首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new component of the chloroplast proteolytic machinery from Arabidopsis thaliana was identified as a SppA-type protease. The sequence of the mature protein, deduced from a full-length cDNA, displays 22% identity to the serine-type protease IV (SppA) from Escherichia coli and 27% identity to Synechocystis SppA1 (sll1703) but lacks the putative transmembrane spanning segments predicted from the E. coli sequence. The N-terminal sequence exhibits typical features of a cleavable chloroplast stroma-targeting sequence. The chloroplast localization of SppA was confirmed by in organello import experiments using an in vitro expression system and by immunodetection with antigen-specific antisera. Subfractionation of intact chloroplasts demonstrated that SppA is associated exclusively with thylakoid membranes, predominantly stroma lamellae, and is a part of some high molecular mass complex of about 270 kDa that exhibits proteolytic activity. Treatments with chaotropic salts and proteases showed that SppA is largely exposed to the stroma but that it behaves as an intrinsic membrane protein that may have an unusual monotopic arrangement in the thylakoids. We demonstrate that SppA is a light-inducible protease and discuss its possible involvement in the light-dependent degradation of antenna and photosystem II complexes that both involve serine-type proteases.  相似文献   

2.
Cutting edge of chloroplast proteolysis   总被引:12,自引:0,他引:12  
Chloroplasts have a dynamic protein environment and, although proteases are presumably major contributors, the identities of these crucial regulatory proteins have only recently been revealed. There are defined proteases within each of the major chloroplast compartments: the ATP-dependent Clp and FtsH proteases in the stroma and stroma-exposed thylakoid membranes, respectively, the ATP-independent DegP proteases within the thylakoid lumen and on both sides of thylakoid membranes, and the SppA protease on the stromal side of the thylakoid. All four types are homologous to proteases characterized in bacteria, but most have many isomers in higher plants. With such diversity, the challenge is to link the mode of action of each protease to the chloroplast enzymes and regulatory proteins that it targets.  相似文献   

3.
Escherichia coli signal peptide peptidase A (SppA) is a serine protease which cleaves signal peptides after they have been proteolytically removed from exported proteins by signal peptidase processing. We present here results of site-directed mutagenesis studies of all the conserved serines of SppA in the carboxyl-terminal domain showing that only Ser 409 is essential for enzymatic activity. Also, we show that the serine hydrolase inhibitor FP-biotin inhibits SppA and modifies the protein but does not label the S409A mutant with an alanine substituted for the essential serine. These results are consistent with Ser 409 being directly involved in the proteolytic mechanism. Remarkably, additional site-directed mutagenesis studies showed that none of the lysines or histidine residues in the carboxyl-terminal protease domain (residues 326-549) is critical for activity, suggesting this domain lacks the general base residue required for proteolysis. In contrast, we found that E. coli SppA has a conserved lysine (K209) in the N-terminal domain (residues 56-316) that is essential for activity and important for activation of S409 for reactivity toward the FP-biotin inhibitor and is conserved in those other bacterial SppA proteins that have an N-terminal domain. We also performed alkaline phosphatase fusion experiments that establish that SppA has only one transmembrane segment (residues 29-45) with the C-terminal domain (residues 46-618) protruding into the periplasmic space. These results support the idea that E. coli SppA is a Ser-Lys dyad protease, with the Lys recruited to the amino-terminal domain that is itself not present in most known SppA sequences.  相似文献   

