% cell survival), as determined by both electrolyte leakage and fluorescein diacetate vital staining, the freezing tolerance was increased to –13 °C by incubation with sorbitol solutions for 3 h. In meristematic cells of asparagus shoot apexes with an initial freezing tolerance of –7.5 °C, as determined by fluorescein diacetate vital staining, the freezing tolerance was increased to –30 °C by incubation with 0.8 M sugar solutions for 3 h, although other cells in the shoot apexes were killed by higher freezing temperatures. During incubation of both cabbage petioles and asparagus shoot apexes with sugar solutions, sugars were intracellularly taken up by osmotically induced fluid-phase endocytotic vesicles, as indicated by comovement of Lucifer Yellows carbohydrazide (LYCH) observed with a confocal laser scanning microscope. The amounts of intracellularly taken up sugars increased concomitantly with the formation of endocytotic vesicles depending on the time of incubation in parallel with a gradual increase of freezing tolerance. However, the endocytotic vesicles and their contents were retained not only after prolonged incubation after maximum freezing tolerance had been achieved but also after recovery of these tissue cells to isotonic conditions or after freeze-thawing. These results suggest that although sugars are intracellularly taken up by endocytotic vesicles, they might be sequestered within vesicles, casting doubt on their protective role to the plasma membranes as a main site of freezing injury. The pretreatment with 1 mMp-chloromercuribenzenesulfonic acid (PCMBS), an inhibitor of sugar transport, reduced the amounts of intracellular sugar uptake without affecting the formation of endocytotic vesicles, suggesting that sugars were, at least partly, taken up by sugar transporters. In the pretreatment with PCMBS, the freezing tolerance of incubated tissues with sugar solutions was significantly reduced, although addition of PCMBS per se did not affect survival. These results suggest that sugars taken up by sugar transporters, rather than sugars taken up by endocytotic vesicles, are mainly responsible for the increased freezing tolerance of cabbage petioles and asparagus shoot apexes. Furthermore, we aimed to study the occurrence of fluid-phase endocytosis with LYCH in an isotonic condition. Our results indicated that uptake of LYCH by fluid-phase endocytotic vesicles was not detected microscopically in isotonic condition, although LYCH was spectrofluorimetrically taken up in isotonic condition. Spectrofluorimetric uptake of LYCH was inhibited by addition of probenecid, an anion transport inhibitor. These results suggest that in cabbage petioles and asparagus shoot apexes, LYCH is taken up by anion transport but not by fluid-phase endocytosis in isotonic condition, and uptake of LYCH by fluid-phase endocytosis is restricted to occur only in hypertonic condition.Abbreviations CLSM confocal laser scanning microscope - FDA fluorescein diacetate - LYCH Lucifer Yellow carbohydrazide - PCMSB p-chloromercuribenzenesulfonic acid - TEL50 temperature at which 50% electrolyte leakage occurred  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号