首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coprinellus congregatus generates several chitinases during its entire life cycle: at the growing hyphal stage and at the mushroom autolysis stage. We have isolated a chitinase gene (chi1) from the mushroom tissue at the autolysing stage, and constructed a chitinase expression vector to get large amount of enzyme protein. Chitinase 1 (chi1) cDNA was heterologously expressed in Saccharomyces cerevisiae by gal1 promoter. The transformants showed no specific change in growth characteristics under normal growth conditions. However the expression of the gene by the gal1 promoter in the yeast transformants resulted in complete growth inhibition, while laccase expression by the gal1 promoter showed normal growth. The chitinase activities from the transformants were also more than 3 times higher than that of the recipient strain, and the chitinase expression by the real time-PCR also showed increased expression of the chi1 in the yeast transformant. Expression of a chitinase which was produced at the mushroom autolysing stage of C. congregatus resulted in yeast growth inhibition.  相似文献   

2.
Fungal cell walls consist of various glucans and chitin. The inky cap, Coprinellus congregatus, produces mushrooms at 25°C in a regime of 15 h light/9 h dark, and then the mushroom is autolyzed rapidly to generate black liquid droplets in which no cell walls are detected by microscopy. Chitinase cDNA from the mature mushroom tissues of C. congregatus, which consisted of 1,622 nucleotides (chi2), was successfully cloned using the rapid amplification of cDNA ends polymerase chain reaction technique. The deduced 498 amino acid sequence of Chi2 had a conserved catalytic domain as in other fungal chitinase family 18 enzymes. The Chi2 enzyme was purified from the Pichia pastoris expression system, and its estimated molecular weight was 68 kDa. The optimum pH and temperature of Chi2 was pH 4.0 and 35°C, respectively when 4-nitrophenyl N,N′-diacetyl-β-D-chitobioside was used as the substrate. The K m value and V max for the substrate A, 4-nitrophenyl N,N′-diacetyl-β-D-chitobioside, was 0.175 mM and 0.16 OD min?1unit?1, respectively.  相似文献   

3.
Summary In this study flake chitin, crab shell chitin, mushroom stalk, fungal cell wall, wheat bran and rice bran were used as substrate for chitinase production by Enterobacter sp. NRG4 under submerged and solid state fermentation (SSF) conditions. Enterobacter sp. NRG4 produced 72 and 49.7 U/ml of chitinase in presence of cell walls of Candida albicans and Fusarium moniliforme in submerged fermentation. Under SSF, maximum chitinase production was 965 U/g solid substrate with flake chitin and wheat bran (1:3 ratio) at 75% moisture level after 144 h. The purified chitinase inhibited hyphal extension of Fusarium moniliforme, Aspergillus niger, Mucor rouxi and Rhizopus nigricans. The chitinase was effective in release of protoplasts from Trichoderma ressei, Pleurotus florida, Agaricus bisporus and Aspergillus niger. Protoplasts yield was maximum with 60 mg of 24 h old fungal mycelium incubated with 60 U of chitinase and 60 U of cellulase.  相似文献   

4.
5.
6.
7.
Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na+, Mg2+, Cu2+, and Ca2+ caused enhancement of enzyme activities whereas they were markedly inhibited by Zn2+, Hg2+, and Ag+. In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.  相似文献   

8.
A family 18 chitinase gene chiA from the thermophile Rhodothermus marinus was cloned and expressed in Escherichia coli. The gene consisted of an open reading frame of 1,131 nucleotides encoding a protein of 377 amino acids with a calculated molecular weight of 42,341 Da. The deduced ChiA was a non-modular enzyme with one unique glycoside hydrolase family 18 catalytic domain. The catalytic domain exhibited 43% amino acid identity with Bacillus circulans chitinase C. Due to poor expression of ChiA, a signal peptide-lacking mutant, chiAsp, was designed and used subsequently. The optimal temperature and pH for chitinase activity of both ChiA and ChiAsp were 70°C and 4.5–5, respectively. The enzyme maintained 100% activity after 16 h incubation at 70°C, with half-lives of 3 h at 90°C and 45 min at 95°C. Results of activity measurements with chromogenic substrates, thin-layer chromatography, and viscosity measurements demonstrated that the chitinase is an endoacting enzyme releasing chitobiose as a major end product, although it acted as an exochitobiohydrolase with chitin oligomers shorter than five residues. The enzyme was fully inhibited by 5 mM HgCl2, but excess ethylenediamine tetraacetic acid relieved completely the inhibition. The enzyme hydrolyzed 73% deacetylated chitosan, offering an attractive alternative for enzymatic production of chitooligosaccharides at high temperature and low pH. Our results show that the R. marinus chitinase is the most thermostable family 18 chitinase isolated from Bacteria so far.  相似文献   

