首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When leaf discs of six experimental hybrids of maize (Zea maysL.) grown with high as well as low levels of potassium weretreated with 5 mM KCl for 2 hr in light before exposure to long-term(43 hr) mild wilting conditions, a stimulating effect of potassiumtreatment ("potassium effect") on water-stress-induced prolineaccumulation was observed. This effect was greater in the discsgrown at a high level of potassium. Marked differences in prolineaccumulation due to wilting were observed in the different genotypes.Genotypic differences in the ‘potassium effect’were also evident. Use of potassium uptake as an index for screeningcultivars for drought tolerance may be possible. Present address: Department of Plant Science, School of Agriculture,University of Zambia. P.O. Box 2379, Lusaka, Zambia. (Received September 11, 1979; )  相似文献   

2.
The capacity of tomato leaf tissues to accumulate proline in response to a salt shock (150 mM NaCl) applied to excised shoots, leaves, leaflets or leaf discs was determined and compared to that of whole plants grown at the same salinity. The associated changes in free amino acids, Na+, K+ and Cl- contents were also investigated. In excised organs treated for 80 h, up to 200 mumol g-1 DW of proline were accumulated, whereas the amount of proline in leaf discs did not exceed a value ten-fold lower. In the whole plants subjected to salinity the Na+, Cl- and K+ contents remained low in comparison to that observed in excised organs. Proline and other amino acids increased more slowly in whole plants than in excised shoots. The contribution of roots and vascular tissues to the control of Na+ and Cl- accumulation and to the regulation of proline metabolism are discussed.  相似文献   

3.
Tosserams  Marcel  Smet  Jaqueline  Magendans  Erwin  Rozema  Jelte 《Plant Ecology》2001,154(1-2):157-168
Seeds of Plantago lanceolata were collected in a dune grassland ecosystem in the Netherlands. Plants were grown in a greenhouse for 61 days under either low or high nutrient conditions and were exposed to four different levels of biologically effective UV-B radiation. The highest UV-B exposure level simulated 30% reduction of the stratospheric ozone layer during summertime in the Netherlands. Total biomass production of plants at low nutrient supply was 50% lower compared to plants grown at high nutrient supply, while net photosynthesis was decreased by only 12%. Increased levels of UV-B reduced biomass production under non-limiting nutrient conditions only. Biomass production of plants grown at limited nutrient supply was not affected by UV-B. This response was correlated to increased accumulation of carbohydrates under nutrient limitation, which agrees well with the carbon/nutrient balance hypothesis. It is concluded that the increased accumulation of carbon in nutrient-stressed plants, may lead to a reduction of UV-B induced damage because of increased foliar UV-B absorbance by enhanced accumulation of phenolic compounds and leaf thickening.  相似文献   

4.
In this study cashew (Anacardium occidentale) plants were exposed to a short- and long-term exposure to NaCl in order to establish the importance of the salt-induced proteolysis and the glutamine synthetase activity on the proline accumulation. The cashew leaf showed a prominent proline accumulation in response to salt stress. In contrast, the root tissue had no significant changes in proline content even after the drastic injury caused by salinity on the whole plant. The leaf proline accumulation was correlated to protease activity, accumulation of free amino acid and ammonia, and decrease of both total protein and chlorophyll contents. The leaf GS activity was increased by the salt stress whereas in the roots it was slightly lowered. Although the several amino acids in the soluble pool of leaf tissue have showed an intense increment in its concentrations in the salt-treated plants, proline was the unique to show a proportional increment from 50 to 100 mol m-3 NaCl exposure (16.37 to 34.35 mmol kg-1 DM, respectively). Although the leaf glutamate concentration increased in the leaves of the salt-stressed cashew plants, as compared to control, its relative contribution to the total amino acid decreased significantly in stressed leaves when compared to other amino acids. In addition, when the leaf discs were incubated with NaCl in the presence of exogenous precursors (Glu, Gln, Orn or Arg) involved in the proline synthesis pathways, the glutamate was unique in inducing a significant enhancement of the proline accumulation compared to those discs with precursor in the absence of NaCl. These results, together with the salt-induced increase in the GS activity, suggest an increase in the de novo synthesis of proline probably associated with the increase of the concentration of glutamate. Moreover, the prominent salt-induced proline accumulation in the leaves was associated with the higher salt-sensitivity in terms of proteolysis and salt-induced senescence as compared to the roots. In conclusion, the leaf-proline accumulation was due, at least in part, to the increase in the salt-induced proteolysis associated with the increments in the GS activity and hence the increase in the concentration of glutamate precursor in the soluble amino acid pool.  相似文献   

