首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrous oxide reductase from Wolinella succinogenes, an enzyme containing one heme c and four Cu atoms/subunit of Mr = 88,000, was studied by electron paramagnetic resonance (EPR) at 9.2 GHz from 6 to 80 K. In the oxidized state, low spin ferric cytochrome c was observed with gz = 3.10 and an axial Cu resonance was observed with g parallel = 2.17 and g perpendicular = 2.035. No signals were detected at g values greater than 3.10. For the Cu resonance, six hyperfine lines each were observed in the g parallel and g perpendicular regions with average separations of 45.2 and 26.2 gauss, respectively. The hyperfine components are attributed to Cu(I)-Cu(II) S = 1/2 (half-met) centers. Reduction of the enzyme with dithionite caused signals attributable to heme c and Cu to disappear; exposure of that sample to N2O for a few min caused the reappearance of the g = 3.10 component and a new Cu signal with g parallel = 2.17 and g perpendicular = 2.055 that lacked the simple hyperfine components attributed to a single species of half-met center. The enzyme lost no activity as the result of this cycle of reduction and reoxidation. EPR provided no evidence for a Cu-heme interaction. The EPR detectable Cu in the oxidized and reoxidized forms of the enzyme comprised about 23 and 20% of the total Cu, respectively, or about one spin/subunit. The enzyme offers the first example of a nitrous oxide reductase which can have two states of high activity that present very different EPR spectra of Cu. These two states may represent enzyme in two different stages of the catalytic cycle.  相似文献   

2.
The low-temperature S2-state EPR signal at g = 4 from the oxygen-evolving complex (OEC) of spinach Photosystem-II-enriched membranes is examined at three frequencies, 4 GHz (S-band), 9 GHz (X-band) and 16 GHz (P-band). While no hyperfine structure is observed at 4 GHz, the signal shows little narrowing and may mask underlying hyperfine structure. At 16 GHz, the signal shows g-anisotropy and a shift in g-components. The middle Kramers doublet of a near rhombic S = 5/2 system is found to be the only possible origin consistent with the frequency dependence of the signal. Computer simulations incorporating underlying hyperfine structure from an Mn monomer or dimer are employed to characterize the system. The low zero field splitting (ZFS) of D = 0.43 cm-1 and near rhombicity of E/D = 0.25 lead to the observed X-band g value of 4.1. Treatment with F- or NH3, which compete with Cl- for a binding site, increases the ZFS and rhombicity of the signal. These results indicate that the origin of the OEC signal at g = 4 is either an Mn(II) monomer or a coupled Mn multimer. The likelihood of a multimer is favored over that of a monomer.  相似文献   

3.
We have studied the Fe protein (Av2) of the Azotobacter vinelandii nitrogenase system with M?ssbauer and EPR spectroscopies and magnetic susceptometry. In the oxidized state the protein exhibits M?ssbauer spectra typical of diamagnetic [4Fe-4S]2+ clusters. Addition of Mg.ATP or Mg.ADP causes a pronounced decline in the quadrupole splitting of the M?ssbauer spectra of the oxidized protein. Our studies show that reduced Av2 in the native state is heterogeneous. Approximately half of the molecules contain a [4Fe-4S]1+ cluster with electronic spin S = 1/2 and half contain a [4Fe-4S]1+ cluster with spin S = 3/2. The former yields the characteristic g = 1.94 EPR signal whereas the latter exhibits signals around g = 5. The magnetization of reduced Av2 is dominated by the spin S = 3/2 form of its [4Fe-4S]1+ clusters. These results explain a long standing puzzle, namely why the integrated spin intensity of the g = 1.94 EPR signal is substantially less than 1 spin/4 Fe atoms. In 50% ethylene glycol, 90% of the clusters are in the spin S = 1/2 form whereas, in 0.4 M urea, 85% are in the S = 3/2 form. In 0.4 M urea, the EPR spectrum of reduced Av2 exhibits well defined resonances at g = 5.8 and 5.15, which we assign to the S = 3/2 system. The EPR and M?ssbauer studies yield a zero-field splitting of 2D approximately equal to -5 cm-1 for this S = 3/2 state.  相似文献   

