共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Cheze J.J. Comtet C. Rumelhart M. Fayet 《Computer methods in biomechanics and biomedical engineering》2013,16(3):277-282
The International Society of Biomechanics (ISB) has recommended a standardisation for the motion reporting of almost all human joints. This study proposes an adaptation for the trapeziometacarpal joint. The definition of the segment coordinate system of both trapezium and first metacarpal is based on functional anatomy. The definition of the joint coordinate system (JCS) is guided by the two degrees of freedom of the joint, i.e. flexion–extension about a trapezium axis and abduction–adduction about a first metacarpal axis. The rotations obtained using three methods are compared on the same data: the fixed axes sequence proposed by Cooney et al., the mobile axes sequence proposed by the ISB and our alternative mobile axes sequence. The rotation amplitudes show a difference of 9° in flexion–extension, 2° in abduction–adduction and 13° in internal–external rotation. This study emphasizes the importance of adapting the JCS to the functional anatomy of each particular joint. 相似文献
2.
Proposal of a thorax segment coordinate system for the 3D kinematical analysis of the cervical spine
L. Boussion P. Bahuaud 《Computer methods in biomechanics and biomedical engineering》2013,16(12):1041-1047
The International Society of Biomechanics detailed the recommendations for 3D kinematics of intervertebral movements (Wu, et al. 2002. J Biomech. 35:543–548), but does not specify how to adapt this proposal to describe the kinematics of the cervical spine, between the head and the thorax. The analysis of the literature shows that no consensus exists at the present time on this subject. The objective of our study was to identify the reference points that formed the most rigid triplet allowing building an optimal thorax segment coordinate system (SCS). We thus measured the variations of distances between markers placed on various anatomical landmarks, and then the deformations of the combinations of three markers on different cervical movements of a sample of 10 asymptomatic subjects. The results show that the triplet formed by the sternum and both acromions undergoes less deformation on the flexion–extension movement. For all the other movements (lateral bending, axial rotation and complex movements), the triplet formed by sternum, T3 and TH (positioned on the thoracic spinal column, in a horizontal plane containing the sternal marker), undergoes less deformation. As a conclusion, the optimal triplet to define the thorax SCS for 3D kinematical analysis of the cervical spine is that formed by the markers: sternum, T3 and TH. This triplet makes it possible to define an orthonormal SCS, the axes of which coincide with anatomical directions, i.e. with the functional axes of the movement. 相似文献
3.
Abourachid A Hackert R Herbin M Libourel PA Lambert F Gioanni H Provini P Blazevic P Hugel V 《Zoology (Jena, Germany)》2011,114(6):360-368
Most birds use at least two modes of locomotion: flying and walking (terrestrial locomotion). Whereas the wings and tail are used for flying, the legs are mainly used for walking. The role of other body segments remains, however, poorly understood. In this study, we examine the kinematics of the head, the trunk, and the legs during terrestrial locomotion in the quail (Coturnix coturnix). Despite the trunk representing about 70% of the total body mass, its function in locomotion has received little scientific interest to date. This prompted us to focus on its role in terrestrial locomotion. We used high-speed video fluoroscopic recordings of quails walking at voluntary speeds on a trackway. Dorso-ventral and lateral views of the motion of the skeletal elements were recorded successively and reconstructed in three dimensions using a novel method based on the temporal synchronisation of both views. An analysis of the trajectories of the body parts and their coordination showed that the trunk plays an important role during walking. Moreover, two sub-systems participate in the gait kinematics: (i) the integrated 3D motion of the trunk and thighs allows for the adjustment of the path of the centre of mass; (ii) the motion of distal limbs transforms the alternating forward motion of the feet into a continuous forward motion at the knee and thus assures propulsion. Finally, head bobbing appears qualitatively synchronised to the movements of the trunk. An important role for the thigh muscles in generating the 3D motion of the trunk is suggested by an analysis of the pelvic anatomy. 相似文献
4.
