首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal epithelial cell function is compromised by local immune and inflammatory responses. In this study, we examined the possibility that intestinal epithelial cell injury occurs in the presence of activated inflammatory cells, such as neutrophils and macrophages, via production of reactive oxygen species (ROS). Following exposure to 50–150 μM H2O2, levels of mRNA and protein for Fas and, to a lesser degree, Fas-L were increased and intestinal epithelial cells underwent apoptosis. Treatment of H2O2-exposed cells with agonistic anti-Fas antibody, but not isotype control antibody, significantly enhanced apoptosis. Apoptosis was associated with the activation of caspase 8, while Z-IETD, an inhibitor of caspase 8, blocked apoptosis of H2O2-exposed intestinal epithelial cells. Thus, ROS induced Fas and Fas-L expression in association with intestinal epithelial cell apoptosis. These data support the hypothesis that, following exposure to oxidative stress, enterocytes are primed for cell death via Fas-mediated pathways.  相似文献   

2.
Soda K  Kano Y  Kawakami M  Konishi F 《Cytokine》2003,21(6):295-302
Serum interleukin 6 (IL-6) is elevated among patients who have undergone surgery, trauma, and thermal injury. It is well known that the greater the increase of serum IL-6, the higher the incidence of post-injury morbidity and mortality is. However, it has not been determined whether the physiological effects of IL-6 increase the rate of morbidity and mortality or if IL-6 is just a bystander that only indicates the severity of the injury. To elucidate this, we planned to investigate the effect of IL-6 on a multi-bacterial infection, one of the most frequent post-injury complications. CDF1 male mice were administered recombinant human IL-6 (hIL-6) continuously at a dose of 0, 1, or 10 microg/day. The mice then underwent cecal ligation without puncture that induced slow multi-bacterial infection. The survival rate of mice receiving 10 microg/day of hIL-6 was significantly lower (38.5%) than the rate of those receiving 0 (83.3%) or 1 (92.3%) microg/day of hIL-6. The result of this study showed that only excessive increases in serum IL-6, to levels that were observed among patients who underwent severe injury or extensive surgery with high incidence of post-injury infection, jeopardize the host's defense against bacterial infection.  相似文献   

3.
The obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial agent of sexually transmitted disease world-wide. Chlamydia trachomatis primarily infects epithelial cells of the genital tract but the infection may be associated with ascending infection. Infection-associated inflammation can cause tissue damage resulting in female infertility and ectopic pregnancy. The precise mechanism of inflammatory tissue damage is unclear but earlier studies implicate the chlamydial cryptic plasmid as well as responding neutrophils. We here rebuilt the interaction of Chlamydia trachomatis-infected epithelial cells and neutrophils in-vitro. During infection of human (HeLa) or mouse (oviduct) epithelial cells with Chlamydia trachomatis, a soluble factor was produced that attracted neutrophils and prolonged neutrophil survival, independently of Toll-like receptor signaling but dependent on the chlamydial plasmid. A number of cytokines, but most strongly GM-CSF, were secreted at higher amounts from cells infected with plasmid-bearing, compared to plasmid-deficient, bacteria. Blocking GM-CSF removed the secreted pro-survival activity towards neutrophils. A second, neutrophil TNF-stimulatory activity was detected in supernatants, requiring MyD88 or TRIF independently of the plasmid. The results identify two pro-inflammatory activities generated during chlamydial infection of epithelial cells and suggest that the epithelial cell, partly through the chlamydial plasmid, can initiate a myeloid immune response and inflammation.  相似文献   