5.
Flooding of the root system of tomato plants ( Lycopersicon esculentum ) caused cessation of leaf elongation, leaf epinasty, formation of adventitious roots, and increase in diffusive resistance associated with the wilting of leaves at the first stage of the stress. Upon development of adventitious roots, the wilted leaves regained their turgor and the diffusive resistance slowly decreased at a rate slower than that at which water potential increased. In the course of flooding, proline accumulated but after 11 days dropped back to the control level. The extent of proline accumulation in various tomato cultivars was positively correlated with the extent to which their leaf water potential dropped, but was not correlated with the changes in their diffusive resistance. Cultivars which accumulated the highest proline levels were those which showed the most severe injury, with only one cultivar as an exception. However, only in the cultivars producing high levels of proline was the return of leaf turgor followed by resumption of leaf elongation. In cv. 'Hosen', which was severely injured by the stress, but accumulated a low level of proline, leaf elongation was not resumed. The results suggest that proline accumulation is an indicator of the cultivar's sensitivity to dehydration associated with the flooding stress, and confirm the notion that proline may play a role in the post-stress recovery process.  相似文献   

6.
Ain-Lhout  F.  Zunzunegui  M.  Diaz Barradas  M.C.  Tirado  R.  Clavijo  A.  Garcia Novo  F. 《Plant and Soil》2001,230(2):175-183
The effect of water stress on proline accumulation was tested in two contrasted species of Mediterranean scrub: Halimium halimifolium (L.) Willk and Pistacia lentiscus L. Leaf water potential, stomatal resistance and proline content have been measured both in experimental and in natural water stress conditions. Both species accumulated proline in their leaves when leaf water potential dropped below a threshold value of –3.0 MPa, under natural as well as under experimental conditions. In the field, however, a time-lag between decrease of leaf water potential and proline accumulation could be observed. In Halimium halimifolium, proline accumulation appeared to be associated with severe stress conditions as most plants with high proline contents suffered irreversible wilting, especially in the greenhouse. P. lentiscus showed a different pattern, accumulating proline at two different times of the year, as a response to cold or to drought. The results of our study indicated that the role of proline in this species, rather than an osmotic agent, seems to be more related to a protective action in cases of severe stress conditions.  相似文献   

7.
Effects of leaf age, nitrogen nutrition and photon flux density (PFD) on the distribution of nitrogen among leaves were investigated in a vine, Ipomoea tricolor Cav., which had been grown horizontally so as to avoid mutual shading of leaves. The nitrogen content was highest in newly developed young leaves and decreased with age of leaves in plants grown at low nitrate concentrations and with all leaves exposed to full sunlight. Thus, a distinct gradient of leaf nitrogen content was formed along the gradient of leaf age. However, no gradient of leaf nitrogen content was formed in plants grown at a high nitrate concentration. Effects of PFD on the distribution of nitrogen were examined by shading leaves in a manner that simulated changes in the light gradient of an erect herbaceous canopy (i.e., where old leaves were placed under increasingly darker conditions with growth of the canopy). This canopy-type shading steepened the gradient of leaf nitrogen content in plants grown at a low nitrogen supply, and created a gradient in plants grown at high concentrations of nitrate. The steeper the gradient of PFD, the larger the gradient of leaf nitrogen that was formed. When the gradient of shading was inverted, that is, younger leaves were subjected to increasingly heavier shade, while keeping the oldest leaves exposed to full sunlight, an inverted gradient of leaf nitrogen content was formed at high nitrate concentrations. The gradient of leaf nitrogen content generated either by advance of leaf age at low nitrogen availability, or by canopy-type shading, was comparable to those reported for the canopies of erect herbaceous plants. It is concluded that both leaf age and PFD have potential to cause the non-uniform distribution of leaf nitrogen. It is also shown that the contribution of leaf age increases with the decrease in nitrogen nutrition level.  相似文献   

