首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tenascin (TN) is a large oligomeric glycoprotein that is present transiently in the extracellular matrix (ECM) of cells and is involved in morphogenetic movements, tissue patterning, and tissue repair. It has multiple domains, both adhesive and anti-adhesive, that interact with cells and with fibronectin (FN) and other ECM macromolecules. We have studied the consequences of the interaction of TN with a FN matrix on gene expression in rabbit synovial fibroblasts. Fibroblasts plated on a mixed substrate of FN and TN, but not on FN alone, upregulated synthesis of four genes: collagenase, stromelysin, the 92-kDa gelatinase, and c-fos. Although the fibroblasts spread well on both FN and FN/TN substrates, nuclear c-Fos increased within 1 h only in cells that were plated on FN/TN. TN did not induce the expression of collagenase in cells plated on substrates of type I collagen or vitronectin (VN). Moreover, soluble TN added to cells adhering to a FN substrate or to serum proteins had no effect, suggesting that TN has an effect only in the context of mixed substrates of FN and TN. Collagenase increased within 4 h of plating on a FN/TN substrate and exhibited kinetics similar to those for induction of collagenase gene expression by signaling through the integrin FN receptor. Arg-Gly-Asp peptide ligands that recognize either the FN receptor or the VN receptor and function-perturbing anti-integrin monoclonal antibodies diminished the interaction of fibroblasts with a mixed substrate of FN, TN, and VN, but had no effect on the adhesion of fibroblasts to a substrate of FN and VN, suggesting that both receptors recognize the complex. Anti-TN68, an antibody that recognizes an epitope in the carboxyl-terminal type III repeats involved in the interaction of TN with both FN and cells, blocked the inductive effect of the FN/TN substrate, whereas anti-TNM1, an antibody that recognizes an epitope in the amino-terminal anti-adhesive region of epidermal growth factor-like repeats, had no effect. These data suggest that transient alteration of the composition of ECM by addition of proteins like TN may regulate the expression of genes involved in cell migration, tissue remodeling, and tissue invasion, in regions of tissue undergoing phenotypic changes.  相似文献   

2.
H-ras-transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form of 72 kDa, which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on its ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors, which has the same molecular mass and has been linked to their metastatic potential. Type IV collagenase consists of three domains. Two of them, the amino-terminal domain and the carboxyl-terminal domain, are homologous to interstitial collagenase and human and rat stromelysin. The middle domain, of 175 residues, is organized into three 58-residue head-to-tail repeats which are homologous to the type II motif of the collagen-binding domain of fibronectin. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin.  相似文献   

3.
Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production.  相似文献   

4.
By use of random-primed cDNA probes the expression of extracellular matrix molecules in cerebral microvascular endothelial cells (cEC) and in astrocytes from mouse brain was examined. Two phenotypically different batches of cloned cEC were used. Expression of major adhesive ECM molecules, constituting the endothelial basement membrane (i.e., fibronectin, laminin A, B and collagen IV) and of other attachment factors, such as SPARC (osteonectin), tenascin and thrombospondin 1, was examined. We have demonstrated that cEC of different morphology display variations in the expression of fibronectin (FN), thrombospondin 1 (TSP1) and collagen IV (C IV). Astrocytes were shown to contain FN, TSP1, TN and SPARC mRNA. Unexpectedly, SPARC mRNA could not be detected in any of the capillary endothelial cells examined. Therefore, we suggest that astrocytes are likely to be involved in endothelial differentiation and function in the central nervous system via ECM molecule secretion.  相似文献   

5.
We previously suggested that keratinocyte releasable factors might modulate the wound healing process by regulating the expression of key extracellular matrix components such as collagenase (matrix metalloproteinase-1) and type I collagen in fibroblasts. The first one, we called it keratinocyte-derived anti-fibrogenic factor (KDAF), identified as stratifin (SFN) also named 14-3-3σ, revealing a strong collagenase activity. However, the second factor, which we named keratinocyte-derived collagen-inhibiting factor(s) (KD-CIF) that has shown to control the synthesis of type I collagen, was not known. Upon conducting a series of systematic protein purification methods followed by mass spectroscopy, two proteins: secreted protein acidic rich in cystein (SPARC) and SFN were identified in keratinocyte-conditioned media. Using co-immunoprecipitation and 3D modeling, we determined that SFN and SPARC form a complex thereby controlling the type I collagen synthesis and expression in fibroblasts. The levels of these proteins in fibrotic tissues (animal and human) were also evaluated and a differential expression of these proteins between normal and fibrotic tissue confirmed their potential role in development of fibrotic condition. In conclusion, this study describes for the first time an interaction between SPARC and SFN that may have implications for the regulation of matrix deposition and prevention of dermal fibrotic conditions such as hypertrophic scars and keloid.  相似文献   