4.
Inducible nitric oxide synthase (iNOS) activity in colonic epithelial HT-29 cells is modulated by the T-cell-derived cytokines IL-4 and IL-13, but is not affected by IL-10 despite its effect in models of colitis. We studied the effects of these cytokines on nitric oxide (NO) production by colonic tissue. IL-10 and IL-4 but not IL-13 suppressed the NO production and iNOS expression by inflamed tissue and cytokine-stimulated noninflamed tissue from patients with ulcerative colitis, whereas the three cytokines suppressed NO production in cytokine-stimulated biopsies from controls. To examine why colonic biopsies and HT-29 cells respond differently to immunomodulatory cytokines, a coculture of mixed mononuclear monocytes (MMC) and HT-29 cells was studied. Treatment of HT-29 cells with conditioned medium from IFN-γ/LPS-stimulated MMC produced significant amounts of NO, which suggested the presence of an MMC-derived soluble factor modifying epithelial NO production. Pretreatment of IFN-γ/LPS-stimulated MMC with IL-10 and IL-4 but not IL-13 suppressed NO production by HT-29 cells. Interestingly, pretreatment of HT-29 cells with IL-1 receptor antagonist suppressed the IFN-γ/LPS-stimulated MMC-induced NO production. These results suggest that immunomodulatory cytokines might exert an inhibitory effect on NO up-regulation by colonic epithelium via the inhibition of MMC-derived soluble mediators, such as IL-1.  相似文献   

5.
The effect of x-rays on GSH and GSSG levels in blood was studied in mice and humans. An HPLC method that we recently developed was applied to accurately determine GSSG levels in blood. The glutathione redox status (GSH/GSSG) decreases after irradiation. This effect is mainly due to an increase in GSSG levels. Mice received single fraction radiotherapy, at total doses of 1.0 to 7.0 Gy. Changes in GSSG in mouse blood can be detected 10 min after irradiation and last for 6 h within a range of 2.0–7.0 Gy. The highest levels of GSSG (20.1 ± 2.9 ), a 4.7-fold increase as compared with controls) in mouse blood are found 2 h after radiation exposure (5 Gy). Breast and lung cancer patients received fractionated radiotherapy at total doses of 50.0 or 60.0 Gy, respectively. GSH/GSSG also decreases in humans in a dose–response fashion. Two reasons may explain the radiation-induced increase in blood GSSG: (a) the reaction of GSH with radiation-induced free radicals resulting in the formation of thyl radicals that react to produce GSSG; and (b) an increase of GSSG release from different organs (e.g., the liver) into the blood. Our results indicate that the glutathione redox ratio in blood can be used as an index of radiation-induced oxidative stress. © 1997 Elsevier Science Inc.  相似文献   

6.
Hydrogen peroxide (H2O2) is a key signaling molecule that also induces apoptosis. Thus, cells must rapidly sense and tightly control H2O2 levels. Well-characterized cellular responses to exogenous H2O2 involve oxidation of specific cytosolic protein-based thiols but sensing of H2O2 generated by mitochondrial respiration is less well described. Here we provide substantial biochemical evidence that the heme enzyme Ccp1 (cytochrome c peroxidase), which is targeted to the intermembrane space, functions primarily as a mitochondrial H2O2 sensing and signaling protein in Saccharomyces cerevisiae. Key evidence for a sensing role for Ccp1 is the significantly higher H2O2 accumulation in ccp1-null cells(ccp1Δ) vs ccp1W191F cells producing the catalytically inactive Ccp1W191F variant. In fact, intracellular H2O2 levels (ccp1Δ>wildtype >ccp1W191F) correlate inversely with the activity of the mitochondrial (and peroxisomal) heme catalase, Cta1 (ccp1Δ<wildtype <ccp1W191F). Mitochondrial Sod2 activity also varies in the three strains (ccp1Δ>wildtype >ccp1W191F) and ccp1Δ cells exhibit low superoxide levels. Notably, Ccp1W191F is a more persistent H2O2 signaling protein than wild-type Ccp1, and this enhanced mitochondrial H2O2 signaling decreases the mitochondrial fitness of ccp1W191F cells. However, these cells are fully protected from a bolus (0.4 mM) of exogenous H2O2 added after 12 h of growth, whereas the viability of ccp1Δ cells drops below 20%, which additionally associates Ccp1 with Yap1-dependent H2O2 signaling. Combined, our results strongly implicate Ccp1, independent of its peroxidase activity, in mitochondrial H2O2 sensing and signaling to maintain reactive oxygen species homeostasis.  相似文献   