《仿生工程学报(英文版)》2024,21(3)
Spine biomechanical testing methods in the past few decades have not evolved beyond employing either cadaveric stud-ies or finite element modeling techniques.However,both these approaches may have inherent cost and time limitations.Cadaveric studies are the present gold standard for spinal implant design and regulatory approval,but they introduce sig-nificant variability in measurements across patients,often requiring large sample sizes.Finite element modeling demands considerable expertise and can be computationally expensive when complex geometry and material nonlinearity are intro-duced.Validated analogue spine models could complement these traditional methods as a low-cost and high-fidelity alter-native.A fully 3D printable L-Sl analogue spine model with ligaments is developed and validated in this research.Rota-tional stiffness of the model under pure bending loading in flexion-extension,Lateral Bending(LB)and Axial Rotation(AR)is evaluated and compared against historical ex vivo and in silico models.Additionally,the effect of interspinous,intertransverse ligaments and the Thoracolumbar Fascia(TLF)on spinal stiffness is evaluated by systematic construction of the model.In flexion,model Range of Motion(ROM)was 12.92±0.11°(ex vivo:16.58°,in silico:12.96°)at 7.5Nm.In LB,average ROM was 13.67±0.12° at 7.5 Nm(ex vivo:15.21±1.89°,in silico:15.49±0.23°).Similarly,in AR,average ROM was 17.69±2.12° at 7.5Nm(ex vivo:14.12±0.31°,in silico:15.91±0.28°).The addition of interspinous and intertransverse ligaments increased both flexion and LB stiffnesses by approximately 5%.Addition of TLF showed increase in flexion and AR stiffnesses by 29%and 24%,respectively.This novel model can reproduce physiological ROMs with high repeatability and could be a useful open-source tool in spine biomechanics. 相似文献
5.
Protein function prediction using local 3D templates 总被引:8,自引:0,他引:8
The prediction of a protein's function from its 3D structure is becoming more and more important as the worldwide structural genomics initiatives gather pace and continue to solve 3D structures, many of which are of proteins of unknown function. Here, we present a methodology for predicting function from structure that shows great promise. It is based on 3D templates that are defined as specific 3D conformations of small numbers of residues. We use four types of template, covering enzyme active sites, ligand-binding residues, DNA-binding residues and reverse templates. The latter are templates generated from the target structure itself and scanned against a representative subset of all known protein structures. Together, the templates provide a fairly thorough coverage of the known structures and ensure that if there is a match to a known structure it is unlikely to be missed. A new scoring scheme provides a highly sensitive means of discriminating between true positive and false positive template matches. In all, the methodology provides a powerful new tool for function prediction to complement those already in use. 相似文献
6.
The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. 相似文献
7.
J. Favre R. Aissaoui B.M. Jolles J.A. de Guise K. Aminian 《Journal of biomechanics》2009,42(14):2330-2335
Measurement of three-dimensional (3D) knee joint angle outside a laboratory is of benefit in clinical examination and therapeutic treatment comparison. Although several motion capture devices exist, there is a need for an ambulatory system that could be used in routine practice. Up-to-date, inertial measurement units (IMUs) have proven to be suitable for unconstrained measurement of knee joint differential orientation. Nevertheless, this differential orientation should be converted into three reliable and clinically interpretable angles. Thus, the aim of this study was to propose a new calibration procedure adapted for the joint coordinate system (JCS), which required only IMUs data. The repeatability of the calibration procedure, as well as the errors in the measurement of 3D knee angle during gait in comparison to a reference system were assessed on eight healthy subjects. The new procedure relying on active and passive movements reported a high repeatability of the mean values (offset<1°) and angular patterns (SD<0.3° and CMC>0.9). In comparison to the reference system, this functional procedure showed high precision (SD<2° and CC>0.75) and moderate accuracy (between 4.0° and 8.1°) for the three knee angle. The combination of the inertial-based system with the functional calibration procedure proposed here resulted in a promising tool for the measurement of 3D knee joint angle. Moreover, this method could be adapted to measure other complex joint, such as ankle or elbow. 相似文献
8.