6.
Changes in epithelial substrate have been related to the cellular capacity for proliferation and to changes in cellular behavior. The effect of TGF beta 1 on the expression of the basement membrane genes, fibronectin, laminin B1, and collagen alpha 1 (IV), was examined. Northern analysis revealed that treatment of normal human epidermal keratinocytes with 100 pM TGF beta 1 increased the expression of each extracellular matrix (ECM) gene within 4 h of treatment. Maximal induction was reached within 24 h after treatment. The induction of ECM mRNA expression was dose dependent and was observed at doses as low as 1-3 pM TGF beta 1. Incremental doses of TGF beta 1 also increased cellular levels of fibronectin protein in undifferentiated keratinocytes and resulted in increased secretion of fibronectin. Squamous-differentiated cultures of keratinocytes expressed lower levels of the extracellular matrix RNAs than did undifferentiated cells. Treatment of these differentiated cells with TGF beta 1 induced the expression of fibronectin mRNA to levels seen in TGF beta-treated, undifferentiated keratinocytes but only marginally increased the expression of collagen alpha 1 (IV) and laminin B1 mRNA. The increased fibronectin mRNA expression in the differentiated keratinocytes was also reflected by increased accumulation of cellular and secreted fibronectin protein. The inclusion of cycloheximide in the protocol indicated that TGF beta induction of collagen alpha 1 (IV) mRNA was signaled by proteins already present in the cells but that TGF beta required the synthesis of a protein(s) to fully induce expression of fibronectin and laminin B1 mRNA. The differential regulation of these genes in differentiated cells may be important to TGF beta action in regulating reepithelialization.  相似文献   

7.
Transforming growth factor-beta(1) (TGF-beta(1)) increases synthesis of secreted protein, acidic and rich in cysteine (SPARC), as well as fibronectin (FN) and type I collagen. However, little is known about the regulatory mechanism of SPARC expression. We examined the effect of FN on SPARC expression by TGF-beta(1) in cultures of human periodontal ligament cells (HPL cells). TGF-beta(1) increased the SPARC and SPARC mRNA levels in HPL cells. Extracellular matrix (ECM) produced by HPL cells in the presence of TGF-beta(1) also increased the SPARC levels. Contents of FN and type I collagen in the ECM were increased by TGF-beta(1). HPL cells cultured on FN-coated plates secreted more SPARC than those on non-coated plates. However, type I collagen had little effect on SPARC levels. The addition of anti-alpha5 antibody to the cultures abolished the increase in SPARC mRNA expression by TGF-beta(1). This study demonstrated that FN may be partly involved in the increase in SPARC expression by TGF-beta(1) in HPL cells.  相似文献   

8.
To identify agents and mechanisms responsible for the thickened basement membranes characteristic of diabetic angiopathy we examined the effects of high glucose (30 mM) on the expression of genes related to extracellular matrix composition and turnover and investigated whether the changes induced by high glucose were mimicked and sustained by activation of protein kinase C or A. In human umbilical vein endothelial cells high glucose increased fibronectin, collagen IV, tissue plasminogen activator (tPA), and plasminogen activator-inhibitor 1 (PAI-1) mRNA levels 2-fold but did not affect type IV and interstitial collagenase expression. Acute treatment with phorbol esters resulted in increased collagen IV, tPA, PAI-1, and interstitial collagenase mRNAs; the type IV collagenase mRNA levels were instead suppressed to 50% of control. Upon longer exposure to phorbol esters (48 h) suppression of fibronectin and PAI-1 mRNAs also occurred. Intracellular elevation of cAMP led to over-expression of fibronectin and type IV collagenase and potentiated the effects of phorbol esters on collagen IV, tPA, and interstitial collagenase expression. The mRNA changes induced by high glucose occurred in the absence of protein kinase C activation or cAMP elevation. These studies indicate that events other than activation of protein kinase C or A bridge high ambient glucose to changes in endothelial cell gene expression that may contribute to diabetic angiopathy.  相似文献   