4.
Cytochrome c1aa3 from Thermus thermophilus has optical and EPR properties similar to bovine cytochrome c oxidase. We have studied 87Fe-enriched samples with M?ssbauer spectroscopy in the fully oxidized and fully reduced states and in the oxidized state complexed with cyanide. The cytochromes a and c1 yielded spectra quite similar to those reported for the cytochromes c and b5; in the oxidized state the spectra reflect noninteracting, low spin ferric hemes, whereas the a- and c1-sites of the reduced enzyme are typical of low spin ferrous hemochromes. The spectra of the reduced enzyme show that reduced cytochrome a3 is high spin ferrous, with M?ssbauer parameters quite similar to those of deoxymyoglobin. Upon addition of cyanide to the oxidized enzyme, the a3-site exhibits in the absence of an applied magnetic field and at temperatures down to 1.3 K a quadrupole doublet with parameters typical of low spin ferric heme-CN complexes. The low temperature spectra taken in applied magnetic fields show that the electronic ground state of the a3-CN complex has integer electronic spin, suggesting ferromagnetic coupling of the low spin ferric heme (S = 1/2) to Cu2+ (S = 1/2) to yield as S = 1 ground state. We have examined the oxidized enzyme from two different preparations. Both had good activity and identical optical and EPR spectra. The M?ssbauer spectra, however, revealed that the a3-site had a substantially different electronic structure in the two preparations. Neither configuration had properties in accord with the widely accepted spin-coupling model proposed for the bovine enzyme.  相似文献   

5.
The parallel polarization electron paramagnetic resonance (EPR) method has been applied to investigate manganese EPR signals of native S1 and S3 states of the water oxidizing complex (WOC) in photosystem (PS) II. The EPR signals in both states were assigned to thermally excited states with S=1, from which zero-field interaction parameters D and E were derived. Three kinds of signals, the doublet signal, the singlet-like signal and g=11-15 signal, were detected in Ca2+-depleted PS II. The g=11-15 signal was observed by parallel and perpendicular modes and assigned to a higher oxidation state beyond S2 in Ca2+-depleted PS II. The singlet-like signal was associated with the g=11-15 signal but not with the Y(Z) (the tyrosine residue 161 of the D1 polypeptide in PS II) radical. The doublet signal was associated with the Y(Z) radical as proved by pulsed electron nuclear double resonance (ENDOR) and ENDOR-induced EPR. The electron transfer mechanism relevant to the role of Y(Z) radical was discussed.  相似文献   

6.
Ferredoxin II from Desulphovibrio gigas is a tetrameric protein containing a novel iron-sulphur cluster consisting of three iron atoms. The low-temperature magnetic circular dichroism (MCD) spectra of the oxidized and dithionite-reduced forms of ferredoxin II have been measured over the wavelength range approx. 300-800 nm. Both oxidation levels of the cluster are shown to be paramagnetic, although only the oxidized form gives an EPR signal. MCD magnetization curves have been constructed over the temperature range approx. 1.5-150 K and at fields between 0 and 5.1 Tesla. The curve for the oxidized protein can be fitted to a ground state of spin S = 1/2 with an isotropic g factor of 2.01. There is evidence for the thermal population of a low-lying electronic state above 50 K. The reduced protein gives a distinctive set of magnetization curves that are tentatively assigned to a ground state of S = 2, with a predominantly axial zero-field distortion that leaves the doublet Ms = +/-2 lowest in energy. The zero-field components have a maximum energy spread of approx. 15 cm-1. which places an upper limit of 4 cm-1 on the axial zero-field parameter D. The MCD spectra of the oxidized and reduced forms of the cluster are quite distinctive from one another. The spectra of the oxidized state are also different from those of oxidized high-potential iron protein from Chromatium and should provide a useful criterion for distinguishing between four- and three-iron clusters in their highest oxidation levels.  相似文献   