8.
The objective of this study was to investigate the effect of selenium (Se) supply (0, control; 2.5, 5, 10, or 20 μM) on cucumber (Cucumis sativus L.) cv. Polan F1 plants grown under short-term low temperature stress. About 14–16 day-old seedlings, grown at an optimal temperature (25/20°C; day/night), were exposed to short-term chilling stress with a day/night temperature of 10°C/5°C for 24 h, for a further 24 h at 20°C/15°C, and then transferred to 25/20°C (re-warming) for 7 days. Se did not affect the fresh weight (FW) of plants at a concentration of 2.5–10 μM, but in the presence of 20 μM Se, the biomass of shoots significantly decreased. The contents of chlorophylls and carotenoids witnessed no significant change after Se supplementation. Compared with the control, the Se-treated plants showed an increase of proline content in leaves, once after chilling and again after 7 days of re-warming. However, proline levels were much higher immediately after chilling than after re-warming. The malondialdehyde (MDA) content in the root of plants treated with 2.5–10 μM Se decreased directly after stress. This was in comparison with the plants grown without Se, whereas it increased in roots and leaves of plants exposed to 20 μM Se. Seven days later, the MDA level in the root of plants grown in the presence of Se was still lower than those of plants not treated with Se and generally witnessed no significant change in leaves. Although Se at concentrations of 2.5–10 μM modified the physiological response of cucumber to short-term chilling stress, causing an increase in proline content in leaves and diminishing lipid peroxidation in roots, the resistance of plants to low temperature was not clearly enhanced, as concluded on the basis of FW and photosynthetic pigments accumulation.  相似文献   

9.
B. Demmig  K. Winter 《Planta》1986,168(3):421-426
Concentrations of four major solutes (Na+, K+, Cl-, proline) were determined in isolated, intact chloroplasts from the halophyte Mesembryanthemum crystallinum L. following long-term exposure of plants to three levels of NaCl salinity in the rooting medium. Chloroplasts were obtained by gentle rupture of leaf protoplasts. There was either no or only small leakage of inorganic ions from the chloroplasts to the medium during three rapidly performed washing steps involving precipitation and re-suspension of chloroplast pellets. Increasing NaCl salinity of the rooting medium resulted in a rise of Na+ und Cl- in the total leaf sap, up to approximately 500 and 400 mM, respectively, for plants grown at 400 mM NaCl. However, chloroplast levels of Na+ und Cl- did not exceed 160–230 and 40–60 mM, respectively, based upon a chloroplast osmotic volume of 20–30 l per mg chlorophyll. At 20 mM NaCl in the rooting medium, the Na+/K+ ratio of the chloroplasts was about 1; at 400 mM NaCl the ratio was about 5. Growth at 400 mM NaCl led to markedly increased concentrations of proline in the leaf sap (8 mM) compared with the leaf sap of plants grown in culture solution without added NaCl (proline 0.25 mM). Although proline was fivefold more concentrated in the chloroplasts than in the total leaf sap of plants treated with 400 mM NaCl, the overall contribution of proline to the osmotic adjustment of chloroplasts was small. The capacity to limit chloroplast Cl- concentrations under conditions of high external salinity was in contrast to an apparent affinity of chloroplasts for Cl- under conditions of low Cl- availability.Abbreviation Chl chlorophyll  相似文献   

10.
Plants of Commelina communis L. were grown in culture solution to which NaCl was added for 48 h. The solutions were then replaced with normal medium, so that the plants could recover from the stress. The water potential increased almost to that of the controls during 4 h of recovery, but stomatal resistance stayed high. Cytokinin treatment of leaf discs failed to enhance recovery of stomatal aperture, although it enhanced stomatal recovery of identically treated epidermal tissue. Proline levels in leaves correlated well with stomatal resistance. Incubation of epidermal tissue in D-proline inhibited stomatal opening. NaCl and benzyladenine interacted with the effect of proline, and the effect of abscisic acid and was additive to that of proline.  相似文献   

