首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Mitochondrial fusion and fission are important aspects of eukaryotic cell function that permit the adoption of varied mitochondrial morphologies depending upon cellular physiology. We previously observed that ethacrynic acid (EA) induced mitochondrial fusion in cultured BSC-1 and CHO/wt cells. However, the mechanism responsible for it was not clear since EA has a number of known cellular effects including glutathione (GSH) depletion and alkylation of cysteine residues. To gain insight, we have tested the effects of a variety of compounds on EA induced cellular toxicity and mitochondrial fusion. N-acetyl cysteine (NAC), a GSH precursor, was found to abrogate both the toxic and fusion-inductive effects, whereas diethylmaleate (dEM), a GSH depletor, potentiated both these effects in a dose-dependent manner. However, treatment with dEM alone, which depleted GSH to the same degree as EA, did not induce mitochondrial fusion. These results indicate that although detoxification of EA via formation of GSH conjugates is dependant upon GSH levels, the depletion of GSH by EA is not responsible for its effect on mitochondrial fusion. Dihydro-EA (DH-EA), a saturated EA analogue, lacked EA's toxicity and effect on fusion, indicating that the alpha,beta-unsaturated ketone is central to its observed effects. N-ethylmaleimide (NEM), another well-known cysteine-alkylator, also induced mitochondrial fusion at near toxic concentrations. These data suggests that cysteine-alkylation is the causative factor for fusion and toxicity. In live BSC-1 cells, EA induced fusion of mitochondria occurred very rapidly (<20 min), which suggests that it is inducing fusion by modifying certain critical cysteine residue(s) in proteins involved in the process.  相似文献   

2.
Mitochondrial glutathione pool is vital in protecting cells against oxidative stress as the majority of the cellular reactive oxygen species are generated in mitochondria. Oxidative stress is implicated as a causative factor in neuronal death in neurodegenerative disorders. We hypothesized that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptotic death of SK-N-SH (human neuroblastoma) cells and investigated the neuroprotective strategies against GSH depletion. SK-N-SH cells were treated with two distinct inhibitors of glutathione metabolism: L-buthionine-(S, R)-sulfoximine (BSO) and ethacrynic acid (EA). EA treatment caused depletion of both the total and mitochondrial glutathione (while BSO had no effect on mitochondrial glutathione), enhanced rotenone-induced ROS production, and reduced the viability of SK-N-SH cells. Glutathione depletion by BSO or EA demonstrated positive features of mitochondria-mediated apoptosis in neuroblastoma cell death. Prevention of apoptosis by Bcl2 overexpression or use of antioxidant ebselen did not confer neuroprotection. Co-culture with U-87 (human glioblastoma) cells protected SK-N-SH cells from the cell death. Our data suggest that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptosis. The study indicates that preventing mitochondrial glutathione depletion could become a novel strategy for the development of neuroprotective therapeutics in neurodegenerative disorders.  相似文献   

3.
Previous studies showed that proanthocyanidins provide potent protection against oxidative stress. Here we investigate the effects of grape seed proanthocyanidin extract (GSPE) as a novel natural antioxidant on the generation and fate of nitric oxide (NO) in rat primary glial cell cultures. GSPE treatment (50 mg/L) increased NO production (measured by NO(2-) assay) by stimulation of the inducible isoform of NOS. However, GSPE failed to affect the LPS/IFN-gamma-induced NO production or iNOS expression. Similar responses were found in the murine macrophage cell line RAW264.7. GSPE did not show any effect on dihydrodichlorofluorescein fluorescence (ROS marker with high sensitivity toward peroxynitrite) either in control or in LPS/IFN-gamma-induced glial cultures even in the presence of a superoxide generator (PMA). GSPE treatment alone had no effect on the basal glutathione (GSH) status in glial cultures. Whereas the microglial GSH level declined sharply after LPS/IFN-gamma treatment, the endogenous GSH pool was protected when such cultures were treated additionally with GSPE, although NO levels did not change. Glial cultures pretreated with GSPE showed higher tolerance toward application of hydrogen peroxide (H(2)O(2)) and tert-butylhydroperoxide. Furthermore, GSPE-pretreated glial cultures showed improved viability after H(2)O(2)-induced oxidative stress demonstrated by reduction in lactate dehydrogenase release or propidium iodide staining. We showed that, in addition to its antioxidative property, GSPE enhances low-level production of intracellular NO in primary rat astroglial cultures. Furthermore, GSPE pretreatment protects the microglial GSH pool during high output NO production and results in an elevation of the H(2)O(2) tolerance in astroglial cells.  相似文献   