7.
M Tsubaki  Y Ichikawa  Y Fujimoto  N T Yu  H Hori 《Biochemistry》1990,29(37):8805-8812
Cytochrome P-45011 beta was purified as the 11-deoxycorticosterone-bound form from bovine adrenocortical mitochondria and its active site was investigated by resonance Raman and EPR spectroscopies. Resonance Raman spectra of the purified sample revealed that the heme iron adopts the pure pentacoordinated ferric high-spin state on the basis of the nu 10 (1629cm-1) and nu 3 (1490 cm-1) mode frequencies, which are higher than those of the hexacoordinated ferric high-spin cytochrome P-450scc-substrate complexes. In the ferrous-CO state, a Fe2(+)-CO stretching mode was identified at 481.5 cm-1 on the basis of an isotopic substitution technique; this frequency is very close to that of cytochrome P-450scc in the cholesterol-complexed state (483 cm-1). The EPR spectra of the purified sample at 4.2 K showed ferric high-spin signals (at g = 7.98, 3.65, and 1.71) that were clearly distinct from the cytochrome P-450scc ferric high-spin signals (g = 8.06, 3.55, and 1.68) and confirmed previous assignments of ferric high-spin signals in adrenocortical mitochondria. The EPR spectra of the nitric oxide (NO) complex of ferrous cytochrome P-45011 beta showed EPR signals with rhombic symmetry (gx = 2.068, gz = 2.001, and gy = 1.961) very similar to those of the ferrous cytochrome P-450scc-NO complex in the presence of 22(S)-hydroxycholesterol and 20(R),22-(R)-dihydroxycholesterol at 77 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A major challenge in understanding the mechanism of nitrogenase, the enzyme responsible for the biological fixation of N(2) to two ammonias, is to trap a nitrogenous substrate at the enzyme active site in a state that is amenable to further characterization. In the present work, a strategy is described that results in the trapping of the substrate hydrazine (H(2)N-NH(2)) as an adduct bound to the active site metal cluster of nitrogenase, and this bound adduct is characterized by EPR and ENDOR spectroscopies. Earlier work has been interpreted to indicate that nitrogenous (e.g., N(2) and hydrazine) as well as alkyne (e.g., acetylene) substrates can bind at a common FeS face of the FeMo-cofactor composed of Fe atoms 2, 3, 6, and 7. Substitution of alpha-70(Val) that resides over this FeS face by the smaller amino acid alanine was also previously shown to improve the affinity and reduction rate for hydrazine. We now show that when alpha-195(His), a putative proton donor near the active site, is substituted by glutamine in combination with substitution of alpha-70(Val) by alanine, and the resulting doubly substituted MoFe protein (alpha-70(Ala)/alpha-195(Gln)) is turned over with hydrazine as substrate, the FeMo-cofactor can be freeze-trapped in a S = (1)/(2) state in high yield ( approximately 70%). The presumed hydrazine-FeMo-cofactor adduct displays a rhombic EPR signal with g = [2.09, 2.01, 1.93]. The optimal pH for the population of this state was found to be 7.4. The EPR signal showed a Curie law temperature dependence similar to the resting state EPR signal. Mims pulsed ENDOR spectroscopy at 35 GHz using (15)N-labeled hydrazine reveals that the trapped intermediate incorporates a hydrazine-derived species bound to the FeMo-cofactor; in spectra taken at g(1) this species gives a single observed (15)N signal, A(g(1)) = 1.5 MHz.  相似文献   