11.
Six lines of sorghum ( Sorghum bicolor L. Moench) with differing drought resistance (IS 22380, ICSV 213, IS 13441 and SPH 263, resistant and IS 12739 and IS 12744, susceptible) were grown under field conditions in the semi-arid tropics and analysed for proline and nitrate reductase activity (NRA; EC 1.6.6.1) during a mid-season drought. The resistant lines accumulated high levels of proline, while the susceptible lines showed no significant proline accumulation. Most of the proline was accumulated after growth of the plants had ceased. In a separate greenhouse experiment, most of the proline was found in the green rather than the fired portions of leaves. The levels returned to that of irrigated controls within 5 days of rewatering. Proline levels increased as leaf water potential and relative water content fell, and there was no apparent difference among the different sorghum lines with change in plant water status. Susceptible lines accumulated less proline than resistant lines as leaf death occurred at higher water potentials. Proline accumulation may, however, contribute to the immediate recovery of plants from drought. Leaf NRA reached high levels at about 35 days after sowing in both the stressed and irrigated plants, after which it declined. The decline in NRA was more pronounced in the stressed than in the irrigated plants and closely followed changes in the growth rate. Upon rewatering, NRA increased several-fold in all the lines and, in contrast to proline accumulation, genotypic differences in NRA were small, both during stress and upon rewatering. The high sensitivity of NRA to mild drought stress was reflected in the rapid decline of activity with small changes in leaf water potential and relative water content. The results are discussed in the light of a possible role for proline during recovery from drought, and the maintenance of NRA during stress and its recovery upon rewatering.  相似文献   

12.
Diurnal variations in relative water content (RWC), nitrate reductase (NR) and proline content (PC) were studied at 3 h intervals during a 24 h cycle in the flag leaf of wheat (Triticum vulgare, v. Kalyansona) grown under stressed and non-stressed conditions. RWC was lower in stressed plants than in non-stressed ones throughout the 24 h period. Although it was lowest at 12 h, it recovered by 15 h. Non-stressed plants maintained higher NR activity compared to those under stress. The enzyme activity during night was about the same as during day time in both types of plants. Compared to non-stressed plants, stressed ones had lower NO3? content. Proline accumulation occurred under stress conditions and had a maximum at 12–15 h. Non-stressed plants exhibited higher PC during night than day time. Changes in temperature and relative humidity were noted during the period and their influence on RWC, NR and proline was discussed.  相似文献   

13.
Accumulation of Free Proline at Low Temperatures   总被引:3,自引:0,他引:3  
The accumulation of free proline in the first leaves of barley, Hordeum distichum L., and wheat, Triticum aestivum L., in response to a range of low temperatures was examined with 10-day-old plants. In barley (cv. Prior) no proline accumulated at 8°C or above, but in wheat (cv. Gabo) proline accumulated at 12°C and lower temperatures. In barley, the first leaf survived for 29 days following transfer to 5°C and continued to accumulate proline throughout this period. In contrast, the first leaves of plants maintained at 20°C survived for 13 days only and accumulated no proline. Proline accumulation at low temperature was shown to be light-dependent, both in intact plants and excised leaf sections, and the light requirement could not be replaced by supplying leaf segments with precursors of proline. Proline accumulation in response to water stress was not light-dependent at 20°C but was at 5°C. Inter-specific and intra-specific variation in the extent of accumulation in response to low temperature was also examined. Considerable variation was encountered but there was no clear relationship with geographical distribution or chilling sensitivity for the species and no correlation with accumulation in response to water stress in the cultivars of barley examined.  相似文献   

14.
Rape (Brassica napus L. var. oleifera cv. Samourai) leaf discs treated in vitro in the presence of glycine betaine (GB) exhibited very high accumulation of GB, suggesting the operation of a specific uptake system. When further subjected to osmotic upshocks by transfer to PEG 6000 media, the typical osmo-induced proline response of the discs was strongly inhibited. The level of this inhibition was quantitatively related to the amount of GB loaded in the tissues. In contrast, the soluble sugar content increased in GB-treated discs. Surprisingly, viability tests (i.e. membrane stability and 2,3,5-triphenyltetrazolium chloride reduction) indicated a destabilizing effect of GB in these tissues. This is at variance with the relative compatibility of sucrose and proline. In addition, the protein content was lower in GB-treated discs. This could be related to an inhibitory effect on protein synthesis, as demonstrated by radiolabelling of polypeptides with [35S] amino acids. This effect was particularly pronounced on Rubisco large sub-unit synthesis and was still apparent under non-stress conditions. The GB treatment was also followed by the induction or up-regulation of a set of polypeptides, not seen under stress conditions, while the synthesis of osmo-induced polypeptides was not affected by GB. These novel effects of GB lead us to discuss the reasons for its incompatibility in leaf tissues of a non-GB-accumulating species.  相似文献   

