首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The number of insect neuropeptides identified chemically grows rapidly and most important neuropeptides have already been characterized. After multi-year efforts Bombyx diapause hormone has recently been isolated and sequenced.2. New approaches to search for new insect neuropeptides have been carried out by two groups of workers, which have succeeded in identifying several unique peptides.3. cDNAs for more than 10 insect neuropeptides have been cloned and sequenced. It was found that two functionally distinct neuropeptides. Bombyx diapause hormone and pheromone biosynthesis activating neuropeptide, are encoded in a single gene.  相似文献   

2.
昆虫神经肽研究进展   总被引:4,自引:0,他引:4  
近年来鉴定了化学结构的昆虫神经肽数目呈快速上升趋势, 家蚕滞育激素和性信息素合成激活肽被分离纯化.三种近年出现的研究方法对寻找新型昆虫神经肽起到重要作用,已经成功地鉴定了数个新型神经肽.昆虫神经肽cDNA或基因组DNA克隆显示了新的结构信息和神经肽间的相互关系.  相似文献   

3.
With the convergence of science from the fields of neurobiology and immunology, many exciting and challenging surprises have emerged regarding cytokines, neuroendocrine hormones, neuropeptides, excitatory amino acids, and their receptors. For some time neurobiologists have known that subsets of neural cells had different receptors for the same ligand. Those subsets of cells could be as different as neurons and astrocytes and as closely related as astrocytes from different lineages or anatomical areas. The neurobiological puzzle has been to determine the functional meaning of these differences. Immunologists in contrast have long understood the clear cut differences between T and B lymphocytes or T helper/inducer and T cytotoxic/suppressor cells and their response to cytokines. However, it is only very recently that they have discovered preferential use by these cells of different receptors for an identical cytokine ligand. Indeed, identical cytokines in the central nervous system and immune response may induce their pleiotropic responses by utilizing different receptors in these two systems. Immunologic paradigms may help neurobiologists predict the existence of subsets of neural cells and their function. Likewise, neurobiology may enable immunologists to predict roles for receptors in gene families as well as the existence of as yet unidentified receptors.  相似文献   

4.
The concerted activity of many neuropeptides has been implicated in the neurohormonal control of specific behaviors and various physiological functions in some invertebrate model systems. What are the functional consequences of this neuropeptide multiplicity? The distinct actions of closely related neuropeptides have been detected in molluscs and insects; however, recent work provides examples of systems in which some of the multiple isoforms may be functionally redundant. Groups of functionally distinct neuropeptides encoded by the same gene can be expressed in different neurons by alternative gene splicing or cell-specific post-translational processing; therefore, as shown recently, they can be targeted for release as ‘cocktails’ to act on specific sets of muscles or neurons. One prominent role of neuropeptides is to modulate the activity of rhythm-generating circuits, as exemplified by recent research on mollusc neural networks, the crab stromatogastric ganglion, and fly circadian pacemakers.  相似文献   

5.
Neuropeptides in interneurons of the insect brain   总被引:5,自引:0,他引:5  
A large number of neuropeptides has been identified in the brain of insects. At least 35 neuropeptide precursor genes have been characterized in Drosophila melanogaster, some of which encode multiple peptides. Additional neuropeptides have been found in other insect species. With a few notable exceptions, most of the neuropeptides have been demonstrated in brain interneurons of various types. The products of each neuropeptide precursor seem to be co-expressed, and each precursor displays a unique neuronal distribution pattern. Commonly, each type of neuropeptide is localized to a relatively small number of neurons. We describe the distribution of neuropeptides in brain interneurons of a few well-studied insect species. Emphasis has been placed upon interneurons innervating specific brain areas, such as the optic lobes, accessory medulla, antennal lobes, central body, and mushroom bodies. The functional roles of some neuropeptides and their receptors have been investigated in D. melanogaster by molecular genetics techniques. In addition, behavioral and electrophysiological assays have addressed neuropeptide functions in the cockroach Leucophaea maderae. Thus, the involvement of brain neuropeptides in circadian clock function, olfactory processing, various aspects of feeding behavior, and learning and memory are highlighted in this review. Studies so far indicate that neuropeptides can play a multitude of functional roles in the brain and that even single neuropeptides are likely to be multifunctional.The original research in the authors’ laboratories was supported by DFG grants HO 950/14 and 950/16 (U.H.) and Swedish Research Council grant VR 621-2004-3715 (D.R.N).  相似文献   