Summary A method for quantitative determination of cross-relaxation rates of macromolecules in solution is developed. The method is based on the analysis of the intensities of cross peaks in 3D NOE-NOE spectra. The linear combination of the intensities of 3D peaks (spin-diffusion peaks, back-transfer peaks) results in an expression directly proportional to the cross-relaxation rate. The proposed approach allows to determine interproton distances in macromolecules more accurately. 相似文献
9.
1 IntroductionBasedonthereviewofthepreviousworkof 3Dgeometricalmodellingtechniquesandsystemsdevelopedforindustrial,medicalandanimationapplications,thispaperdiscussestheproblemsassociatedwiththeexist ingtechniquesandsystems ,especiallywhenappliedto3Dmodellingof plants ,insectsandanimalsforbiomimeticsresearchanddevelopment .Then ,paperproposessomeareasofresearchinterestsin 3Dmod ellingofplants ,insectsandanimalsforBiomimetics .Toavoidtherepeating ,inthispaper ,biologicalobjectswillbeusedtorep… 相似文献
10.
11.
12.
Sun M Wei Y Yao L Xie J Chen X Wang H Jiang J Gu J 《Biochemical and biophysical research communications》2006,340(1):209-214
Cyclin D3, like cyclin D1 and D2 isoforms, is a crucial component of the core cell cycle machinery in mammalian cells. It also exhibits its unique properties in many other physiological processes. In the present study, using yeast two-hybrid screening, we identified ERK3, an atypical mitogen-activated protein kinase (MAPK), as a cyclin D3 binding partner. GST pull-down assays showed that cyclin D3 interacts directly and specifically with ERK3 in vitro. The binding of cyclin D3 and ERK3 was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Moreover, carboxy-terminal extension of ERK3 was responsible for its association with intact cyclin D3. These findings further expand distinct roles of cyclin D3 and suggest the potential activity of ERK3 in cell proliferation. 相似文献
13.
14.
Inge Van den Herrewegen Kris Cuppens Mario Broeckx Bettina Barisch-Fritz Jos Vander Sloten Alberto Leardini Louis Peeraer 《Journal of biomechanics》2014
Multi-segmental foot kinematics have been analyzed by means of optical marker-sets or by means of inertial sensors, but never by markerless dynamic 3D scanning (D3DScanning). The use of D3DScans implies a radically different approach for the construction of the multi-segment foot model: the foot anatomy is identified via the surface shape instead of distinct landmark points. We propose a 4-segment foot model consisting of the shank (Sha), calcaneus (Cal), metatarsus (Met) and hallux (Hal). These segments are manually selected on a static scan. To track the segments in the dynamic scan, the segments of the static scan are matched on each frame of the dynamic scan using the iterative closest point (ICP) fitting algorithm. Joint rotations are calculated between Sha–Cal, Cal–Met, and Met–Hal. Due to the lower quality scans at heel strike and toe off, the first and last 10% of the stance phase is excluded. The application of the method to 5 healthy subjects, 6 trials each, shows a good repeatability (intra-subject standard deviations between 1° and 2.5°) for Sha–Cal and Cal–Met joints, and inferior results for the Met–Hal joint (>3°). The repeatability seems to be subject-dependent. For the validation, a qualitative comparison with joint kinematics from a corresponding established marker-based multi-segment foot model is made. This shows very consistent patterns of rotation. The ease of subject preparation and also the effective and easy to interpret visual output, make the present technique very attractive for functional analysis of the foot, enhancing usability in clinical practice. 相似文献
15.