9.
10.
Collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of the 4-hydroxyproline residues that are essential for the generation of triple helical collagen molecules. The vertebrate C-P4Hs I, II, and III are [alpha(I)]2beta2, [alpha(II)]2beta2, and [alpha(III)]2beta2 tetramers with identical beta subunits. We generated mice with targeted inactivation of the P4ha1 gene encoding the catalytic alpha subunit of C-P4H I to analyze its specific functions. The null mice died after E10.5, showing an overall developmental delay and a dilated endoplasmic reticulum in their cells. The capillary walls were frequently ruptured, but the capillary density remained unchanged. The C-P4H activity level in the null embryos and fibroblasts cultured from them was 20% of that in the wild type, being evidently due to the other two isoenzymes. Collagen IV immunofluorescence was almost absent in the basement membranes of the null embryos, and electron microscopy revealed disrupted basement membranes, while immunoelectron microscopy showed a lack of collagen IV in them. The amount of soluble collagen IV was increased in the null embryos and cultured null fibroblasts, indicating a lack of assembly of collagen IV molecules into insoluble structures, probably due to their underhydroxylation and hence abnormal conformation. In contrast, the null embryos had collagen I and III fibrils with a typical cross-striation pattern but slightly increased diameters, and the null fibroblasts secreted fibril-forming collagens, although less efficiently than wild-type cells. The primary cause of death of the null embryos was thus most likely an abnormal assembly of collagen IV.  相似文献   

11.
Secreted Protein Acidic and Rich in Cysteine (SPARC) is one of the major non-structural proteins of the extracellular matrix (ECM) in remodeling tissues. The functional significance of SPARC is emphasized by its origin in the first multicellular organisms and its high degree of evolutionary conservation. Although SPARC has been shown to act as a critical modulator of ECM remodeling with profound effects on tissue physiology and architecture, no plausible molecular mechanism of its action has been proposed. In the present study, we demonstrate that SPARC mediates the disassembly and degradation of ECM networks by functioning as a matricellular chaperone. While it has low affinity to its targets inside the cells where the Ca(2+) concentrations are low, high extracellular concentrations of Ca(2+) activate binding to multiple ECM proteins, including collagens. We demonstrated that in vitro, this leads to the inhibition of collagen I fibrillogenesis and disassembly of pre-formed collagen I fibrils by SPARC at high Ca(2+) concentrations. In cell culture, exogenous SPARC was internalized by the fibroblast cells in a time- and concentration-dependent manner. Pulse-chase assay further revealed that internalized SPARC is quickly released outside the cell, demonstrating that SPARC shuttles between the cell and ECM. Fluorescently labeled collagen I, fibronectin, vitronectin, and laminin were co-internalized with SPARC by fibroblasts, and semi-quantitative Western blot showed that SPARC mediates internalization of collagen I. Using a novel 3-dimensional model of fluorescent ECM networks pre-deposited by live fibroblasts, we demonstrated that degradation of ECM depends on the chaperone activity of SPARC. These results indicate that SPARC may represent a new class of scavenger chaperones, which mediate ECM degradation, remodeling and repair by disassembling ECM networks and shuttling ECM proteins into the cell. Further understanding of this mechanism may provide insight into the pathogenesis of matrix-associated disorders and lead to the novel treatment strategies.  相似文献   

12.
Transforming growth factor-beta (TGF-beta) depresses mucosal inflammation and upregulates extracellular matrix (ECM) deposition. We analyzed TGF-beta receptors RI and RII as well as ECM components using the CD4(+) T-cell-transplanted SCID mouse model of colitis. The principal change in colitis was an increased proportion of TGF-beta RII(+) mucosal mesenchymal cells, predominantly alpha-smooth muscle actin (SMA)(+) myofibroblasts, co-expressing vimentin and basement membrane proteins, but not type I collagen. TGF-beta RII(+) SMA(-) fibroblasts producing type I collagen were also increased, particularly in areas of infiltration and in ulcers. Type IV collagen and laminin were distributed throughout the gut lamina propria in disease but were restricted to the basement membrane in controls. In areas of severe epithelial damage, type IV collagen was lost and increased type I collagen was observed. To examine ECM production by these cells, mucosal mesenchymal cells were isolated. Cultured cells exhibited a similar phenotype and matrix profile to those of in vivo cells. The data suggested that there were at least two populations of mesenchymal cells responsible for ECM synthesis in the mucosa and that ligation of TGF-beta receptors on these cells resulted in the disordered and increased ECM production observed in colitic mucosa.  相似文献   