4.
A decrease in total glutathione, and aberrant mitochondrial bioenergetics have been implicated in the pathogenesis of Parkinson's disease. Our previous work exemplified the importance of glutathione (GSH) in the protection of mesencephalic neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. Additionally, reactive oxygen species (ROS) generation was an early, contributing event in malonate toxicity. Protection by ascorbate was found to correlate with a stimulated increase in protein-glutathione mixed disulfide (Pr-SSG) levels. The present study further examined ascorbate-glutathione interactions during mitochondrial impairment. Depletion of GSH in mesencephalic cells with buthionine sulfoximine potentiated both the malonate-induced toxicity and generation of ROS as monitored by dichlorofluorescein diacetate (DCF) fluorescence. Ascorbate completely ameliorated the increase in DCF fluorescence and toxicity in normal and GSH-depleted cultures, suggesting that protection by ascorbate was due in part to upstream removal of free radicals. Ascorbate stimulated Pr-SSG formation during mitochondrial impairment in normal and GSH-depleted cultures to a similar extent when expressed as a proportion of total GSH incorporated into mixed disulfides. Malonate increased the efflux of GSH and GSSG over time in cultures treated for 4, 6 or 8 h. The addition of ascorbate to malonate-treated cells prevented the efflux of GSH, attenuated the efflux of GSSG and regulated the intracellular GSSG/GSH ratio. Maintenance of GSSG/GSH with ascorbate plus malonate was accompanied by a stimulation of Pr-SSG formation. These findings indicate that ascorbate contributes to the maintenance of GSSG/GSH status during oxidative stress through scavenging of radical species, attenuation of GSH efflux and redistribution of GSSG to the formation of mixed disulfides. It is speculated that these events are linked by glutaredoxin, an enzyme shown to contain both dehydroascorbate reductase as well as glutathione thioltransferase activities.  相似文献   

5.
Many of the differentiated functions of hepatocytes are lost in culture, yet addition of certain medium supplements can aid in the retention of differentiated character. Therefore, the effect of time in monolayer culture on rat hepatocyte glutathione (GSH) synthesis and sensitivity to the GSH detoxicated xenobiotic ethacrynic acid was examined in cultures with and without medium supplementation by transferrin and sodium selenite. GSH content was found to be about 12 nmol/µg DNA at 4 hr in culture and to approximately triple by 24 hr. Intracellular GSH levels continued to increase in transferrin/sodium selenite-supplemented cultures, from 32 to 41.6 nmol/µg DNA, while GSH levels in unsupplemented cultures declined to 18 nmol/µg DNA. However, the rate of GSH synthesis after diethylmaleate depletion was found to decrease from 4.2 to 2.8 nmol/hr/µg DNA at 4 and 24 hr after inoculation, respectively. GSH repletion rate increased to 3.9 nmol/hr/µg DNA at 48 hr. The GSH accumulation rate after depletion in supplemented cultures did not vary significantly over the initial 48 hr. Incubation for 3 hr with 100 µM ethacrynic acid (EA) did not elicit an increase in LDH leakage in hepatocyte monolayers after 4 or 48 hr in culture or in cultures with supplemented medium at any time point tested. Cultures 24 hr in medium without transferrin/sodium selenite supplementation exhibited significant LDH leakage after 3 hr of EA treatment. Over the 3 hr EA treatment, intracellular GSH content was decreased in all cultures. Only in the 24 hr unsupplemented cultures did GSH depletion exceed the 90% level previously associated with depletion of the mitochondrial pool of GSH and EA toxicity in hepatocytes. The experiments show that during the redifferentiation of hepatocytes in culture, a transient period occurs when apparent GSH synthesis is depressed and enhanced sensitivity to GSH-detoxicated compounds is observed. This period of increased sensitivity is prevented or at least delayed by inclusion of supplemental transferrin and sodium selenite, suggesting that redifferentiation can be regulated by extracellular influences.Abbreviations CYSSG cysteine-glutathione mixed disulfide - DEM diethyl maleate - EA ethacrynic acid - GSH reduced glutathione - GSSG oxidized glutathione - HBS HEPES buffered saline - HWME hepatocyte Williams' Medium E (WME with insulin, corticosterone and 0.5 mM methionine) - LDH lactate dehydrogenase - TS-HWME transferrin/sodium selenite-supplemented HWME - WME Williams' Medium E  相似文献   