9.
10.
Extracellular chitinase production by the entomopathogenic fungus, Isaria fumosorosea IF28.2 was studied by using submerged fermentation. Maximum chitinase production (178.34±3.91 mU/mL) was obtained when fermentation was carried out at 25°C for 120 h using 72-h-old mycelium in a medium. The effect of inoculum size on chitinase activity was also observed and maximum chitinase activity (159.41±2.91 mU/mL) was obtained with an inoculum size of 3 discs while an incubation period of 96 h proved the most active inducer of chitinase production yielding a chitinase activity of 186.14±3.81 mU/mL. Colloidal chitin (1.5%, w/v) proved to be the best concentration. The optimum pH for chitinase production was 5.7 while 25°C proved to be the best temperature for chitinase production. Supplementation of additional carbon source like 1.5% N-acetylglucosamine (GlcNAc) showed further enhancement in chitinase production. The divalent metal salts, CaCl2, MgCl2 and ZnSO4, inhibited chitinase activity at 10 and 100 mM concentration, whereas inhibition of chitinase activity by KCl, FeSO4 and EDTA was observed only at higher concentrations. The results presented in this study increase the knowledge on chitinase production in I. fumosoroseus opening new avenues for the study of the role of this enzyme in virulence against different insect pests during the infection process.  相似文献   

11.
12.
A chitinase producing bacterium Enterobacter sp. NRG4, previously isolated in our laboratory, has been reported to have a wide range of applications such as anti-fungal activity, generation of fungal protoplasts and production of chitobiose and N-acetyl D-glucosamine from swollen chitin. In this paper, the gene coding for Enterobacter chitinase has been cloned and expressed in Escherichia coli BL21(DE3). The structural portion of the chitinase gene comprised of 1686 bp. The deduced amino acid sequence of chitinase has high degree of homology (99.0%) with chitinase from Serratia marcescens. The recombinant chitinase was purified to near homogeneity using His-Tag affinity chromatography. The purified recombinant chitinase had a specific activity of 2041.6 U mg−1. It exhibited similar properties pH and temperature optima of 5.5 and 45°C respectively as that of native chitinase. Using swollen chitin as a substrate, the Km, kcat and catalytic efficiency (kcat/Km) values of recombinant chitinase were found to be 1.27 mg ml−1, 0.69 s−1 and 0.54 s−1M−1 respectively. Like native chitinase, the recombinant chitinase produced medicinally important N-acetyl D-glucosamine and chitobiose from swollen chitin and also inhibited the growth of many fungi.  相似文献   

13.
The chitinase gene of Manduca sexta was cloned into the expression vector, pET-28a, and expressed in Escherichia coli BL21 (DE3) host cells. The protein product was expressed in inclusion bodies. After denaturation and renaturation procedures using a Ni2+-NTA affinity chromatography column, soluble chitinase was obtained. The authenticity of the renatured protein was confirmed by Western blotting. Polyclonal antibodies to the purified protein were raised in rabbits. The antibody reacted specifically with the expressed chitinase and was used to quantify its presence in transgenic cotton being developed to resist attack by various insects.Revisions requested 24 September 2004; Revisions received 18 November 2004  相似文献   

14.
A chitinase-producing bacterium was isolated from seashore mud around Beobseongpo in Chunmam province through the use of a selective enrichment culture. The best chitinase producing strain was isolated and identified asSerratia marcescens KY from its characteristics. For effective production of chitinase, optimum pH, temperature, and agitation speed were investigated in flask cultures. The optimum pH usingSerratia marcescens KY was between pH 6 and 7 and the chitinase produced was 37.9 unit/mL. On the other hand, the optimal pH of theSerratia marcescens ATCC 27117 was 7.5, and the produced amount of chitinase was 35.2 unit/mL. The optimal temperature for chitinase production forSerratia marcescens KY andSerratia marcescens ATCC 27117 was 30°C. The cell growth pattern at different temperature was almost identical to the chitinase production. To investigate the optimal shaking speed under optimal culture, speeds were varied in the range of 0≈300 rpm. The maximum production of chitinase was carried at 200 rpm although the cell growth was the highest at 150 rpm. It indicates that oxygen adjustment is required for the maximum chitinase production. Using optimal conditions, batch cultures for comparingSerratia marcescens KY andSerratia marcescens ATCC 27117 were carried out in a 5 L fermentor. The oxygen consumption was increased with the increase of culture. Especially, at 120 h of cultureSerratia marcescens KY andSerratia marcescens ATCC 27117 produced 38.3 unit/mL, and 33.5 unit/mL, respectively.  相似文献   