7.
Chronic infection with the intestinal nematode Trichuris muris is associated with an inappropriate type 1 cytokine response (production of predominantly IFN-gamma), whereas resistance to infection requires the induction of a protective type 2 response with the production of interleukin (IL)-4, IL-5, IL-9, and IL-13. T. muris inhabits an intracellular niche within murine intestinal epithelial cells of the caecum and in common with other intestinal helminth infections is associated with gross morphological changes in gut architecture. The purpose of this study was to characterise cytokine production during chronic infection in AKR and severe-combined-immunodeficient (SCID) mice and investigate what effect the anti-parasite response had on epithelial cell proliferation and so regulation of intestinal pathology. Pulse labeling with tritiated thymidine is employed to generate a sensitive cell position-linked proliferation index of the intestinal epithelium at various times postinfection. Infection in AKR mice is characterized by a marked elevation in antigen specific IFN-gamma production from restimulated mesenteric lymph node cells and a significant increase in proliferation of pluripotent epithelial stem cells and transit cells within the crypts. Similarly, elevated IFN-gamma production was observed in the mesenteric lymph nodes and intestinal mucosa of infected SCID mice, with epithelial cell hyperproliferation and the development of crypt hyperplasia in the caecum. Critically, in vivo depletion of IFN-gamma during infection in SCID mice resulted in no significant increase in epithelial cell proliferation and effectively precluded the development of crypt hyperplasia without altering infection outcome. Taken together, the data provides the first detailed cell position linked analysis of epithelial dysregulation during chronic T. muris infection and identifies a critical role for IFN-gamma, either directly or indirectly, in regulation of epithelial cell proliferation during the chronic intestinal inflammation associated with infection.  相似文献   

8.
Respiratory conditions such as chronic obstructive pulmonary disease (COPD) are associated with a greater risk for lung cancer (LC). Oxidative stress and inflammation are involved in LC pathophysiology. Studies conducted so far have focused solely on lung tumor parenchyma and not the airways. We explored levels of local and systemic oxidative stress and inflammation within normal bronchial epithelium and blood of patients with lung cancer (n=52), with and without COPD, and in control subjects (COPD and non-COPD, n=21). In normal bronchial epithelium specimens (bronchoscopy) and blood from patients with similar smoking history (LC–COPD and LC) and control subjects (both COPD and non-COPD), redox balance and inflammatory markers were measured (ELISA and immunoblotting). All subjects were clinically evaluated. Absence of malignant cells within the bronchial specimens was always pathologically confirmed. Bronchial levels of protein carbonylation, MDA–protein adducts, antioxidants, TNF-α, interferon-γ, TGF-β, and VEGF and blood levels of superoxide anion, oxidatively damaged DNA and proteins, TNF-α, interferon-γ, TGF-β, VEGF, and neutrophils were significantly greater in all LC patients compared to control subjects. Systemic levels of oxidatively damaged DNA, superoxide anion, and TNF-α and bronchial levels of TGF-β and TNF-α showed high sensitivity and specificity for LC among patients. Regardless of the presence of an underlying respiratory condition (COPD), protein oxidation, oxidatively damaged DNA, and inflammation were remarkably increased in the normal airways and blood of patients with LC. Furthermore, the potential predictive value for LC development of these molecular events warrants attention and should be explored in future larger longitudinal studies.  相似文献   