6.
Nitric oxide (NO) is known to mediate a multitude of biological effects including inhibition of respiration at cytochrome c oxidase (COX), formation of peroxynitrite (ONOO-) by reaction with mitochondrial superoxide (O2*-), and S-nitrosylation of proteins. In this study, we investigated pathways of NO metabolism in lymphoblastic leukemic CEM cells in response to glutathione (GSH) depletion. We found that NO blocked mitochondrial protein thiol oxidation, membrane permeabilization, and cell death. The effects of NO were: (1) independent of respiratory chain inhibition since protection was also observed in CEM cells lacking mitochondrial DNA (rho0) which do not possess a functional respiratory chain and (2) independent of ONOO- formation since nitrotyrosine (a marker for ONOO- formation) was not detected in extracts from cells treated with NO after GSH depletion. However, NO increased the level of mitochondrial protein S-nitrosylation (SNO) determined by the Biotin Switch assay and by the release of NO from mitochondrial fractions treated with mercuric chloride (which cleaves SNO bonds to release NO). In conclusion, these results indicate that NO blocks cell death after GSH depletion by preserving the redox status of mitochondrial protein thiols probably by a mechanism that involves S-nitrosylation of mitochondrial protein thiols.  相似文献   

7.
Nitrosative stress with subsequent inflammatory cell death has been associated with many neurodegenerative disorders. Expression of inducible nitric-oxide synthase and production of nitric oxide (NO) have been frequently elevated in many inflammatory disorders. NO can rapidly react with superoxide anion, producing more reactive peroxynitrite. In the present study, exposure of rat pheochromocytoma (PC12) cells to the peroxynitrite donor 3-morpholinosydnonimine hydrochloride (SIN-1) induced apoptosis, which accompanied depletion of intracellular glutathione (GSH), c-Jun N-terminal kinase activation, mitochondrial membrane depolarization, the cleavage of poly(ADP-ribose)polymerase, and DNA fragmentation. During SIN-1-induced apoptotic cell death, expression of inducible cyclooxygenase (COX-2), and peroxisome proliferator-activated receptor-gamma (PPARgamma) was elevated. SIN-1 treatment resulted in elevated production of 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), an endogenous PPARgamma activator. Preincubation with 15d-PGJ(2) rendered PC12 cells resistant to nitrosative stress induced by SIN-1. 15d-PGJ(2) fortified an intracellular GSH pool through up-regulation of glutamylcysteine ligase, thereby preventing cells from SIN-1-induced GSH depletion. The above findings suggest that 15d-PGJ(2) may act as a survival mediator capable of augmenting cellular thiol antioxidant capacity through up-regulation of the intracellular GSH synthesis in response to the nitrosative insult.  相似文献   

8.
Despite making up only a minor fraction of the total cellular glutathione, recent studies indicate that the mitochondrial glutathione pool is essential for cell survival. Selective depletion of mitochondrial glutathione is sufficient to sensitize cells to mitochondrial oxidative stress (MOS) and intrinsic apoptosis. Glutathione is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. Therefore, regulation of mitochondrial glutathione transport is a key factor in maintaining the antioxidant status of mitochondria. Bcl-2 resides in the outer mitochondrial membrane where it acts as a central regulator of the intrinsic apoptotic cascade. In addition, Bcl-2 displays an antioxidant-like function that has been linked experimentally to the regulation of cellular glutathione content. We have previously demonstrated a novel interaction between recombinant Bcl-2 and reduced glutathione (GSH), which was antagonized by either Bcl-2 homology-3 domain (BH3) mimetics or a BH3-only protein, recombinant Bim. These previous findings prompted us to investigate if this novel Bcl-2/GSH interaction might play a role in regulating mitochondrial glutathione transport. Incubation of primary cultures of cerebellar granule neurons (CGNs) with the BH3 mimetic HA14-1 induced MOS and caused specific depletion of the mitochondrial glutathione pool. Bcl-2 was coimmunoprecipitated with GSH after chemical cross-linking in CGNs and this Bcl-2/GSH interaction was antagonized by preincubation with HA14-1. Moreover, both HA14-1 and recombinant Bim inhibited GSH transport into isolated rat brain mitochondria. To further investigate a possible link between Bcl-2 function and mitochondrial glutathione transport, we next examined if Bcl-2 associated with the 2-oxoglutarate carrier (OGC), an inner mitochondrial membrane protein known to transport glutathione in liver and kidney. After cotransfection of CHO cells, Bcl-2 was coimmunoprecipitated with OGC and this novel interaction was significantly enhanced by glutathione monoethyl ester. Similarly, recombinant Bcl-2 interacted with recombinant OGC in the presence of GSH. Bcl-2 and OGC cotransfection in CHO cells significantly increased the mitochondrial glutathione pool. Finally, the ability of Bcl-2 to protect CHO cells from apoptosis induced by hydrogen peroxide was significantly attenuated by the OGC inhibitor phenylsuccinate. These data suggest that GSH binding by Bcl-2 enhances its affinity for the OGC. Bcl-2 and OGC appear to act in a coordinated manner to increase the mitochondrial glutathione pool and enhance resistance of cells to oxidative stress. We conclude that regulation of mitochondrial glutathione transport is a principal mechanism by which Bcl-2 suppresses MOS.  相似文献   