4.
BACE2 (Memapsin 1) is a membrane-bound aspartic protease that is highly homologous with BACE1 (Memapsin 2). While BACE1 processes the amyloid precursor protein (APP) at a key step in generating the beta-amyloid peptide and presumably causes Alzheimer's disease (AD), BACE2 has not been demonstrated to be directly involved in APP processing, and its physiological functions remain to be determined. In vivo, BACE2 is expressed as a precursor protein containing pre-, pro-, protease, transmembrane, and cytosolic domains/peptides. To determine the enzymatic properties of BACE2, two variants of its pro-protease domain, pro-BACE2-T1 (PB2-T1) and pro-BACE2-T2 (PB2-T2), were constructed. They have been expressed in Escherichia coli as inclusion bodies, refolded and purified. These two recombinant proteins have the same N terminus but differ at their C-terminal ends: PB2-T1 ends at Pro466, on the boundary of the postulated transmembrane domain, and PB2-T2 ends at Ser431, close to the homologous ends of other aspartic proteases such as pepsin. While PB2-T1 shares similar substrate specificities with BACE1 and other 'general' aspartic proteases, the specificity of PB2-T2 is more constrained, apparently preferring to cleave at the NH2-terminal side of paired basic residues. Unlike other 'typical' aspartic proteases, which are active only under acidic conditions, the recombinant BACE2, PB2-T1, was active at a broad pH range. In addition, pro-BACE2 can be processed at its in vivo maturation site by BACE1.  相似文献   

5.
6.
Signal peptide peptidase (Spp) is the enzyme responsible for cleaving the remnant signal peptides left behind in the membrane following Sec-dependent protein secretion. Spp activity appears to be present in all cell types, eukaryotic, prokaryotic and archaeal. Here we report the first structure of a signal peptide peptidase, that of the Escherichia coli SppA (SppAEC). SppAEC forms a tetrameric assembly with a novel bowl-shaped architecture. The bowl has a dramatically hydrophobic interior and contains four separate active sites that utilize a Ser/Lys catalytic dyad mechanism. Our structural analysis of SppA reveals that while in many Gram-negative bacteria as well as characterized plant variants, a tandem duplication in the protein fold creates an intact active site at the interface between the repeated domains, other species, particularly Gram-positive and archaeal organisms, encode half-size, unduplicated SppA variants that could form similar oligomers to their duplicated counterparts, but using an octamer arrangement and with the catalytic residues provided by neighboring monomers. The structure reveals a similarity in the protein fold between the domains in the periplasmic Ser/Lys protease SppA and the monomers seen in the cytoplasmic Ser/His/Asp protease ClpP. We propose that SppA may, in addition to its role in signal peptide hydrolysis, have a role in the quality assurance of periplasmic and membrane-bound proteins, similar to the role that ClpP plays for cytoplasmic proteins.  相似文献   

7.
The reaction center protein D1 of photosystem II (PSII), known as a primary target of photodamage, is repaired efficiently by the PSII repair cycle, to cope with constant photooxidative damage. Recent studies of Arabidopsis show that the endo-type Deg protease and the exo-type FtsH proteases cooperatively degrade D1 in the PSII repair in vivo. It is particularly interesting that we observed upregulation of Clp and SppA proteases when FtsH was limited in the mutant lacking FtsH2. To examine how the complementary functions of chloroplastic proteases are commonly regulated, we undertook a high-light stress on wild-type Arabidopsis leaves. The result that wild type leaves also showed increased levels of these proteases upon exposure to excessively strong illumination not only revealed the importance of FtsH and Deg in the PSII repair, but also implied cooperation among chloroplastic proteases under chronic stress conditions.  相似文献   

8.
ATP-dependent Lon proteases are multi-domain enzymes found in all living organisms. All Lon proteases contain an ATPase domain belonging to the AAA(+) superfamily of molecular machines and a proteolytic domain with a serine-lysine catalytic dyad. Lon proteases can be divided into two subfamilies, LonA and LonB, exemplified by the Escherichia coli and Archaeoglobus fulgidus paralogs, respectively. The LonA subfamily is defined by the presence of a large N-terminal domain, whereas the LonB subfamily has no such domain, but has a membrane-spanning domain that anchors the protein to the cytoplasmic side of the membrane. The two subfamilies also differ in their consensus sequences. Recent crystal structures for several individual domains and sub-fragments of Lon proteases have begun to illuminate similarities and differences in structure-function relationships between the two subfamilies. Differences in orientation of the active site residues in several isolated Lon protease domains point to possible roles for the AAA(+) domains and/or substrates in positioning the catalytic residues within the active site. Structures of the proteolytic domains have also indicated a possible hexameric arrangement of subunits in the native state of bacterial Lon proteases. The structure of a large segment of the N-terminal domain has revealed a folding motif present in other protein families of unknown function and should lead to new insights regarding ways in which Lon interacts with substrates or other cellular factors. These first glimpses of the structure of Lon are heralding an exciting new era of research on this ancient family of proteases.  相似文献   