9.
A complex antioxidant system is present in human saliva, with uric acid being the most concentrated component. Ascorbic acid, present at low concentrations in saliva, is actively secreted into the gastric lumen. We report that ascorbic acid added to human saliva at pH 2 was consumed within a few minutes, regenerating HNO2, whereas uric acid was consumed relatively slowly in a nitrite-dependent manner. The consumption of uric acid was (i) rapid under normoxic conditions and slower at low oxygen tensions, (ii) coupled to NO release, (iii) linked to the decrease in nitrite consumption and in nitrate formation, and (iv) unaffected by the nitrosation catalyst thiocyanate. Both chlorogenic acid and bovine serum albumin, representative of a phenol- and a protein-rich meal, respectively, were able to spare uric acid, although chlorogenic acid increased, whereas bovine serum albumin inhibited, NO release. We hypothesize that the major role of uric acid in saliva at pH 2 could be to preserve the stomach from the formation of toxic nitrogen species and that low levels of uric acid, together with ascorbic acid consumption, may contribute to the high occurrence of tumors at the gastroesophageal junction and cardia. The sparing effects of dietary compounds may therefore be an important not fully appreciated effect.  相似文献   

10.
St. John’s wort (Hypericum perforatum), a perennial herb native to Europe, is widely used for and seems to be effective in treatment of mild to moderate depression. Hypericin, a singlet oxygen-generating photosensitizer that absorbs in both the visible and the UVA range, is considered to be one of the bioactive ingredients of St. John’s wort, and commercial preparations are frequently calibrated to contain a standard concentration. Hypericin can accumulate in ocular tissues, including lenses, and can bind in vitro to α-crystallin, a major lens protein. α-crystallin is required for lens transparency and also acts as a chaperone to ensure its own integrity and the integrity of all lens proteins. Because there is no crystallin turnover, damage to α-crystallin is cumulative over the lifetime of the lens and can lead to cataracts, the principal cause of blindness worldwide. In this work we study hypericin photosensitization of α-crystallin and detect extensive polymerization of bovine α-crystallin exposed in vitro to hypericin and UVA. We use fluorescence confocal microscopy to visualize binding between hypericin and α-crystallin in a human lens epithelial (HLE) cell line. Further, we show that UVA irradiation of hypericin-treated HLE cells results in a dramatic decrease in α-crystallin detection concurrent with a dramatic accumulation of the tryptophan oxidation product N-formylkynurenine (NFK). Examination of actin in HLE cells indicates that this cytoskeleton protein accumulates NFK resulting from hypericin-mediated photosensitization. This work also shows that filtration of wavelengths <400 nm provides incomplete protection against α-crystallin modification and NFK accumulation, suggesting that even by wearing UV-blocking sunglasses, routine users of St. John’s wort cannot adequately shield their lenses from hypericin-mediated photosensitized damage.  相似文献   

11.
Previous studies have implicated antimicrobial peptides in the host defense of the mammalian intestinal and respiratory tract. The aim of the present study has been to characterize further the expression of these molecules in non-epithelial cells of the human pulmonary and digestive systems by detailed immunohistochemical analysis of the small and large bowel and of the large airways and lung parenchyma. Additionally, cells obtained from bronchoalveolar lavage were analyzed by fluorescent activated cell sorting and immunostaining of cytospin preparations. hBD-1, hBD-2, and LL-37 were detected in lymphocytes and macrophages in the large airways, lung parenchyma, duodenum, and colon. Lymphocytes positive for the peptides revealed a staining pattern and distribution that largely matched that of CD3-positive and CD8-positive T-cells. Macrophages with positive staining for the antimicrobial peptides also stained positively for CD68 and CD74. In view of the morphology of the LL-37-positive and hBD-2-positive mucosal lymphocytes, they are probably also B-cells. Thus, antimicrobial peptides of the defensin and cathelicidin families are present in a variety of non-epithelial cells of mucosal organs. These findings confirm that antimicrobial peptides have multiple functions in the biology of the mucosa of these organs. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Ba 1641/5–1 and Ba 1641/6–1)  相似文献   