6.
The homeostatic nature of bone remodeling has become a notion further supported lately by the demonstration that neuropeptides and their receptors regulate osteoblast and osteoclast function in vivo. Following initial studies reporting the presence of nerves and nerve-derived products within the bone microenvironment and the expression of receptors for these neuropeptides in bone cells, new experimental and mechanistic evidence based on in vivo murine genetic and pharmacologic models recently demonstrated that inputs from the central and peripheral nervous system feed into the already complex regulatory machinery controlling bone remodeling. The function of a number of “osteo-neuromediators” has been characterized, including norepinephrine and the beta2-adrenergic receptor, Neuropeptide Y and the Y1 and Y2 receptors, endocannabinoids and the CB1 and CB2 receptors, as well as dopamine, serotonin and their receptors and transporters, Calcitonin gene-related peptide, and neuronal NOS. This new body of evidence suggests that neurons in the central nervous system integrate clues from the internal and external milieux, such as energy homeostasis, glycemia or reproductive signals, with the regulation of bone remodeling. The next major tasks in this new area of bone biology will be to understand, at the molecular level, the mechanisms by which common central neural systems regulate and integrate these major physiological functions, the relative importance of the central and peripheral actions of neuropeptides present in both compartments and their relationship, and how bone cells signal back to central centers, because the definition of a homeostatic function implies the existence of feedback signals. Together, these findings shed a new light on the complexity of the mechanisms regulating bone remodeling and uncovered new potential therapeutic strategies for the design of bone anabolic treatments. This review summarizes the latest advances in this area, focusing on investigations based on in vivo animal studies.  相似文献   

7.
Peptides as regulators of the immune system: emphasis on somatostatin   总被引:8,自引:0,他引:8  
Krantic S 《Peptides》2000,21(12):1941-1964
Study of the communication between nervous and immune systems culminated in the understanding that cytokines, formerly considered exclusively as immune system-derived peptides, are endogenous to the brain and display central actions. More recently, immune cells have been recognized as a peripheral source of “brain-specific” peptides with immunomodulatory actions. This article reviews studies concerning reciprocal effects of selected cytokines and neuropeptides in the nervous and immune systems, respectively. The functional equivalence of these two categories of communicators is discussed with reference to the example of the actions of neuropeptide somatostatin in the immune system.  相似文献   

8.
The genome of the spider mite was prospected for the presence of genes coding neuropeptides, neurohormones and their putative G-protein coupled receptors. Fifty one candidate genes were found to encode neuropeptides or neurohormones. These include all known insect neuropeptides and neurohormones, with the exception of sulfakinin, corazonin, neuroparsin and PTTH. True orthologs of adipokinetic hormone (AKH) were neither found, but there are three genes encoding peptides similar in structure to both AKH and the AKH-corazonin-related peptide. We were also unable to identify the precursors for pigment dispersing factor (PDF) or the recently discovered trissin. However, the spider mite probably does have such genes, as we found their putative receptors. A novel arthropod neuropeptide gene was identified that shows similarity to previously described molluscan neuropeptide genes and was called EFLamide. A total of 65 putative neuropeptide GPCR genes were also identified, of these 58 belong to the A-family and 7 to the B-family. Phylogenetic analysis showed that 50 of them are closely related to insect GPCRs, which allowed the identification of their putative ligand in 39 cases with varying degrees of certainty. Other spider mite GPCRs however have no identifiable orthologs in the genomes of the four holometabolous insect species best analyzed. Whereas some of the latter have orthologs in hemimetabolous insect species, crustaceans or ticks, for others such arthropod homologs are currently unknown.  相似文献   

9.
It is known today that the immune system is influenced by various types of psychological and physiological stressors, including physical activity. It is well known that physical activity can influence neuropeptide levels both in the central nervous system as well as in peripheral blood. The reported changes of immune function in response to exercise have been suggested to be partly regulated by the activation of different neuropeptides and the identification of receptors for neuropeptides and steroid hormones on cells of the immune system has created a new dimension in this endocrine-immune interaction. It has also been shown that immune cells are capable of producing neuropeptides, creating a bidirectional link between the nervous and immune systems. The most common neuropeptides mentioned in this context are the endogenous opioids. The activation of endogenous opioid peptides in response to physical exercise is well known in the literature, as well as the immunomodulation mediated by opioid peptides. The role of endogenous opioids in the exercise-induced modulation of immune function is less clear. The present paper will also discuss the role of other neuroendocrine factors, such as substance P, neuropeptide Y and vasoactive intestinal peptide, and pituitary hormones, including growth hormone, prolactin and adrenocorticotrophin, in exercise and their possible effects on immune function.  相似文献   