9.
Modification of proteins by small ubiquitin-like modifier (SUMO) plays an important role in the function, compartmentalization, and stability of target proteins, contributing to the regulation of diverse processes. SUMO-1 modification can be regulated not only at the level of conjugation; it may also be reversed by a class of proteases known as the SUMO-specific proteases. However, current understanding of the regulation, specificity, and function of these proteases remains limited. In this study, we characterize aspects of the compartmentalization and proteolytic activity of the mammalian SUMO-specific protease, SENP1, providing insight into its function and regulation. We demonstrate the presence of a single nonconsensus nuclear localization signal within the N terminus of the protein, the mutation of which results in pronounced cytoplasmic accumulation in contrast to the nuclear accumulation of the parental protein. In addition, we observe that the N terminus of the protein may be essential for the correct regulation of the protease, since expression of the core domain alone results in limited expression and loss of SUMO-1, indicative of constitutive catalytic activity. Consistent with the prediction that the protease is a member of the cysteine family of proteases, we mutated a key cysteine residue and observed that expression of this catalytic mutant had a dominant negative phenotype, resulting in the accumulation of high molecular weight SUMO-1 conjugates. Furthermore, we demonstrate that SENP1 may itself be a target for SUMO-1 modification occurring at a nonconsensus site. Finally, we demonstrate that SENP1 localization is influenced by expression and localization of SUMO-1-conjugated target proteins within the cell.  相似文献   

10.
We report the identification and functional analysis of a type II transmembrane serine protease encoded by the mouse differentially expressed in squamous cell carcinoma (DESC) 1 gene, and the definition of a cluster of seven homologous DESC1-like genes within a 0.5-Mb region of mouse chromosome 5E1. This locus is syntenic to a region of human chromosome 4q13.3 containing the human orthologues of four of the mouse DESC1-like genes. Bioinformatic analysis indicated that all seven DESC1-like genes encode functional proteases. Direct cDNA cloning showed that mouse DESC1 encodes a multidomain serine protease with an N-terminal signal anchor, a SEA (sea urchin sperm protein, enterokinase, and agrin) domain, and a C-terminal serine protease domain. The mouse DESC1 mRNA was present in epidermal, oral, and male reproductive tissues and directed the translation of a membrane-associated 60-kDa N-glycosylated protein with type II topology. Mouse DESC1 was synthesized in insect cells as a zymogen that could be activated by exposure to trypsin. The purified activated DESC1 hydrolyzed synthetic peptide substrates, showing a preference for Arg in the P1 position. DESC1 proteolytic activity was abolished by generic inhibitors of serine proteases but not by other classes of protease inhibitors. Most interestingly, DESC1 formed stable inhibitory complexes with both plasminogen activator inhibitor-1 and protein C inhibitor that are expressed in the same tissues with DESC1, suggesting that type II transmembrane serine proteases may be novel targets for serpin inhibition. Together, these data show that mouse DESC1 encodes a functional cell surface serine protease that may have important functions in the epidermis, oral, and reproductive epithelium.  相似文献   

11.
Yamada K  Takabatake T  Takeshima K 《Gene》2000,252(1-2):209-216
Three novel cDNAs encoding serine proteases, that may play a role in early vertebrate development, have been identified from Xenopus laevis. These Xenopus cDNAs encode trypsin-like serine proteases and are designated Xenopus embryonic serine protease (Xesp)-1, Xesp-2, and XMT-SP1, a homolog of human MT-SP1. Xesp-1 is likely to be a secreted protein that functions in the extracellular space. Xesp-2 and XMP-SP1 are likely to be type II membrane proteases with multidomain structures. Xesp-2 has eight low density lipoprotein receptor (LDLR) domains and one scavenger receptor cysteine-rich (SRCR) domain, and XMT-SP1 has four LDLR domains and two CUB domains. The temporal expressions of these serine protease genes show distinct and characteristic patterns during embryogenesis, and they are differently distributed in adult tissues. Overexpression of Xesp-1 caused no significant defect in embryonic development, but overexpression of Xesp-2 or XMT-SP1 caused defective gastrulation or apoptosis, respectively. These results suggest that these proteases may play important roles during early Xenopus development, such as regulation of cell movement in gastrulae.  相似文献   