13.
Collagenase is synthesized and secreted by stimulated rabbit fibroblasts as a proenzyme that must be proteolytically cleaved to yield catalytically active species. The calcium ionophore A23187 has provided new insights into the regulation of collagenase activation cascade by living cells. A23187, at concentrations of 10-40 ng/ml, induced expression of collagenase and stromelysin mRNA and the secretion of procollagenase of 57 and 53 kDa and prostromelysin of 51 kDa. Interestingly, it also stimulated activation of procollagenase to active forms of 47 and 43 kDa. The concentrations and treatment times required for induction of gene expression and activation indicated that they were independent events. Active collagenase constituted up to 16% of the total collagenase present in medium conditioned by A23187-treated cells. When grown on a collagen substrate, A23187-treated cells degraded collagen in a spatially localized manner. In cells treated with agents that induce procollagenase only, collagenase was localized in the perinuclear Golgi area; however, in A23187-treated cells, collagenase was located in widely dispersed granules, suggesting different intracellular pathways for collagenase before, during, and after activation. Addition of serine, thiol-, and metalloproteinase inhibitors with A23187 to rabbit fibroblasts inhibited conversion of procollagenase to its active form to varying degrees, suggesting that enzymes in these classes are involved in a cascade of proteolytic events leading to collagenase activation.  相似文献   

14.
Interactions between Leydig cells and the extracellular matrix (ECM) within the interstitial compartment of the mammalian testis have not been characterized. We have examined the influence of ECM on adult mouse Leydig cells by culturing the cells on different ECM substrates. Leydig cells adhere weakly to hydrated gels of type I collagen (including those supplemented with collagen types IV, V, or VIII), or to air-dried films of collagen types I, V, or VIII. In contrast, the cells attach firmly to substrates of purified type IV collagen, fibronectin, or laminin. Leydig cells also attach rapidly and adhere strongly to gelled basement membrane matrix derived from the murine Englebreth-Holm-Swarm sarcoma (Matrigel). Leydig cells assume spherical shapes and form aggregates on thick (1.5-mm) layers of Matrigel; however, on thin (0.1-mm) layers, networks of cell clusters linked by cords of elongated cells are formed within 48 h. Similar networks are formed on thick layers of Matrigel that are supplemented with type I collagen. On substrates with high ratios of collagen I to Matrigel or on untreated tissue culture plastic, Leydig cells flatten and do not aggregate. On substrates that induce rounded shapes, proliferation is inhibited and the cells maintain the steroidogenic enzyme 3 beta-hydroxysteroid dehydrogenase for as long as 2 wk. Under conditions where Leydig cells are flattened, they divide and cease expressing the enzyme. Proliferating Leydig cells also exhibit elevated levels of mRNA for SPARC (Secreted Protein, Acidic and Rich in Cysteine), a Ca2(+)-binding glycoprotein associated with changes in cell shape that accompany morphogenesis and tissue remodeling. Our results indicate that the shape, association, proliferation, and expression of gene products by Leydig cells can be significantly affected in vitro by altering the composition of the extracellular substratum.  相似文献   

15.
16.
The aim of this study was to determine the role of ECM components of bone in regulating the differentiation and function of cells of the osteoblast lineage. Rat UMR 201 cells, phenotypically preosteoblast, were plated onto plastic tissue culture dishes or dishes coated with gelled type I collagen or reconstituted basement membrane (matrigel). Acute cell attachment assays showed that cells adhered to substrates in the following order: collagen > matrigel ? plastic. Proliferation rate up to 96 hr were similar on each substrate. However, if cells were treated with 10?6 M retinoic acid (RA), proliferation rates were reduced compared with control for cells grown on collagen and matrigel but not on plastic. Morphological changes were matrix-specific; in subconfluent cultures, long thin processes were seen with cells grown on collagen and a pattern of interconnecting cell processes formed when cells were plated on matrigel. Striking differences were observed in the constitutive or RA-induced gene expression of cells grown on the different substrates. When cells plated on collagen were treated with RA, induction of mRNA for alkaline phosphatase (ALP) as well as ALP enzyme activity were much less than with cells grown on plastic. In contrast, RA treatment induced osteopontin (OP) mRNA expression more strongly in cells plated on collagen compared with plastic within 24 hr and this was maintained for 72 hr. RA treatment produced a two fold increase of pro-α 1(I) collagen mRNA in cells grown on plastic and matrigel but not in cells grown on collagen. Growth on collagen produced changes in the way UMR 201 cells responded to RA from which they did not fully recover in subsequent 48-hr growth periods on plastic. These results indicate that ECM components regulate the function of and are capable of modulating RA-induced differentiation of preosteoblasts. © 1993 Wiley-Liss, Inc.  相似文献   

