共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The contributions of mycorrhizal fungi to the determination of plant community structure 总被引:7,自引:3,他引:7
While it is now widely accepted, even by ecologists, that most plants in the majority of ecosystems are infected by mycorrhizal
fungi, few experiments have been designed to investigate the function of the mutualism at the community level. Those involved
with mycorrhizal research have been largely preoccupied with questions of the mineral, particularly phosphorus, nutrition
of individual plants, while plant community ecologists have too often found it convenient, even when acknowledging the presence
of infection, to ignore its possible function in the ecosystem.
This presentation examines a selected number of seminal papers written by plant community ecologists and highlights some of
‘the most striking mysteries’ which they reveal. It describes experiments designed to determine whether knowledge of the presence
and activity of the mycorrhizal mycelium can help us to unravel the ‘mysteries’ which they define.
It is revealed that by having direct adverse effects upon seedlings of many ‘r’ selected species, while at the same time being
beneficial, if not essential, to those that are ‘K’ selected, the activities of the mycelium of VA fungi have a direct bearing
upon community composition. The extent to which ‘turf compatibility’ is actually a reflection of the compatibility of plant
species with the VA mycorrhizal mycelium is discussed and the possible role of the mycelium in consigning some species to
the ruderal habit is considered.
It is concluded that those attempting scientifically to understand, or managerially to manipulate, plant communities, without
recognizing the role of the mycorrhizal mycelium, do so at their peril, and it is recommended that scientists involved in
research on mycorrhiza extend their vision beyond the limited horizons which are currently so often defined by considerations
of the phosphorus nutrition of individual host plants. 相似文献
3.
4.
丛枝菌根真菌对植物耐旱性的影响研究进展 总被引:3,自引:0,他引:3
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)能与植物根系形成互惠共生体,对植物的生长发育和抗逆性有积极的影响,在改善植物水分代谢和提高植物耐旱性中发挥了重要作用.本文综述了近年来AMF与植物水分代谢关系的研究进展,从植物的光合作用、蒸腾与气孔导度、水分利用效率、水力导度、渗透调节、内源激素和抗氧化系统等方面说明AMF对植物水分代谢的影响.从4个方面介绍了AMF提高植物耐旱性的机理:1)菌丝网络增加植物根系吸收范围;2)增强植物保水能力和抗氧化能力;3)稳定和改善土壤团聚体;4)促进植物养分吸收.并提出今后研究需注意的问题和建议. 相似文献
5.
Benefits and costs of parental care are expected to change with offspring development and lead to age‐dependent coadaptation expressed as phenotypic (behavioural) matches between offspring age and parental reproductive stage. Parents and offspring interact repeatedly over time for the provision of parental care. Their behaviours should be accordingly adjusted to each other dynamically and adaptively, and the phenotypic match between offspring age and parental stage should stabilize the repeated behavioural interactions. In the European earwig (Forficula auricularia), maternal care is beneficial for offspring survival, but not vital, allowing us to investigate the extent to which the stability of mother–offspring aggregation is shaped by age‐dependent coadaptation. In this study, we experimentally cross‐fostered nymphs of different age classes (younger or older) between females in early or late reproductive stage to disrupt age‐dependent coadaptation, thereby generating female–nymph dyads that were phenotypically matched or mismatched. The results revealed a higher stability in aggregation during the first larval instar when care is most intense, a steeper decline in aggregation tendency over developmental time and a reduced developmental rate in matched compared with mismatched families. Furthermore, nymph survival was positively correlated with female–nymph aggregation stability during the early stages when maternal care is most prevalent. These results support the hypothesis that age‐related phenotypically plastic coadaptation affects family dynamics and offspring developmental rate. 相似文献
6.
7.
8.
9.
Summary Soil cores collected under a birch tree (Betula pubescens) on an experimental plot showed a progressive change in types of sheathing mycorrhiza with distance from the tree base. Seedlings grown in cores in a glasshouse also developed different mycorrhizal types depending on distance from the tree at which the cores were taken, but the types on seedlings were often different from those in the parent cores. When cores were taken directly beneath fruitbodies and sown to birch in a glasshouse, seedlings developed mycorrhizas of Laccaria, Inocybe and Hebeloma in cores from beneath these fruitbodies, but they seldom developed Lactarius mycorrhizas and never developed Leccinum mycorrhizas in cores taken beneath these fruitbodies. Similarly, when seedlings were grown in soils supplemented with vermiculite-peat inocula in a glasshouse, Laccaria and Hebeloma readily formed mycorrhizas, butLactarius pubescens seldom did so and Leccinum andAmanita muscaria never dit so. Yet all these fungi form mycorrhizas on birch seedlings in aseptic conditions.The results suggest a distinction between early stage and late stage mycorrhizal fungi of birch. Early stage fungi readily infect seedlings from resident or introduced inoculum in normal, unsterile soil, whereas late stage fungi do not readily form mycorrhizas in these conditions. 相似文献
10.