12.
13.
Signal peptides direct the export of secretory proteins from the cytoplasm. After processing by signal peptidase, they are degraded in the membrane and cytoplasm. The resulting fragments can have signaling functions. These observations suggest important roles for signal peptide peptidases. The present studies show that the Gram-positive eubacterium Bacillus subtilis contains two genes for proteins, denoted SppA and TepA, with similarity to the signal peptide peptidase A of Escherichia coli. Notably, TepA also shows similarity to ClpP proteases. SppA of B. subtilis was only required for efficient processing of pre-proteins under conditions of hyper-secretion. In contrast, TepA depletion had a strong effect on pre-protein translocation across the membrane and subsequent processing, not only under conditions of hyper-secretion. Unlike SppA, which is a typical membrane protein, TepA appears to have a cytosolic localization, which is consistent with the observation that TepA is involved in early stages of the secretion process. Our observations demonstrate that SppA and TepA have a role in protein secretion in B. subtilis. Based on their similarity to known proteases, it seems likely that SppA and TepA are specifically required for the degradation of proteins or (signal) peptides that are inhibitory to protein translocation.  相似文献   

14.
The mitochondrial serine protease HtrA2/Omi: an overview   总被引:2,自引:0,他引:2  
The HtrA family refers to a group of related oligomeric serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. Mammals encode four HtrA proteases, named HtrA1-4. The protease activity of the HtrA member HtrA2/Omi is required for mitochondrial homeostasis in mice and humans and inactivating mutations associated with neurodegenerative disorders such as Parkinson's disease. Moreover, HtrA2/Omi is released in the cytosol, where it contributes to apoptosis through both caspase-dependent and -independent pathways. Here, we review the current knowledge of HtrA2/Omi biology and discuss the signaling pathways that underlie its mitochondrial and apoptotic functions from an evolutionary perspective.  相似文献   

15.
Eukaryotic organelles have developed elaborate protein quality control systems to ensure their normal activity, among which Deg/HtrA proteases play an essential role. Plant Deg2 protease is a homologue of prokaryotic DegQ/DegP proteases and is located in the chloroplast stroma, where its proteolytic activity is required to maintain the efficiency of photosynthetic machinery during stress. Here, we demonstrate that Deg2 exhibits dual protease-chaperone activities, and we present the hexameric structure of Deg2 complexed with co-purified peptides. The structure shows that Deg2 contains a unique second PDZ domain (PDZ2) following a conventional PDZ domain (PDZ1), with PDZ2 orchestrating the cage assembly of Deg2. We discovered a conserved internal ligand for PDZ2 that mediates hexamer formation and thus locks the protease in the resting state. These findings provide insight into the diverse modes of PDZ domain-mediated regulation of Deg proteases.  相似文献   

16.
Enzymes of the ATP-independent Deg serine endopeptidase family are very flexible with regard to their substrate specificity. Some family members cleave only one substrate, while others act as general proteases on unfolded substrates. The proteolytic activity of Deg proteases is regulated by PDZ protein interaction domains. Here we characterized the HhoA protease from Synechocystis sp. strain PCC 6803 in vitro using several recombinant protein constructs. The proteolytic activity of HhoA was found to increase with temperature and basic pH and was stimulated by the addition of Mg(2+) or Ca(2+). We found that the single PDZ domain of HhoA played a critical role in regulating protease activity and in the assembly of a hexameric complex. Deletion of the PDZ domain strongly reduced proteolysis of a sterically challenging resorufin-labeled casein substrate, but unlabeled beta-casein was still degraded. Reconstitution of the purified HhoA with total membrane proteins isolated from Synechocystis sp. wild-type strain PCC 6803 and a DeltahhoA mutant resulted in specific degradation of selected proteins at elevated temperatures. We concluded that a single PDZ domain of HhoA plays a critical role in defining the protease activity and oligomerization state, combining the functions that are attributed to two PDZ domains in the homologous DegP protease from Escherichia coli. Based on this first enzymatic study of a Deg protease from cyanobacteria, we propose a general role for HhoA in the quality control of extracytoplasmic proteins, including membrane proteins, in Synechocystis sp. strain PCC 6803.  相似文献   