17.
18.
The heart-forming regions of the early embryo are composed of splanchnic mesoderm, endoderm, and the associated ECM. The ECM of the heart-forming regions in stage 7-9 chicken embryos was examined using immunofluorescence. Affinity purified antibodies to chicken collagens type I and IV, chicken fibronectin, and mouse laminin were used as probes. We report that (1) the basement membrane of the endoderm contains immunoreactive laminin and collagen IV; (2) the nascent basement membrane of the heart splanchnic mesoderm contains immunoreactive laminin, but not type IV collagen, and (3) the prominent ECM between the splanchnic mesoderm and the endoderm (the primitive-heart ECM) contains collagen IV, collagen I, fibronectin, but not laminin. In addition, we describe microscopic observations on the spatial relationship of cardiogenic cells to the primitive-heart ECM and the endodermal basement membrane.  相似文献   

19.
Interleukin-10 (IL-10) is a cytokine with many regulatory functions. In particular, IL-10 exerts neutralizing effect on other cytokines, and therefore IL-10 is thought to have important therapeutic implications. Recent reports suggest that IL-10 regulates not only immunocytes but also collagen and collagenase gene expression in fibroblasts. In this study, we investigated the effect of IL-10 on gene expression of extracellular matrix (ECM) proteins, such as type I collagen, fibronectin, and decorin, in human skin fibroblasts. Results of Northern blot analysis showed that both collagen I and fibronectin mRNAs were downregulated, while decorin gene expression was enhanced by IL-10 (10 ng/ml) time-dependently (6-24 h). alpha1(I) collagen and fibronectin mRNAs were decreased to one-third and one-fourth, respectively, by 50 ng/ml IL-10, whereas decorin mRNA was increased up to 2.7-fold by 50 ng/ml IL-10. Response to IL-10 by scleroderma fibroblasts was similar to that in normal dermal fibroblasts, with decreased expression levels of collagen and fibronectin and induced decorin mRNA levels. Transforming growth factor-beta (TGF-beta) is a crucial fibrogenic cytokine which upregulates the mRNA expression of collagen and fibronectin, whereas it downregulates decorin mRNA expression in fibroblasts. Monocyte chemoattractant protein-1 (MCP-1) has recently been shown to upregulate the type I collagen mRNA expression in cultured fibroblasts. We therefore examined whether IL-10 alters gene expression of ECM elicited by TGF-beta and MCP-1. Our results demonstrated that IL-10 downregulated the TGF-beta-elicited increase of mRNA expression of type I collagen and fibronectin, while partially recovering TGF-beta-elicited decrease of decorin expression in normal skin fibroblasts. By contrast, IL-10 did not alter the MCP-1-elicited upregulation of mRNA expression of either alpha1(I) collagen and decorin. Our data indicate that IL-10 differentially regulates TGF-beta and MCP-1 in the modulation of ECM proteins and therefore suggest that IL-10 plays a role in the regulation of tissue remodeling.  相似文献   

20.
During wound healing and inflammation, fibroblasts express elevated alkaline phosphatase (ALP), but are not in contact with collagen fibrils in the fibronectin (FN)-rich granulation tissue. We hypothesized that the extracellular matrix (ECM) environment might influence the induction of ALP in fibroblasts. Here we tested this hypothesis by studying the ALP-inductive response of normal human gingival fibroblasts to ascorbic acid (AsA). AsA induced ALP activity and protein in cells in conventional monolayer culture. This induction was inhibited by blocking-antibodies to the FN receptor alpha 5 beta 1 integrin and by the proline analog 3,4-dehydroproline (DHP). DHP prevented cells from arranging FN fibrils into a pericellular network and reduced the activity of cell spreading on FN. Plating of cells on FN facilitated the up-regulation by AsA of ALP expression, but did not substitute for AsA. In contrast, AsA did not cause ALP induction in cells cultured on and in polymerized type I collagen gels. Collagen fibrils inhibited the up-regulation by AsA of ALP expression in cells plated on FN. These results indicate that the ECM regulates the induction of ALP expression by AsA in fibroblasts: FN enables them to express ALP in response to AsA through interaction with integrin alpha 5 beta 1, whereas type I collagen fibrils cause the suppression of ALP expression and overcome FN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号