15.
Fluctuation in proline content is a widespread phenomenon among plants in response to heavy metal stress. To distinguish between the participation of water deficit and copper on changes in proline metabolism, potted plants and floating leaf discs of tobacco were subjected to CuSO4 treatments. The application of copper increased the proline content in the leaves concomitantly with decreased leaf relative water content and increased abscisic acid (ABA) content in the potted plant. Excess copper increased the expression of two proline synthesis genes, pyrroline-5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT) and suppressed proline catabolism gene, proline dehydrogenase (PDH). However, in the experiment with tobacco leaf discs floating on CuSO4 solutions, the excess copper decreased proline content and suppressed the expression of the P5CS, OAT and PDH genes. Therefore, proline accumulation in the potted tobacco plants treated with excess Cu treatment might not be the consequence of the increased copper content in tobacco leaves but rather by the accompanied decrease in water content and/or increased ABA content.  相似文献   

16.
Percentage germination, and growth of hyphae from single conidia of Erysiphe cichoracearum DC., were measured on leaf discs from topped and intact tobacco plants, grown in aerated nutrient solutions consisting of basal medium plus large or small amounts of potassium. The effect of supplying sodium was also studied. Discs were incubated on water and on 10% sucrose solution. Changes in free amino nitrogen and carbohydrate in comparable uninfected leaf discs, before and after incubation, were also measured. Potassium deficiency resulted in more free amino nitrogen and soluble carbohydrate and less insoluble carbohydrate, per cm.2 of leaf. Spore germination was not greatly affected by treatments, though it was usually less on discs from potassium-deficient leaves. The pathogen grew slower on potassium-deficient leaf discs, whether they were incubated on water or on sucrose. Incubating discs from some leaves on sucrose, compared with water, gave greatly increased sugar content and less fungal growth; discs from other leaves had a much smaller increase in sugar, and hyphal length was similar to that on discs incubated on water. Sodium, when potassium was scarce, increased potassium deficiency symptoms, free amino nitrogen and sugar content, and resistance to powdery mildew.  相似文献   

17.
This study investigated whether uniconazole confers drought tolerance to soybean and if such tolerance is correlated with changes in photosynthesis, hormones and antioxidant system of leaves. Soybean plants were foliar treated with uniconazole at 50 mg L-1 at the beginning of bloom and then exposed to water deficit stress at pod initiation for 7 d. Uniconazole promoted biomass accumulation and seed yield under both water conditions. Plants treated with uniconazole showed higher leaf water potential only in water-stressed condition. Water stress decreased the chlorophyll content and photosynthetic rate, but those of uniconazole-treated plants were higher than the stressed control. Uniconazole increased the maximum quantum yield of photosystemand ribulose-1,5-bisphosphate carboxylase/oxygenase activity of water-stressed plants. Water stress decreased partitioning of assimilated 14C from labeled leaf to the other parts of the plant. In contrast, uniconazole enhanced translocation of assimilated 14C from labeled leaves to the other parts, except stems, regardless of water treatment. Uniconazole-treated plants contained less GA3, GA4 and ABA under well-watered condition than untreated plants, while the IAA and zeatin levels were increased substantially under both water conditions, and ABA concentration was also increased under water stressed condition. Under water-stressed conditions, uniconazole increased the content of proline and soluble sugars, and the activities of superoxide dismutase and peroxidase in soybean leaves but not the malondialdehyde content or electrical conductivity. These results suggest that uniconazole-induced tolerance to water deficit stress in soybean was related to the changes of photosynthesis, hormones and antioxidant system of leaves.  相似文献   