10.
McNeil JN  Tobe SS 《Peptides》2001,22(2):271-277
Many invertebrate neuropeptides have recently been identified and there is evidence that the same compound may serve different roles in different species and/or multiple functions within a given species. However, until the relevant receptors or 'knock out' animals, lacking the neuropeptide of interest, become available it will be difficult to clarify the precise inter- and intraspecific functions of these neuropeptides. In the present paper, we argue that until these tools are available a more meaningful understanding of the roles of neuropeptides could be obtained by carrying out experiments within an ecological context. Furthermore, this approach would allow us to generate hypotheses that could be rigorously tested when more sophisticated techniques are developed. We discuss these ideas using our interdisciplinary research on the reproductive biology of the true armyworm, Pseudaletia unipuncta, as a case study.  相似文献   

11.
Many studies have shown that modulation of cytokine function is effective in ameliorating symptoms of rheumatoid arthritis. Neuropeptides have recently been shown to have powerful effects on the production and release of cytokines and have also been shown to exert potent proinflammatory and anti-inflammatory effects in animal models of inflammatory diseases. An analysis of cytokine and neuropeptide content of synovial fluid from patients with rheumatoid arthritis has revealed a significant correlation between two neuropeptides, bombesin/gastrin-releasing peptide and substance P, and the proinflammatory cytokine interleukin-6 as well as the erythrocyte sedimentation rate. These findings provide further evidence for a role of neuropeptides and cytokines in the pathophysiology of rheumatoid arthritis, as well as suggesting additional approaches for the development of novel therapeutic interventions.  相似文献   

12.
FMRFamide-related peptides (FaRPs) are the largest known family of invertebrate neuropeptides. Immunocytochemical screens of nematode tissues using antisera raised to these peptides have localized extensive FaRP-immunostaining to their nervous systems. Although 21 FaRPs have been isolated and sequenced from extracts of free-living and parasitic nematodes, available evidence indicates that other FaRPs await discovery. While our knowledge of the pharmacology of these native nematode neuropeptides is extremely limited, reports on their physiological activity in nematodes are ever increasing. All the nematode FaRPs examined so far have been found to have potent and varied actions on nematode neuromuscular activity. It is only through the extensive pharmacological and physiological assessment of the tissue, cell and receptor interactions of these peptidic messengers that an understanding of their activity on nematode neuromusculature will be possible. In this review, Aaron Maule and colleagues examine the current understanding of the pharmacology of nematode FaRPs.  相似文献   

13.
Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.  相似文献   

14.
Multiple administrations of high doses of methamphetamine (METH) previously have been shown to significantly elevate the concentrations of substance P-like immunoreactivity in CNS regions associated with the basal ganglia. Recently, another tachykinin, neurokinin A (NKA), has been found to be closely associated with substance P (SP). While both neuropeptides exert comparable effects when locally injected, there are significant differences in their potencies apparently based on the relative concentrations of their unique receptors. Due to the controversy which has arisen as to their respective roles within the basal ganglia, we have evaluated and compared the responses of the striatal and nigral SP and NKA systems to METH treatment. We observed that multiple high doses of this stimulant increased the nigral and striatal concentrations of both neuropeptides in an identical fashion. Our observation that METH treatment did not alter the relative concentrations of SP and NKA suggests that responses of both transmitter systems, associated with the basal ganglia, parallel each other and are sensitive to the same regulatory mechanisms.  相似文献   

15.
16.
GLWamides are a recently described, novel family of neuropeptides in Cnidaria. Antibodies specific for the GLWamide terminus have been raised and used to evaluate the occurrence and localisation of immunopositive material in various Cnidaria in order to determine whether GLWamides are present and to obtain a first impression of the possible regulatory role of these neuropeptides. GLWamide immunoreactivity has been found in all species tested and is not confined to distinct life stages but is present during most of the life cycle of the Cnidaria. Additionally, GLWamides are expressed by different nerve cells at different life stages. GLWamide-immunoreactive cells constitute a subset of the neural equipment. Overall our data suggest that GLWamides generally occur in the nervous system of Cnidaria and that these peptides are multifunctional. Putative functions other than the control of development include the regulation of nematocyst discharge, muscle contraction and the regulation of gastric function.  相似文献   