9.
The complex of cytochrome c oxidase with NO and azide has been studied by EPR at 9.2 and 35 GHz. This complex which shows delta ms = 2 EPR triplet and strong anisotropic signals, due to the interaction of cytochrome a2+3 X NO (S = 1/2) and Cu2+B (S = 1/2), is photodissociable . Its action spectrum is similar to that of cytochrome a2+3 X NO with bands at 430, 560 and 595 nm, but shows an additional band in the near ultraviolet region. The quantum yield of the photodissociation process of cytochrome a2+3 X NO in the metal pair appears to depend on the redox state of CuB. When the photolysed sample was warmed to 77 K, a complex was observed with the EPR parameters of cytochrome a3+3 - N-3 - Cu1 +B (S = 1/2). This process of electron and ligand transfer can be reversed by heating the sample to 220 K. It is suggested that in the triplet species azide is bound to Cu2+B whereas NO is bridged between Cu2+B and the haem iron of the cytochrome a2+3. The complex has a triplet ground state and a singlet excited state with an exchange interaction J = -7.1 cm-1 between both spins. The anisotropy in the EPR spectra is mainly due to a magnetic dipole-dipole interaction between cytochrome a2+3 X NO and Cu2+B. From simulations of the triplet EPR spectra obtained at 9 and 35 GHz, a value for the distance between the nitroxide radical and Cu2+B of 0.33 nm was found. A model of the NO binding in the cytochrome a3-Cu pair shows a distance between the haem iron of cytochrome a3 and CuB of 0.45 nm. It is concluded that the cytochrome a3-CuB pair forms a cage in which the dioxygen molecule is bidentate coordinated to the two metals during the catalytic reaction.  相似文献   

10.
The putative [6Fe-6S] prismane cluster in the 6-Fe/S-containing protein from Desulfovibrio vulgaris, strain Hildenborough, has been enriched to 80% in 57Fe, and has been characterized in detail by S-, X-, P- and Q-band EPR spectroscopy, parallel-mode EPR spectroscopy and high-resolution 57Fe M?ssbauer spectroscopy. In EPR-monitored redox-equilibrium titrations, the cluster is found to be capable of three one-electron transitions with midpoint potentials at pH 7.5 of +285, +5 and -165 mV. As the fully reduced protein is assumed to carry the [6Fe-6S]3+ cluster, by spectroscopic analogy to prismane model compounds, four valency states are identified in the titration experiments: [6Fe-6S]3+, [6Fe-6S]4+, [6Fe-6S]5+, [6Fe-6S]6+. The fully oxidized 6+ state appears to be diamagnetic at low temperature. The prismane protein is aerobically isolated predominantly in the one-electron-reduced 5+ state. In this intermediate state, the cluster exists in two magnetic forms: 10% is low-spin S = 1/2; the remainder has an unusually high spin S = 9/2. The S = 1/2 EPR spectrum is significantly broadened by ligand (2.3 mT) and 57Fe (3.0 mT) hyperfine interaction, consistent with a delocalization of the unpaired electron over 6Fe and indicative of at least some nitrogen ligation. At 35 GHz, the g tensor is determined as 1.971, 1.951 and 1.898. EPR signals from the S = 9/2 multiplet have their maximal amplitude at a temperature of 12 K due to the axial zero-field splitting being negative, D approximately -0.86 cm-1. Effective g = 15.3, 5.75, 5.65 and 5.23 are observed, consistent with a rhombicity of [E/D] = 0.061. A second component has g = 9.7, 8.1 and 6.65 and [E/D] = 0.108. When the protein is reduced to the 4+ intermediate state, the cluster is silent in normal-mode EPR. An asymmetric feature with effective g approximately 16 is observed in parallel-mode EPR from an integer spin system with, presumably, S = 4. The fully reduced 3+ state consists of a mixture of two S = 1/2 ground state. The g tensor of the major component is 2.010, 1.825 and 1.32; the minor component has g = 1.941 and 1.79, with the third value undetermined. The sharp line at g = 2.010 exhibits significant convoluted hyperfine broadening from ligands (2.1 mT) and from 57Fe (4.6 mT). Zero-field high-temperature M?ssbauer spectra of the protein, isolated in the 5+ state, quantitatively account for the 0.8 fractional enrichment in 57Fe, as determined with inductively coupled plasma mass spectrometry.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
We have recently shown (Lindahl, P. A., Day, E. P., Kent, T. A., Orme-Johnson, W. H., and Münck, E. (1985) J. Biol. Chem. 260, 11160-11173) that the [4Fe-4S]1+ cluster of the native Fe protein can exist in two forms characterized by different cluster spin: an S = 1/2 state exhibiting a g = 1.94 type EPR signal and an S = 3/2 state yielding signals at g approximately 5.8 and 5.1. We have now extended our study of the Fe protein to include the MgATP- and MgADP-bound forms. The [4Fe-4S]1+ cluster of the nucleotide-bound Fe protein exists in a similar S = 1/2, S = 3/2 spin mixture. The S = 3/2 cluster exhibits a broad EPR signal at g approximately 4.8. In spectra of the MgATP-bound protein, we have also observed a g = 4.3 signal from an S = 5/2 state (D = 1 - 3 cm-1, E/D approximately 0.32). Various experiments strongly suggest that this signal does not originate from adventitiously bound Fe3+. The g = 4.3 signal may arise from approximately 2% of the [4Fe-4S]1+ clusters when MgATP is protein-bound. We have also discovered substoichiometric amounts of what appears to be ADP in some nominally nucleotide-free Fe protein samples. MgATP binds to Fe protein in the presence of perturbing solvents, resulting in EPR spectra similar to those of MgATP-bound samples in aqueous solutions; MgADP binding, on the other hand, results in signals more typical of the solvent state. Spectra of samples frozen during turnover of the nitrogenase system exhibit a mixture of spin states. Characterization of the Fe protein EPR signature described here should aid future mechanistic and nucleotide-binding studies.  相似文献   