18.
Pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) plants were exposed to enhanced levels of UV-B radiation in a growth chamber. Leaf discs of UV-B treated and control plants were exposed to high-light (HL) stress (PAR: 1200 mol m–2 s–1) to study whether pre-treatment with UV-B affected the photoprotective mechanisms of the plants against photoinhibition. At regular time intervals leaf discs were taken to perform chlorophyll a fluorescence and oxygen evolution measurements to assess damage to the photosystems. Also, after 1 h of HL treatment the concentration of xanthophyll cycle pigments was determined. A significantly slower decline of maximum quantum efficiency of PSII (F v/F m), together with a slower decline of oxygen evolution during HL stress was observed in leaf discs of UV-B treated plants compared to controls in both plant species. This indicated an increased tolerance to HL stress in UV-B treated plants. The total pool of xanthophyll cycle pigments was increased in UV-B treated pea plants compared to controls, but in bean no significant differences were found between treatments. However, in bean plants thiol concentrations were significantly enhanced by UV-B treatment, and UV-absorbing compounds increased in both species, indicating a higher antioxidant capacity. An increased leaf thickness, together with increases in antioxidant capacity could have contributed to the higher protection against photoinhibition in UV-B treated plants.  相似文献   

19.
Water deficit is a very serious constraint on N2 fixation rates and grain yield of soybean (Glycine max Merr.). Ureides are transported from the nodules and they accumulate in the leaves during soil drying. This accumulation appears responsible for a feedback mechanism on nitrogen fixation, and it is hypothesized to result from a decreased ureide degradation in the leaf. One enzyme involved in the ureide degradation, allantoate amidohydrolase, is manganese (Mn) dependent. As Mn deficiency can occur in soils where soybean is grown, this deficiency may aggravate soybean sensitivity to water deficit. In situ ureide breakdown was measured by incubating soybean leaves in a 5 mol m ? 3 allantoic acid solution for 9 h before sampling leaf discs in which remnant ureide was measured over time. In situ ureide breakdown was dramatically decreased in leaves from plants grown without Mn. At the plant level, allantoic acid application in the nutrient solution of hydroponically grown soybean resulted in a higher accumulation of ureide in leaves and lower acetylene reduction activity (ARA) by plants grown with 0 mol m ? 3 Mn than those grown with 6·6 mol m ? 3 Mn. Those plants grown with 6·6 mol m ? 3 Mn in comparison with those grown with 52·8 mol m ? 3 Mn had, in turn, higher accumulated ureide and lower ARA. To determine if Mn level also influenced N2 fixation sensitivity to water deficit, a dry‐down experiment was carried out by slowly dehydrating plants that were grown in soil under four different Mn nutritions. Plants receiving no Mn had the lowest leaf Mn concentration, 11·9 mg kg ? 1, and had N2 fixation more sensitive to water deficit than plants treated with Mn in which leaf Mn concentration was in the range of 21–33 mg kg ? 1. The highest Mn treatments increased leaf Mn concentration to 37·5 mg kg ? 1 and above but did not delay the decline of ARA with soil drying, although these plants showed a significant increase in ARA under well‐watered conditions.  相似文献   

20.
Previous studies indicate that methylated cyclitols are potentially important osmolytes in plants. In a search for genetic diversity for pinitol (D -3-O-methyl-chiro-inositol) accumulation in soybean (Glycine max (L.) Merr.), two- to three-fold differences in pinitol accumulation in leaf blades were found among Chinese plant introductions. Furthermore, it was found that genotypes that accumulated high concentrations of pinitol, when grown under well-watered conditions, had been selected for performance in regions of China having low rainfall. Among the carbohydrates analysed, pinitol accumulation was uniquely associated with adaptation to dry areas of China. A detailed study of pinitol accumulation in the soybean plant showed two- to three-fold gradients in pinitol concentration from the bottom to the top of the plant. The gradient shifted during plant development, with consistently higher concentrations of pinitol in the uppermost leaves. Pinitol accumulation was not correlated with activity of the key biosynthetic enzyme, inositol methyl transferase. This result and other lines of evidence indicated that shifting patterns of pinitol accumulation were due to translocation of the cyclitol from lower to upper nodes. Pinitol, proline, and sugars accumulated in leaf blades on soybean plants subjected to drought, but the molar concentration of pinitol in stressed plants was greater than the concentrations of proline or sugars. Although the mechanism by which pinitol participates in drought tolerance is not fully known, our results provide additional correlative evidence linking pinitol and drought tolerance in soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号