Rosendahl S 《The New phytologist》2008,178(2):253-266
Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters of the asexual resting spores, but molecular approaches to community ecology have revealed a considerable unknown diversity from colonized roots. Although the lack of genetic recombination is not unique in the fungal kingdom, arbuscular mycorrhizal fungi are probably ancient asexuals. The long asexual evolution of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi. 相似文献
11.
Cheng-Jin Chu Jacob Weiner Fernando T. Maestre You-Shi Wang Charles Morris Sa Xiao Jian-Li Yuan Guo-Zhen Du Gang Wang 《Annals of botany》2010,106(4):647-652
Background and Aims
Competition drives self-thinning (density-dependent mortality) in crowded plant populations. Facilitative interactions have been shown to affect many processes in plant populations and communities, but their effects on self-thinning trajectories have not been investigated.Methods
Using an individual-based ‘zone-of-influence’ model, we studied the potential effects of the size symmetry of competition, abiotic stress and facilitation on self-thinning trajectories in plant monocultures. In the model, abiotic stress reduced the growth of all individuals and facilitation ameliorated the effects of stress on interacting individuals.Key Results
Abiotic stress made the log biomass – log density relationship during self-thinning steeper, but this effect was reduced by positive interactions among individuals. Size-asymmetric competition also influenced the self-thinning slope.Conclusions
Although competition drives self-thinning, its course can be affected by abiotic stress, facilitation and competitive symmetry. 相似文献12.
Rui S. Oliveira Paula M. L. Castro John C. Dodd Miroslav Vosátka 《Plant and Soil》2006,287(1-2):209-221
Different species of arbuscular mycorrhizal fungi (AMF) can produce different amounts of extraradical mycelium (ERM) with differing architectures. They also have different efficiencies in gathering phosphate from the soil. These differences in phosphate uptake and ERM length or architecture may contribute to differential growth responses of plants and this may be an important contributor to plant species coexistence. The effects of the development of the ERM of AMF on the coexistence of two co-occurring plant species were investigated in root-free hyphal chambers in a rhizobox experimental unit. The dominant shrub (Salix atrocinerea Brot.) and herbaceous (Conyza bilbaoana J. Rémy) plant species found in a highly alkaline anthropogenic sediment were studied in symbiosis with four native AMF species (Glomus intraradices BEG163, Glomus mosseae BEG198, Glomus geosporum BEG199 and Glomus claroideum BEG210) that were the most abundant members of the AMF community found in the sediment. Different AMF species did not influence total plant productivity (sum of the biomass of C. bilbaoana and S. atrocinerea), but had a great impact on the individual biomass of each plant species. The AMF species with greater extracted ERM lengths (G. mosseae BEG198, G. claroideum BEG210 and the four mixed AMF) preferentially benefited the plant species with a high mycorrhizal dependency (C. bilbaoana), while the AMF species with the smallest ERM length (G. geosporum BEG199) benefited the plant species with a low mycorrhizal dependency (S. atrocinerea). Seed production of C. bilbaoana was only observed in plants inoculated with G. mosseae BEG198, G. claroideum BEG210 or the mixture of the four AMF. Our results show that AMF play an important role in the reproduction of C. bilbaoana coexisting with S. atrocinerea in the alkaline sediment and have the potential to stimulate or completely inhibit seed production. The community composition of native AMF and the length of the mycelium they produce spreading from roots into the surrounding soil can be determinant of the coexistence of naturally co-occurring plant species. 相似文献
13.
14.
In order to understand the functioning of mycorrhizal fungi in ecosystems it is necessary to consider the full suite of possible biotic interactions in the soil. While a number of such interactions have recently been shown to be crucially important, parasitism is a highly neglected feature in the ecology of arbuscular mycorrhizal fungi (AMF). A number of studies have classified some interactions between populations of bacteria and fungi with AMF as parasitism, generating discussion about its consequences at both 'parasite' and host population levels. This paper reviews these various publications, and based on a set of criteria that are necessary to demonstrate parasitism, it was concluded that parasitism has not been conclusively shown to exist in AMF, even though some data are highly suggestive of such a relationship. The difficulties in gathering data supportive of parasitism were discussed, and hypotheses for defense were offered. This paper concludes by presenting potential consequences of AMF parasitism at the population/community levels and by discussing applied aspects. 相似文献
15.