9.
10.
André M  Felley-Bosco E 《FEBS letters》2003,546(2-3):223-227
To investigate the influence of glutathione (GSH) on cellular effects of nitric oxide (NO) formation, human colon adenocarcinoma cells were transfected with a vector allowing controlled expression of inducible nitric oxide synthase (iNOS). Protein levels of oxidative stress-sensitive heme oxygenase-1 (HO-1) were analyzed in the presence or absence of GSH depletion using L-buthionine-[S,R]-sulfoximine and iNOS induction. While no effect was observed in the presence of iNOS activity alone, a synergistic effect on HO-1 expression was observed in the presence of iNOS expression and GSH depletion. This effect was prevented by addition of N-methyl-L-arginine. Therefore, targeting of endogenous NO may be modulated by intracellular GSH.  相似文献   

11.
High GSH content associates with high metastatic activity in B16-F10 melanoma cells cultured to low density (LD B16M). GSH homeostasis was investigated in LD B16M cells that survive after adhesion to the hepatic sinusoidal endothelium (HSE). Invasive B16M (iB16M) cells were isolated using anti-Met-72 monoclonal antibodies and flow cytometry-coupled cell sorting. HSE-derived NO and H(2)O(2) caused GSH depletion and a decrease in gamma-glutamylcysteine synthetase activity in iB16M cells. Overexpression of gamma-glutamylcysteine synthetase heavy and light subunits led to a rapid recovery of cytosolic GSH, whereas mitochondrial GSH (mtGSH) further decreased during the first 18 h of culture. NO and H(2)O(2) damaged the mitochondrial system for GSH uptake (rates in iB16M were approximately 75% lower than in LD B16M cells). iB16M cells also showed a decreased activity of mitochondrial complexes II, III, and IV, less O(2) consumption, lower ATP levels, higher O(2) and H(2)O(2) production, and lower mitochondrial membrane potential. In vitro growing iB16M cells maintained high viability (>98%) and repaired HSE-induced mitochondrial damages within 48 h. However, iB16M cells with low mtGSH levels were highly susceptible to TNF-alpha-induced oxidative stress and death. Therefore depletion of mtGSH levels may represent a critical target to challenge survival of invasive cancer cells.  相似文献   

12.
Various drugs and chemicals can cause a glutathione (GSH) depletion in the liver. Moreover, nitric oxide (NO) can be generated in response to physiological and pathological situations such as inflammation. The aim of this study was to estimate oxidative stress when primary rat hepatocytes were exposed to GSH depletion after NO production. For this purpose, cells were preincubated with lipopolysaccharide (LPS) and gamma-interferon (IFN) for 18 h in order to induce NO production by NO synthase and then L-buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, was added for 5 h. In hepatocyte cultures preincubated with LPS and IFN before BSO addition, an increase in lipid peroxidation was noted. In those cells, an elevation of iron-bound NO and a decrease in free NO led us to suggest the involvement of low-molecular-weight iron (LMW iron) in the enhancement of oxidative stress. Indeed, addition of deferiprone, a chelator of LMW iron, reduced iron-bound NO levels and the extent of oxidative stress. Moreover, an important elevation of LMW iron levels was also observed. As both, N-acetylcysteine, a GSH precursor, and N(G)-monomethyl-L-arginine, a NO synthase inhibitor, totally inhibited the elevation of LMW iron and oxidative stress, a cooperative role could be attributed to NO production and GSH depletion.  相似文献   