12.
O2-activated bovine heart cytochrome c oxidase has been examined by dual-mode EPR spectrometry. Resonances have been observed at g = 10 and 4.5 in the parallel mode and at g = 10, 5, 1.8 and 1.7 in the normal mode. The bulk of these signals are interpreted to come from a stoichiometric S = 2 system with magnitude of a = 0.17 cm-1, D = +2.1 cm-1, magnitude of E = 0.026 cm-1, g = 2. Exchange coupling between cytochrome a3 and CuB is not indicated.  相似文献   

13.
The nitrogenase MoFe protein contains the active site metallocluster called FeMo-cofactor [7Fe-9S-Mo-homocitrate] that exhibits an S = 3/2 EPR signal in the resting state. No interaction with FeMo-cofactor is detected when either substrates or inhibitors are incubated with MoFe protein in the resting state. Rather, the detection of such interactions requires the incubation of the MoFe protein together with its obligate electron donor, called the Fe protein, and MgATP under turnover conditions. This indicates that a more reduced state of the MoFe protein is required to accommodate substrate or inhibitor interaction. In the present work, substitution of an arginine residue (alpha-96(Arg)) located next to the active site FeMo-cofactor in the MoFe protein by leucine, glutamine, alanine, or histidine is found to result in MoFe proteins that can interact with acetylene or cyanide in the as-isolated, resting state without the need for the Fe protein, or MgATP. The dithionite-reduced, resting states of the alpha-96(Leu)-, alpha-96(Gln)-, alpha-96(Ala)-, or alpha-96(His)-substituted MoFe proteins show an S = 3/2 EPR signal (g = 4.26, 3.67, 2.00) similar to that assigned to FeMo-cofactor in the wild-type MoFe protein. However, in contrast to the wild-type MoFe protein, the alpha-96-substituted MoFe proteins all exhibit changes in their EPR spectra upon incubation with acetylene or cyanide. The alpha-96(Leu)-substituted MoFe protein was representative of the other alpha-96-substituted MoFe proteins examined. The incubation of acetylene with the alpha-96(Leu) MoFe protein decreased the intensity of the normal FeMo-cofactor signal with the appearance of a new EPR signal having inflections at g = 4.50 and 3.50. Incubation of cyanide with the alpha-96(Leu) MoFe protein also decreased the FeMo-cofactor EPR signal with concomitant appearance of a new EPR signal having an inflection at g = 4.06. The acetylene- and cyanide-dependent EPR signals observed for the alpha-96(Leu)-substituted MoFe protein were found to follow Curie law 1/T dependence, consistent with a ground-state transition as observed for FeMo-cofactor. The microwave power dependence of the EPR signal intensity is shifted to higher power for the acetylene- and cyanide-dependent signals, consistent with a change in the relaxation properties of the spin system of FeMo-cofactor. Finally, the alpha-96(Leu)-substituted MoFe protein incubated with (13)C-labeled cyanide displays a (13)C ENDOR signal with an isotropic hyperfine coupling of 0.42 MHz in Q-band Mims pulsed ENDOR spectra. This indicates the existence of some spin density on the cyanide, and thus suggests that the new component of the cyanide-dependent EPR signals arise from the direct bonding of cyanide to the FeMo-cofactor. These data indicate that both acetylene and cyanide are able to interact with FeMo-cofactor contained within the alpha-96-substituted MoFe proteins in the resting state. These results support a model where effective interaction of substrates or inhibitors with FeMo-cofactor occurs as a consequence of both increased reactivity and accessibility of FeMo-cofactor under turnover conditions. We suggest that, for the wild-type MoFe protein, the alpha-96(Arg) side chain acts as a gatekeeper, moving during turnover in order to permit accessibility of acetylene or cyanide to a specific [4Fe-4S] face of FeMo-cofactor.  相似文献   