Ramiro Aguilar Edson Jacob Cristbal‐Prez Francisco Javier Balvino‐Olvera María de Jesús Aguilar‐Aguilar Natalia Aguirre‐Acosta Lorena Ashworth Jorge A. Lobo Silvana Martn‐Rodríguez Eric J. Fuchs Gumersindo Sanchez‐Montoya Gabriel Bernardello Mauricio Quesada 《Ecology letters》2019,22(7):1163-1173
Most of the world's land surface is currently under human use and natural habitats remain as fragmented samples of the original landscapes. Measuring the quality of plant progeny sired in these pervasive environments represents a fundamental endeavour for predicting the evolutionary potential of plant populations remaining in fragmented habitats and thus their ability to adapt to changing environments. By means of hierarchical and phylogenetically independent meta‐analyses we reviewed habitat fragmentation effects on the genetic and biological characteristics of progenies across 179 plant species. Progeny sired in fragmented habitats showed overall genetic erosion in contrast with progeny sired in continuous habitats, with the exception of plants pollinated by vertebrates. Similarly, plant progeny in fragmented habitats showed reduced germination, survival and growth. Habitat fragmentation had stronger negative effects on the progeny vigour of outcrossing‐ than mixed‐mating plant species, except for vertebrate‐pollinated species. Finally, we observed that increased inbreeding coefficients due to fragmentation correlated negatively with progeny vigour. Our findings reveal a gloomy future for angiosperms remaining in fragmented habitats as fewer sired progeny of lower quality may decrease recruitment of plant populations, thereby increasing their probability of extinction. 相似文献
16.
Njal Rollinson Locke Rowe 《Evolution; international journal of organic evolution》2015,69(9):2441-2451
Directional selection on size is common but often fails to result in microevolution in the wild. Similarly, macroevolutionary rates in size are low relative to the observed strength of selection in nature. We show that many estimates of selection on size have been measured on juveniles, not adults. Further, parents influence juvenile size by adjusting investment per offspring. In light of these observations, we help resolve this paradox by suggesting that the observed upward selection on size is balanced by selection against investment per offspring, resulting in little or no net selection gradient on size. We find that trade‐offs between fecundity and juvenile size are common, consistent with the notion of selection against investment per offspring. We also find that median directional selection on size is positive for juveniles but no net directional selection exists for adult size. This is expected because parent–offspring conflict exists over size, and juvenile size is more strongly affected by investment per offspring than adult size. These findings provide qualitative support for the hypothesis that upward selection on size is balanced by selection against investment per offspring, where parent–offspring conflict over size is embodied in the opposing signs of the two selection gradients. 相似文献
17.
Effects of earthworms and arbuscular mycorrhizal fungi on preventing Fusarium oxysporum infection in the strawberry plant 总被引:1,自引:0,他引:1
Plant and Soil - Although phosphorus (P) application is known to affect the zinc (Zn) nutrition of crops, the underlying mechanisms and effects of soil type are unclear. A greenhouse pot experiment... 相似文献
18.
19.
20.
M. SEGOLI A. R. HARARI J. A. ROSENHEIM A. BOUSKILA T. KEASAR 《Journal of evolutionary biology》2010,23(9):1807-1819
Polyembryony has evolved independently in four families of parasitoid wasps. We review three main hypotheses for the selective forces favouring this developmental mode in parasitoids: polyembryony (i) reduces the costs of egg limitation; (ii) reduces the genetic conflict among offspring; and (iii) allows offspring to adjust their numbers to the quality of the host. Using comparative data and verbal and mathematical arguments, we evaluate the relative importance of the different selective forces through different evolutionary stages and in the different groups of polyembryonic wasps. We conclude that reducing the cost of egg limitation is especially important when large broods are favoured. Reducing genetic conflict may be most important when broods are small, thus might have been important during, or immediately following, the initial transition from monoembryony to polyembryony. Empirical data provide little support for the brood‐size adjustment hypothesis, although it is likely to interact with other selective forces favouring polyembryony. 相似文献