12.
13.
周玉  周和平  徐雅萍 《生物磁学》2009,(16):3157-3159
降钙素原(procalcitonin,PCT)是正常人血清中含量甚微的糖蛋白,严重细菌感染时显著升高,其水平与细菌感染炎症反应程度呈正相关。PCT在多种感染性疾病的早期快速诊断、鉴别诊断、病程监测、指导用药等方面发挥着重要作用。其检测手段发展迅速,可进行快速定性或准确定量。进一步研究可为PCT的更多临床应用提供线索。  相似文献   

14.
Biochemical and molecular biomarkers tools are utilized as early warning signatures of contaminant exposure to target and non-target organisms. The objective of this study was to investigate the sublethal effects of iron chloride to the larvae of the lace coral Pocillopora damicornis by measuring a suit of oxidative-stress biomarkers. The larvae were exposed to a range of sublethal concentrations of iron chloride (0.01, 0.1, 1, 10, and 100 ppm) for seven days. With reference to oxidative stress biomarkers, the no-observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC) of iron chloride were observed to be 0.01 and 100 ppm respectively. At the end of the seventh day the antioxidant status of the larvae was evaluated by the levels of glutathione (GSH), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione-S-transferase (GST), in both experimental and control groups. For the quantification of cellular oxidative damage, lipid peroxidation (LPO) activity was determined in the same and the extent of DNA damage was assessed by the expression of DNA apurinic/apyrimidinic (AP) sites. Iron chloride exhibited a concentration-dependent inhibition of GSH and GPX and induction of GR, GST, LPO, and DNA-AP sites in the P. damicornis larvae when compared to the control group. The oxidative stress biomarkers of the larvae exposed to 0.1, 1, and 10 ppm of iron chloride did not show any significant overall differences when compared to the control group. However the activities of LPO, GSH, GPX, GR, GST and DNA-AP in the larval group exposed to 100 ppm of iron chloride exhibited statistically significant (P=0.002, 0.003, 0.002, 0.002, 0.005 and 0.007) differences when compared to the control group. The research results indicated that iron chloride in concentrations at the 100 ppm level caused oxidative stress in the P. damicornis larvae.  相似文献   

15.
16.
The allene oxide cyclase (AOC) catalyzes the formation of cis-(+)-12-oxophytodienoic acid, an intermediate in jasmonate biosynthesis and is encoded by a single copy gene in tomato. The full length AOC promoter isolated by genome walk contains 3600 bp. Transgenic tomato lines carrying a 1000 bp promoter fragment and the full length promoter, respectively, in front of the beta-glucuronidase (GUS)-encoding uidA gene and several tobacco lines carrying the full length tomato AOC promoter before GUS were used to record organ- and tissue-specific promoter activities during development and in response to various stimuli. High promoter activities corresponding to immunocytochemically detected occurrence of the AOC protein were found in seeds and young seedlings and were confined to the root tip, hypocotyl and cotyledons of 3-d-old seedlings. In 10-d-old seedlings promoter activity appeared preferentially in the elongation zone. Fully developed tomato leaves were free of AOC promoter activity, but showed high activity upon wounding locally and systemically or upon treatment with JA, systemin or glucose. Tomato flowers showed high AOC promoter activities in ovules, sepals, anthers and pollen. Most of the promoter activity patterns found in tomato with the 1000 bp promoter fragment were also detected with the full length tomato AOC promoter in tobacco during development or in response to various stimuli. The data support a spatial and temporal regulation of JA biosynthesis during development and in response to environmental stimuli.  相似文献   

17.
Hydrogen sulfide (H2S), generated through various endogenous enzymatic and nonenzymatic pathways, is emerging as a regulator of physiological and pathological events throughout the body. Bacteria in the gastrointestinal tract also produce significant amounts of H2S that regulates microflora growth and virulence responses. However, the impact of the microbiota on host global H2S bioavailability and metabolism remains unknown. To address this question, we examined H2S bioavailability in its various forms (free, acid labile, or bound sulfane sulfur), cystathionine γ-lyase (CSE) activity, and cysteine levels in tissues from germ-free versus conventionally housed mice. Free H2S levels were significantly reduced in plasma and gastrointestinal tissues of germ-free mice. Bound sulfane sulfur levels were decreased by 50–80% in germ-free mouse plasma and adipose and lung tissues. Tissue CSE activity was significantly reduced in many organs from germ-free mice, whereas tissue cysteine levels were significantly elevated compared to conventional mice. These data reveal that the microbiota profoundly regulates systemic bioavailability and metabolism of H2S.  相似文献   