14.
1. The major EPR signals from native and cytochrome c-reduced beef heart cytochrome c oxidase (EC 1.9.3.1) are characterized with respect to resonance parameters, number of components and total integrated intensity. A mistake in all earlier integrations and simulations of very anisotropic EPR signals is pointed out. 2. The so-called Cu2+ signal is found to contain at least three components, one "inactive" form and two nearly similar active forms. One of the latter forms, corresponding to about 20% of the total EPR detectable Cu, has not been observed earlier and can only be resolved in 35 GHz spectra. It is not reduced by cytochrome c and is thought to reflect some kind of inhomogeneity in the enzyme preparation. The 35 GHz spectrum of the cytochrome c reducible component shows a rhombic splitting and can be well simulated with g-values 2.18, 2.03 and 1.99. The origin of such a unique type of Cu2+ spectrum is discussed. 3. The low-spin heme signal in the oxidized enzyme (g = 3.03, 2.21, 1.45) is found to correspond closely to one heme and shows no signs of interaction with other paramagnetic centres. 4. The high-spin heme signals appearing in partly reduced oxidase are found to consist of at least three species, one axial and two rhombic types. An integration procedure is described that allows the determination of the total integral intensity of high-spin heme EPR signals only by considering the g = 6 part of the signals. In a titration with ascorbate and cytochrome c the maximum intensity of the g = 6 species corresponds to 23% of the enzyme concentration.  相似文献   