17.
Central pattern generator (CPG) circuits control cyclic motor output underlying rhythmic behaviors. Although there have been extensive behavioral and cellular studies of food-induced feeding arousal as well as satiation in Aplysia, very little is known about the neuronal circuits controlling rhythmic consummatory feeding behavior. However, recent studies have identified premotor neurons that initiate and maintain buccal motor programs underlying ingestion and egestion in Aplysia. Other newly identified neurons receive synaptic input from feeding CPGs and in turn synapse with and control the output of buccal motor neurons. Some of these neurons and their effects within the buccal system are modulated by endogenous neuropeptides. With this information we can begin to understand how neuronal networks control buccal motor output and how their activity is modulated to produce flexibility in observed feeding behavior.  相似文献   

18.
Moulis A 《Peptides》2006,27(5):1153-1165
The ever-growing RFamide neuropeptide superfamily has members in all animal phyla. Their effects in molluscs, on both smooth and cardiac muscle as well as on neurons, has been studied in detail. These neuropeptides exert a variety of functions: excitatory, inhibitory or even biphasic. Firstly, the literature on the excitatory effect of the RFamide neuropeptides on molluscan muscle and neurons has been reviewed, with greater emphasis and examples from the gastropods Buccinum undatum and Busycon canaliculatum. The peptides seem to be potent activators of contraction, sometimes generating slow tonic force and other times twitch activity. Secondly, the literature on the inhibitory effect of the superfamily has been reviewed. These peptides can exert an inhibitory effect, hyperpolarizing the cells rather than depolarizing them. Thirdly, the neuropeptides may play a variety of other roles, such as contributing to the regulation or maturation process of the animals. There have been cases recorded of RFamide neuropeptides acting as potent venoms in members of the Conus sp. The pathway of action of these multiple roles, their interaction with the parent neurotransmitters acetylcholine and serotonin, as well as the calcium dependency of the RFamide neuropeptides has been discussed, again with special reference to the above mentioned gastropods. A better understanding of the mode of action, the effects, and the importance of the RFamide neuropeptides on molluscan physiology and pharmacology has been attempted by reviewing the existing literature, recognizing the importance of the RFamide neuropeptide actions on molluscs.  相似文献   

19.
Aaron Lerner's work provides a stunning set of examples of substances that help to transmit information in the brain and body. His characterization of alpha-MSH and melatonin and his sparking of interest in the further discovery of previously unknown substances have been of inestimable value for the field of neurobiology. Efforts such as those that Lerner undertook so successfully in the field of investigative dermatology now constitute a major research thrust in the field of behavioral neurochemistry and are directly related to advances in psychiatry and neurology. This review considers aspects of research on the neuropeptides, with particular attention to the endogenous opioid (morphine-like) peptides that are active on neural tissue. Neuropeptide research can be categorized broadly as efforts to discover and characterize new families and classes of active agents, investigations of their genetic and molecular processing, and studies of their relationships to behavior in animals and human beings. This review selectively considers some key research questions and strategies that arise from such research.  相似文献   

20.
Cardioactive neuropeptides in gastropods   总被引:4,自引:0,他引:4  
At least five neuropeptides that are active on an isolated snail heart can be recovered from extracts of gastropod nervous tissue. These peptides have been divided into three classes. The class of the lowest molecular weight, termed the small cardioactive peptides (SCPs), is made up of two peptides. SCPs have been found in all gastropods studied and appear to be involved in the control of the gut. They have been localized by microdissection and bioassay to several identified central neurons that send their axons out to innervate the gut. These neurons act centrally to enhance the motor output of the ganglia responsible for the control of feeding, and peripherally to modulate gut activity. In one pair of these neurons, the classical transmitter acetylcholine coexists with an SCP. The next larger peptide class (medium cardioactive peptide), found only in Aplysia, shares both its mode of cardiac activity and tissue distribution with the SCPs. As yet, there is no evidence that either of these peptide classes acts as a physiological modulator of cardiac activity. The class of the highest molecular weight (large cardioactive peptide [LCPs]) is made up of two peptides and is found only in Helix. The LCPs are circulating neurohormones involved in the regulation of heart, gut, and neuromuscular activity. Their primary release site is a neurohemal region in the auricle. The significance of these findings is discussed in light of recent advances in the study of mammalian neuropeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号