18.
Abstract

Objectives

To assess the cardioprotective effect of the Salsola kali aqueous extract against adriamycin (ADR)-induced cardiotoxicity in male Swiss albino mice.

Methods

The aqueous extract of S. kali was phytochemically screened by traditional methods for different classes and further evaluated for antioxidant activity in vitro. In vivo, cardioprotective evaluation of the extract was designed to have four groups of mice: (1) control group (distilled water, orally; normal saline, intraperitoneally (i.p.)); (2) ADR group (15 mg/kg, i.p.); (3) aqueous S. kali extract (200 mg/kg, orally); and (4) ADR + S. kali group. ADR (5 mg/kg) was injected three times over 2 weeks while S. kali was orally administered daily for 3 weeks (1 week before and 2 weeks during ADR treatment). Cardioprotective properties were assessed using biochemical and histopathological approaches.

Results

ADR caused a significant increase in serum enzymes (lactate dehydrogenase, creatine phosphokinase, aspartate aminotransferase, and alanine aminotransferase). Myocardial levels of malondialdehyde, nitric oxide, and reduced glutathione, as well as the activities of superoxide dismutase and catalase increased while the activities of glutathione peroxidase and glutathione S-transferase declined. Histopathological examination of heart sections revealed that ADR caused myofibrils loss, necrosis and cytoplasmic vacuolization.

Discussion

Pretreatment with S. kali aqueous extract normalized serum and antioxidant enzymes minimized lipid peroxidation and cardiac damage. These results have suggested that the extract has antioxidant activity, indicating that the mechanism of cardioprotection during ADR treatment is mediated by lowering oxidative stress.  相似文献   

19.
Cryptococcus neoformans and Cryptococcus gatti are the etiological agents of cryptococcosis, a life-threatening mycosis affecting the central nervous system. Cryptococcal meningoencephalitis is the most fatal mycosis in AIDS patients, resulting almost 200 000 deaths annually. High cost, side effects and drug resistance are constant elements during treatment of cryptococcosis, encouraging the development of novel therapeutic strategies including immunomodulatory protocols. Thereby, to understand how the host responds to Cryptococcus is essential. In this review, we discuss the immune response against Cryptococcus and immunoevasion strategies.  相似文献   

20.
The dimeric cytokine interleukin (IL)-26 belongs to the IL-10 family. Whereas it was originally perceived as a T-helper (Th)17 cytokine, subsequent studies have shown that IL-26 is produced by several populations of leukocytes and structural cells. This cytokine binds to a heterodimeric receptor complex including IL-10R2 and -20R1 (IL-26R) and signals through STAT 1 and 3 to induce the release of chemokines and growth factors. Remarkably, IL-26 directly kills bacteria and inhibits viral replication. The most recent studies on human airways confirm multiple cellular sources in this critical interphase of host defense and demonstrate that stimulation of toll-like receptors (TLR) trigger the release of IL-26. Once released, it exerts a dualistic effect on cytokine production and up-regulates gene expression of IL-26R. It also potentiates chemotaxis and inhibits chemokinesis for neutrophils, thereby facilitating the accumulation of innate effector cells at the site of bacterial stimulation. The high levels of IL-26 in human airways are altered in inflammatory airway disorders such as asthma and chronic obstructive pulmonary disease. Thus, IL-26 emerges as an important mediator, providing direct and indirect actions on microbes, actions that are essential for host defense and inflammation and bears potential as a biomarker of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号