Y. Fang M. O. Lagravère P. W. Major R. R. Toogood 《Computer methods in biomechanics and biomedical engineering》2013,16(2):137-149
Objective: Develop a finite element (FE) model of a skull to perform biomechanical studies of maxillary expansion using bone anchors (BA). Materials and methods: A skull model was developed and assigned material properties based on Hounsfield unit (HU) values of cone-beam computerized tomography (CBCT) images. A 3 mm diameter cylindrical BA was modelled and inserted in the palatal bone. A 4 mm transverse displacement was applied on the anchor. An evaluation on the effect on local stresses of BA implantation inclination angle was performed. Results: Proper displacement results and strain–stress trends for the expansion process were present. Stress distribution patterns were similar as reported in the literature. No significant difference between BA inclination angles was found. Conclusion: This work leads to a better understanding and prediction of craniofacial and maxillary bone remodelling during ME with BA treatments and is a first step towards the development of patient specific treatments. 相似文献
16.
F Ji R Chen B Liu X Zhang J Han H Wang G Shen J Tao 《Biochemical and biophysical research communications》2012,425(4):854-858
The TNF ligand family member "B cell-activating factor belonging to the TNF family" (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4(+) spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4(+) T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4(+) spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4(+) T cell proliferation. 相似文献
17.
Proposal of a thorax segment coordinate system for the 3D kinematical analysis of the cervical spine
Boussion L Bahuaud P Cheze L 《Computer methods in biomechanics and biomedical engineering》2011,14(12):1041-1047
The International Society of Biomechanics detailed the recommendations for 3D kinematics of intervertebral movements (Wu, et al. 2002. J Biomech. 35:543-548), but does not specify how to adapt this proposal to describe the kinematics of the cervical spine, between the head and the thorax. The analysis of the literature shows that no consensus exists at the present time on this subject. The objective of our study was to identify the reference points that formed the most rigid triplet allowing building an optimal thorax segment coordinate system (SCS). We thus measured the variations of distances between markers placed on various anatomical landmarks, and then the deformations of the combinations of three markers on different cervical movements of a sample of 10 asymptomatic subjects. The results show that the triplet formed by the sternum and both acromions undergoes less deformation on the flexion-extension movement. For all the other movements (lateral bending, axial rotation and complex movements), the triplet formed by sternum, T3 and TH (positioned on the thoracic spinal column, in a horizontal plane containing the sternal marker), undergoes less deformation. As a conclusion, the optimal triplet to define the thorax SCS for 3D kinematical analysis of the cervical spine is that formed by the markers: sternum, T3 and TH. This triplet makes it possible to define an orthonormal SCS, the axes of which coincide with anatomical directions, i.e. with the functional axes of the movement. 相似文献
18.
19.
心内膜三维电生理标准设备关键技术分析 总被引:4,自引:0,他引:4
首先介绍心内膜标测应用的现状和意义,其后从工程的角度分析该项技术需要完成的关键功能:定位和电标测。紧接着对比目前已经产品化的各个心内膜三维标测技术的关键技术和对软件功能的需求,最后介绍笔者目前研究的进展。 相似文献
20.
Nagaoka H Mochida Y Atsawasuwan P Kaku M Kondoh T Yamauchi M 《Biochemical and biophysical research communications》2008,377(2):674-678
The active form of vitamin D, 1,25(OH)2D3, has a broad range of effects on bone, however, its role in the quality of bone matrix is not well understood. In this study, using an osteoblastic cell (MC3T3-E1) culture system, the effects of 1,25(OH)2D3 on collagen cross-linking and related enzymes, i.e., lysyl hydroxylases (LH1-3) and lysyl oxidases (LOX, LOXL1-4), were examined and compared to controls where cells were treated with cholecalciferol or ethanol. When compared to the controls, gene expressions of LH1, LH2b and LOXL2 were significantly upregulated by 1,25(OH)2D3 up to 72 h of culture. In addition, hydroxylysine (Hyl), Hyl aldehyde (Hylald), Hylald-derived cross-links and a total number of cross-links of collagen were significantly higher and the cross-link maturation was accelerated in the 1,25(OH)2D3 treated group. These results demonstrate that 1,25(OH)2D3 directly regulates collagen cross-linking in this culture system likely by upregulating gene expression of specific LH and LOX enzymes. 相似文献