13.
The effect of glutathione (GSH) depletion by L-buthionine-[S,R]-sulphoximine (BSO) on tumor necrosis factor-alpha (TNF-alpha)-induced adhesion molecule expression and mononuclear leukocyte adhesion to human umbilical vein endothelial cells (HUVECs) was investigated. Cells with marked depletion of cytoplasmic GSH, but with an intact pool of mitochondrial GSH, only slightly enhanced TNF-alpha-induced E-selectin and vascular cell adhesion molecule-1 (VCAM-1) expression, compared with the control. However, TNF-a-induced expression of both molecules was markedly enhanced when the mitochondrial GSH pool was diminished to <15% of the control. In contrast, TNF-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression was not affected by the depletion of either cytoplasmic or mitochondrial GSH. Marked enhancement of TNF-alpha-induced adhesion molecule expression by the depletion of mitochondrial GSH resulted in increased in mononuclear leukocyte adhesion to treated HUVECs, compared with the control. These effects parallel reactive oxygen species (ROS) formation by the depletion of mitochondrial but not cytoplasmic GSH. Our findings demonstrate that depletion of mitochondrial GSH renders more ROS generation in HUVECs, and mitochondrial GSH modulates TNF-alpha-induced adhesion molecule expression and mononuclear leukocyte adhesion in HUVECs.  相似文献   

14.
Chamaecyparis formaosensis, commonly known as Taiwan red cypress, is native to Taiwan and grows at elevations of 1500-2150 m in Taiwan's central mountains. Many compounds have been identified from different pasts of C. formosensis, but up until now, little research has been done on the link between the constituents of C. formosensis and its bioactivities. In this study, we found that an ethyl acetate fraction (EA) of methonal extract of C. formosecsis, strongly inhibited LPS-mediated nitric oxide (NO) production in Raw 264.7 cells. The EA was further divided into 25 subfractions (EA1-EA25) by column chromatography. EA12 possessed the strongest NO production inhibition activity (IC(50) was 4.1 microg/mL). At a dosage of 20 microg/mL, EA12 completely inhibited NO production and the mRNA expression of inducible nitric oxide synthase (iNOS) in LPS-stimulated macrophage RAW264.7 cells. Bioactivity-guided chromatographic fractionation and metabolite profiling coupled with spectroscopic analyses, including (1)H-NMR, (13)C-NMR analyses, identified six compounds: vanillin (1), 4-hydroxybenzaldehyde (2), trans-hinokiresinol (3), taiwanin E (4), 4alpha-hydroxyeudesm- 11-en-12-al (5), savinin (6). All of these six compounds were the first identified and reported from this tree species. Compounds (1), (3) and (5) demonstrated significant NO inhibition effect through reduction of NO production in activated RAW 264.7 cells due to the suppression of iNOS gene expression: compounds that can selectively inhibit undesirable expression of iNOS are important as they may serve as potential cancer chemopreventatives. This study suggests that C. formosensis may have potential for use as a natural resource for human health care.  相似文献   

15.
The ability of a number of flavonoids to induce glutathione (GSH) depletion was measured in lung (A549), myeloid (HL-60), and prostate (PC-3) human tumor cells. The hydroxychalcone (2'-HC) and the dihydroxychalcones (2',2-, 2',3-, 2',4-, and 2',5'-DHC) were the most effective in A549 and HL-60 cells, depleting more than 50% of intracellular GSH within 4 h of exposure at 25 microM. In contrast, the flavones chrysin and apigenin were the most effective in PC-3 cells, depleting 50-70% of intracellular GSH within 24 h of exposure at 25 microM. In general, these flavonoids were more effective than three classical substrates of multidrug resistance protein 1 (MK-571, indomethacin, and verapamil). Prototypic flavonoids (2',5'-DHC and chrysin) were subsequently tested for their abilities to potentiate the toxicities of prooxidants (etoposide, rotenone, 2-methoxyestradiol, and curcumin). In A549 cells, 2',5'-DHC potentiated the cytotoxicities of rotenone, 2-methoxyestradiol, and curcumin, but not etoposide. In HL-60 and PC-3 cells, chrysin potentiated the cytotoxicity of curcumin, cytotoxicity that was attenuated by the catalytic antioxidant manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP). Assessments of mitochondrial GSH levels mitochondrial membrane potential and cytochrome c release showed that the potentiation effects induced by 2',5'-DHC and chrysin involve mitochondrial dysfunction.  相似文献   