15.
EPR characteristics of cytochrome c1, cytochromes b-565 and b-562, the iron-sulfur cluster, and an antimycin-sensitive ubisemiquinone radical of purified cytochrome b-c1 complex of Rhodobacter sphaeroides have been studied. The EPR specra of cytochrome c1 shows a signal at g = 3.36 flanked with shoulders. The oxidized form of cytochrome b-562 shows a broad EPR signal at g = 3.49, while oxidized cytochrome b-565 shows a signal at g = 3.76, similar to those of two b cytochromes in the mitochondrial complex. The distribution of cytochromes b-565 and b-562 in the isolated complex is 44 and 56%, respectively. Antimycin and 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone (DBMIB) have little effect on the g = 3.76 signal, but they cause a slight downfield and upfield shifts of the g = 3.49 signal, respectively. 5-Undecyl-6-hydroxyl-4,7-dioxobenzothiazole (UHDBT) shifts the g = 3.49 signal downfield to g = 3.56 and sharpens the g = 3.76 signal slightly. Myxothiazol causes an upfield shift of both g = 3.49 and g = 3.76 signals. EPR characteristics of the reduced iron-sulfur cluster in bacterial cytochrome b-c1 complex are: gx = 1.8 with a small shoulder at g = 1.76, gy = 1.89 and gz = 2.02, similar to those observed with the mitochondrial enzyme. The gx = 1.8 signal decreased and the shoulder increased concurrently as the redox potential decreased, indicating that the environment of the iron-sulfur cluster is sensitive to the redox state of the complex. UHDBT sharpens the gz and and shifts it downfield from g = 2.02 to 2.03, and shifts gx upfield from g = 1.80 to 1.78. UHDBT also causes an upfield shift of gy but to a much lesser extent compared to the other two signals. Addition of DBMIB causes a downfield shift of the gy from 1.89 to 1.94 and broadens the gx signal with an upfield to g = 1.75. Myxothiazol and antimycin show little effect on the gy and gz signals, but they broaden and shift the gx signal upfield to g = 1.74. However, the myxothiazol effect is partially reversed by UHDBT. An antimycin-sensitive ubisemiquinone radical was detected in the cytochrome b-c1 complex. At pH 8.4, the antimycin-sensitive ubisemiquinone radical has a maximal concentration of 0.66 mol per mol complex at 100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
A novel iron-sulfur protein was purified from the extract of Desulfovibrio desulfuricans (ATCC 27774) to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a monomer of 57 kDa molecular mass. It contains comparable amounts of iron and inorganic labile sulfur atoms and exhibits an optical spectrum typical of iron-sulfur proteins with maxima at 400, 305, and 280 nm. M?ssbauer data of the as-isolated protein show two spectral components, a paramagnetic and a diamagnetic, of equal intensity. Detailed analysis of the paramagnetic component reveals six distinct antiferromagnetically coupled iron sites, providing direct spectroscopic evidence for the presence of a 6Fe cluster in this newly purified protein. One of the iron sites exhibits parameters (delta EQ = 2.67 +/- 0.03 mm/s and delta = 1.09 +/- 0.02 mm/s at 140 K) typical for high spin ferrous ion; the observed large isomer shift indicates an iron environment that is distinct from the tetrahedral sulfur coordination commonly observed for the iron atoms in iron-sulfur clusters and is consistent with a penta- or hexacoordination containing N and/or O ligands. The other five iron sites are most probably high spin ferric. Three of them show parameters characteristic for tetrahedral sulfur coordination. In correlation with the EPR spectrum of the as-purified protein which shows a resonance signal at g = 15.3 and a group of signals between g = 9.8 and 5.4, this 6Fe cluster is assigned to an unusual spin state of 9/2 with zero field splitting parameters D = -1.3 cm-1 and E/D = 0.062. Other EPR signals attributable to minor impurities are also observed at the g = 4.3 and 2.0 regions. The diamagnetic M?ssbauer component represents a second iron cluster, which, upon reduction with dithionite, displays an intense S = 1/2 EPR signal with g values at 2.00, 1.83, and 1.31. In addition, an EPR signal of the S = 3/2 type is also observed for the dithionite-reduced protein.  相似文献   

17.
Disagreement has remained about the spin state origin of the g = 4.1 EPR signal observed at X-band (9 GHz) from the S2 oxidation state of the Mn cluster of Photosystem II. In this study, the S2 state of PSII-enriched membrane fragments was examined at Q-band (34 GHz), with special interest in low-field signals. Light-induced signals at g = 3.1 and g = 4.6 were observed. The intensity of the signal at g = 3.1 was enhanced by the presence of F- and suppressed by the presence of 5% ethanol, indicating that it was from the same spin system as the X-band signal at g = 4.1. The Q-band signal at g = 4.6 was also enhanced by F-, but not suppressed by 5% ethanol, making its identity less clear. Although it can be accounted for by the same spin system, other sources for the signal are considered. The observation of the signal at g = 3.1 agrees well with a previous study at 15.5 GHz, in which the X-band g = 4.1 signal was proposed to arise from the middle Kramers doublet of a near rhombic S = 5/2 system. Zero-field splitting values of D = 0.455 cm(-1) and E/D = 0.25 are used to simulate the spectra.  相似文献   