17.
In this study, we report the cloning and expression of lipase gene from Pseudomonas fluorescens B52, a psychrotrophic spoilage bacterium isolated from refrigerated raw milk. Sequence analysis revealed one major open reading frame of 1,428 nucleotides that was predicted to encode a protein with a molecular weight of 50,241. The predicted enzyme was found to contain an amino acid sequence highly homologous to the putative substrate-binding domain present within all lipases examined to date.  相似文献   

18.
Signal peptide peptidase A (SppA) is a membrane-bound self-compartmentalized serine protease that functions to cleave the remnant signal peptides left behind after protein secretion and cleavage by signal peptidases. SppA is found in plants, archaea and bacteria. Here, we report the first crystal structure of a Gram-positive bacterial SppA. The 2.4-Å-resolution structure of Bacillus subtilis SppA (SppABS) catalytic domain reveals eight SppABS molecules in the asymmetric unit, forming a dome-shaped octameric complex. The octameric state of SppABS is supported by analytical size-exclusion chromatography and multi-angle light scattering analysis. Our sequence analysis, mutagenesis and activity assays are consistent with Ser147 serving as the nucleophile and Lys199 serving as the general base; however, they are located in different region of the protein, more than 29 Å apart. Only upon assembling the octamer do the serine and lysine come within close proximity, with neighboring protomers each providing one-half of the catalytic dyad, thus producing eight separate active sites within the complex, twice the number seen within Escherichia coli SppA (SppAEC). The SppABS S1 substrate specificity pocket is deep, narrow and hydrophobic, but with a polar bottom. The S3 pocket, which is constructed from two neighboring proteins, is shallower, wider and more polar than the S1 pocket. A comparison of these pockets to those seen in SppAEC reveals a significant difference in the size and shape of the S1 pocket, which we show is reflected in the repertoire of peptides the enzymes are capable of cleaving.  相似文献   

19.
Intracellular serine protease was isolated from stationary-grown Bacillus subtilis A-50 cells and purified to homogeneity. The molecular weight of the enzyme is 31,000 +/- 1,000, with an isoelectric point of 4.3. Its amino acid composition is characteristically enriched in glutamic acid content, differing from that of extra-cellular subtilisins. The enzyme is completely inhibited with phenylmethylsulfonyl fluoride and ethylenediaminetetraacetic acid. Intracellular protease possesses negligible activity towards bovine serum albumin and hemoglobin, but has 5- to 20-fold higher specific activity against p-nitroanilides of benzyloxycarbonyl tripeptides than subtilisin BPN'. Esterolytic activity of the enzyme is also higher than that of subtilisin BPN'. The enzyme is sequence homologous with secretory subtilisins throughout 50 determined NH2-terminal residues, indicating the presence of duplicated structural genes for serine proteases in the B. subtilis genome. The occurrence of two homologous genes in the cell might accelerate the evolution of serine protease not only by the loosening of selective constrainst, but also by creation of sequence variants by means of intragenic recombination. Three molecular forms of intracellular protease were found, two of them with NH2-terminal glutamic acid and one minor form, three residues longer, with asparagine as NH2 terminus. These data indicate the possible presence of an enzyme precursor proteolytically modified during cell growth.  相似文献   

20.
In this study, we report the cloning and expression of lipase gene from Pseudomonas fluorescens B52, a psychrotrophic spoilage bacterium isolated from refrigerated raw milk. Sequence analysis revealed one major open reading frame of 1,428 nucleotides that was predicted to encode a protein with a molecular weight of 50,241. The predicted enzyme was found to contain an amino acid sequence highly homologous to the putative substrate-binding domain present within all lipases examined to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号