15.
An exogenous chitinase from Streptomyces griseus was introduced into coleoptile epidermal cells of barley (Hordeum vulgare) by microinjection, and the effect of injected chitinase on the growth or development of the powdery mildew pathogen (Erysiphe graminis f. sp. hordei) was examined. Prior to microinjection, an enzymatic degradation of fungal haustorium, the organ taking nutrients from host plant cells, was examined by treating fixed coleoptile epidermis harboring haustoria with this enzyme. The result showed that haustoria were effectively digested by chitinase, suggesting the effectiveness of chitinase treatment for suppressing the fungal development. Microinjection of chitinase was conducted using living coleoptile tissues inoculated with the pathogen. Epidermal cells in which the haustorial primordia had been formed, or in which the haustoria had matured, were selected as targets for injection. The result clearly indicated that injection at the stage of primordium formation was effective in completely digesting haustoria and suppressing the subsequent formation of secondary hyphae of the pathogen. In microinjection after haustorial maturation, hyphal elongation was considerably suppressed though there was no detectable morphological change in the haustoria. Thus, the present study provides the experimental basis for genetically manipulating barley to produce transgenic plants resistant to the powdery mildew disease.  相似文献   

16.
Three white strains of mushroom were grown for quality assessment tests, a commercial Agaricus bisporus strain SOMYCEL U3 currently popular in most major mushroom producing countries and two tropical Agaricus bitorquis strains, ATCC 32675 and AGC W20. Mushrooms were harvested as stage 2 mushrooms (closed buttons with universal veil intact) and stored at 18°C (± 0.5°C) for 5 days during which time colour development, the rate of fruitbody maturation and weight loss were assessed. Throughout the storage period, a reflectance colormeter was used to monitor colour changes on the tops and sides of mushroom fruitbodies. The tops of both A. bitorquis strains were significantly more yellow than the A. bisporus strain, whereas the sides were significantly less yellow. Overall, the A. birorquis strain AGC W20 was clearly the least discoloured and least yellow at the time of harvest. Although all the three strains tested gave similar fresh weight losses during storage, i.e. approximately 10% per day, ATCC 32675 exhibited a very slow maturation rate. Both U3 and AGC W20 matured at a similar much faster rate forming open cups within the 5 day storage period. ATCC 32675 also showed the least increase in the degree of discolouration with time, whether readings were taken from the sides or tops of mushrooms. A breeding programme to combine the most salient features of AGC W20 (an intensely white mushroom at harvest, high yielding with distinct flush pattern) and ATCC 32675 (very slow maturation rate during storage) is suggested.  相似文献   

17.
A chitinase gene belonging to the glycoside hydrolase family 19 from Vibrio proteolyticus (chi19) was cloned. The recombinant enzyme (Chi19) showed weak activities against polymeric substrates and considerable activities against fully N-acetylated chitooligosaccharides, (GlcNAc) n , whose degree of polymerization was greater than or equal to five. It hydrolyzed (GlcNAc) n at the second linkage position from the reducing ends of the chitooligosaccharides. The hydrolytic products of colloidal chitin were mainly (GlcNAc)2 from the initial stage of the reaction. The hydrolytic pattern of reduced colloidal chitin clearly suggested that the enzyme hydrolyzed the polymeric substrate from the reducing end.  相似文献   

18.
Chitinase-A (EaChiA), molecular mass 36 kDa, was purified from the vegetative stems of a horsetail (Equisetum arvense) using a series of column chromatography. The N-terminal amino acid sequence of EaChiA was similar to the lysin motif (LysM). A cDNA encoding EaChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1320 nucleotides and encoded an open reading frame of 361 amino acid residues. The deduced amino acid sequence indicated that EaChiA is composed of a N-terminal LysM domain and a C-terminal plant class IIIb chitinase catalytic domain, belonging to the glycoside hydrolase family 18, linked by proline-rich regions. EaChiA has strong chitin-binding activity, however, no antifungal activity. This is the first report of a chitinase from Equisetopsida, a class of fern plants, and the second report of a LysM-containing chitinase from a plant.  相似文献   

19.
20.
Breast regression protein (BRP39) is a glycoprotein, which is expressed during mammary gland involution in mouse. The physiological function of BRP39 is not known. High levels of expression of BRP39 have also been associated with breast cancer development. In the present investigation a cDNA encoding rBRP39 (recombinant BRP39) was cloned by PCR techniques. It consists of 1,143 nucleotides and encodes an open reading frame of 381 amino acid residues including a signal sequence of 21 amino acids. Recombinant BRP39 was produced in E. coli in a soluble form at low temperature (15 °C). Expression and purification of rBRP39 was confirmed by western blot analysis. Purified rBRP39 showed high chitin-binding activity but no chitinase activity. The lack of chitinase activity may be attributed to the mutation of critical active site residue Glu120 to Leu120 and Asp118 to Ala118 in BRP39. However, a mutant in which the residue was reverted back to Glu, by site directed mutagenesis, displayed no chitinase activity. Purified recombinant BRP39 was crystallized and the crystals diffracted X-rays to 2.8 Å resolution. The crystals belonged to the space group C2 with unit cell parameters a = 130.4 Å, b = 81.3 Å, c = 229.2 Å, β = 105.9°. The structure refinement is in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号