18.
1.Upon addition of sulphide to oxidized cytochrome c oxidase, a low-spin heme sulphide compound is formed with an EPR signal at gx = 2.54, gy = 2.23 and gz = 1.87. Concomitantly with the formation of this signal the EPR-detectable low-spin heme signal at g = 3 and the copper signal near g = 2 decrease in intensity, pointing to a partial reduction of the enzyme by sulphide. 2. The addition of sulphide to cytochrome c oxidase, previously reduced in the presence of azide or cyanide, brings about a disappearance of the azido-cytochrome c oxidase signal at gx = 2.9, gy = 2.2, and gz = 1.67 and a decrease of the signal at g = 3.6 of cyano-cytochrome c oxidase. Concomitantly the sulphide-induced EPR signal is formed. 3. These observations demonstrate that azide, cyanide and sulphide are competitive for an oxidized binding site on cytochrome c oxidase. Moreover, it is shown that the affinity of cyanide and sulphide for this site is greater than that of azide.  相似文献   

19.
Cytochrome aa3 from Nitrosomonas europaea   总被引:3,自引:0,他引:3  
Cytochrome c oxidase has been purified from the ammonia oxidizing chemoautotroph Nitrosomonas europaea by ion-exchange chromatography in the presence of Triton X-100. The enzyme has absorption maxima at 420 and 592 nm in the resting state and at 444 and 598 nm in the dithionite-reduced form; optical extinction coefficient (598 nm minus 640 nm) = 21.9 cm-1 nM-1. The enzyme has approximately 11 nmol of heme a and approximately 11 nmol of copper per mg of protein (Lowry procedure). There appear to be three subunits (approximate molecular weights 50,800, 38,400, and 35,500), two heme groups (a and a3), and two copper atoms per minimal unit. The EPR spectra of the resting and partially reduced enzyme are remarkably similar to the corresponding spectra of the mitochondrial cytochrome aa3-type oxidase. Although the enzyme had been previously classified as "cytochrome a1" on the basis of its ferrous alpha absorption maximum (598 nm), its metal content and EPR spectral properties clearly show that it is better classified as a cytochrome aa3. Neither the data reported here nor a review of the literature supports the existence of cytochrome a1 as an entity discrete from cytochrome aa3. The purified enzyme is reduced rapidly by ferrous horse heart cytochrome c or cytochrome c-554 from N. europaea, but not with cytochrome c-552 from N. europaea. The identity of the natural electron donor is as yet unestablished. With horse heart cytochrome c as electron donor, the purified enzyme could account for a significant portion of the terminal oxidase activity in vivo.  相似文献   

20.
Bennett B  Lemon BJ  Peters JW 《Biochemistry》2000,39(25):7455-7460
Carbon monoxide binding and inhibition have been investigated by electron paramagnetic resonance (EPR) spectroscopy in solution and in crystals of structurally described states of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum. Simulation of the EPR spectrum of the as-isolated state indicates that the main component of the EPR spectrum consists of the oxidized state of the "H cluster" and components due to reduced accessory FeS clusters. Addition of carbon monoxide to CpI in the presence of dithionite results in the inhibition of hydrogen evolution activity, and a characteristic axial EPR signal [g(eff(1)), g(eff(2)), and g(eff(3)) = 2.0725, 2.0061, and 2.0061, respectively] was observed. Hydrogen evolution activity was restored by successive sparging with hydrogen and argon and resulted in samples that exhibited the native oxidized EPR signature that could be converted to the reduced form upon addition of sodium dithionite and hydrogen. To examine the relationship between the spectroscopically defined states of CpI and those observed structurally by X-ray crystallography, we have examined the CpI crystals using EPR spectroscopy. EPR spectra of the crystals in the CO-bound state exhibit the previously described axial signal associated with CO binding. The results indicate that the addition of carbon monoxide to CpI results in a single reversible carbon monoxide-bound species characterized by loss of enzyme activity and the distinctive axial EPR signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号