16.
Using primary neuronal cultures, we investigated the effects of GSH depletion on the cytotoxic effects of glutamate and NO in dopaminergic neurons. Intracellular GSH was depleted by 24-h exposure to L-buthionine-[S,R]-sulfoximine (BSO), an irreversible inhibitor of GSH synthase. BSO exposure caused concentration-dependent reduction of the viability of both dopaminergic and nondopaminergic neurons. In contrast, 24-h exposure of cultures to glutamate or NOC18, an NO-releasing agent, significantly reduced the viability of nondopaminergic neurons without affecting that of dopaminergic neurons. Pretreatment with N-acetyl-L-cysteine for 24 h ameliorated the NOC18-induced toxicity in nondopaminergic neurons. In dopaminergic neurons, sublethal concentrations of BSO reduced intracellular GSH content and markedly potentiated glutamate- and NOC18-induced toxicity. These results suggested that glutamate toxicity was enhanced in dopaminergic neurons by suppression of defense mechanisms against NO toxicity under conditions of GSH depletion. Under such conditions, free iron plays an important role because BSO-enhanced NO toxicity was ameliorated by the iron-chelating agent, deferoxamine. These results suggest that GSH plays an important role in the expression of NO-mediated glutamate cytotoxicity in dopaminergic neurons. Free iron may be related to enhanced NO cytotoxicity under GSH depletion.  相似文献   

17.
Glial Cells Mediate Toxicity in Glutathione-Depleted Mesencephalic Cultures   总被引:1,自引:0,他引:1  
We have examined the role of glial cells in the toxicity that results from inhibition of reduced glutathione (GSH) synthesis by L-buthionine sulfoximine (BSO) in mesencephalic cell cultures. We show that GSH depletion, to levels that cause total cell loss in cultures containing neurons and glial cells, has no effect on cell viability in enriched neuronal cultures. An increase in the plating cell density sensitizes glia-containing cultures to GSH depletion-induced toxicity. This suggests that cell death in this model is the consequence of events that are induced by GSH depletion and are mediated by glial cells. The antioxidant ascorbic acid and the lipoxygenase (LOX) inhibitor nordihydroguaiaretic acid (1-10 microM) provide full protection from BSO toxicity, indicating that arachidonic acid metabolism through the LOX pathway and the generation of reactive oxygen species play a role in the loss of cell viability. In contrast, inhibition of nitric oxide (NO) synthase affords only partial protection from BSO toxicity, suggesting that increased NO production cannot entirely account for cell death in this model. Our data provide evidence that GSH depletion in the presence of glial cells leads to neuronal degeneration that can be prevented by inhibition of LOX. This may have relevance to the pathogenesis of Parkinson's disease, where glial activation and depletion of GSH have been found in the substantia nigra pars compacta.  相似文献   

18.
Glutamine potentiates TNF-alpha-induced tumor cytotoxicity   总被引:4,自引:0,他引:4  
L-glutamine (Gln) sensitizes tumor cells to tumor necrosis factor (TNF)-alpha-induced cytotoxicity. The type and mechanism of cell death induced by TNF-alpha was studied in Ehrlich ascites tumor (EAT)-bearing mice fed a Gln-enriched diet (GED; where 30% of the total dietary nitrogen was from Gln). A high rate of Gln oxidation promotes a selective depletion of mitochondrial glutathione (mtGSH) content to approximately 58% of the level found in tumor mitochondria of mice fed a nutritionally complete elemental diet (standard diet, SD). The mechanism of mtGSH depletion involves a glutamate-induced inhibition of GSH transport from the cytosol into mitochondria. The increase in reactive oxygen intermediates (ROIs) production induced by TNF-alpha further depletes mtGSH to approximately 35% of control values, which associates with a decrease in the mitochondrial transmembrane potential (MMP), and elicits mitochondrial membrane permeabilization and release of cytochrome c. Mitochondrial membrane permeabilization was also found in intact tumor cells cultured with a Gln-enriched medium under conditions of buthionine sulfoximine (BSO)-induced selective GSH synthesis inhibition. Enforced expression of the bcl-2 gene in tumor cells could not avoid the glutamine- and TNF-alpha-induced cell death under conditions of mtGSH depletion. However, addition of GSH ester, which delivers free intracellular GSH and increases mtGSH levels, preserved cell viability. These findings show that glutamine oxidation and TNF-alpha, by causing a change in the glutathione redox status within tumor mitochondria, activates the molecular mechanism of apoptotic cell death.  相似文献   

19.
Ethanol treatment causes an increase in expression of TGF-beta1 and CYP2E1 in the centrilobular area. Alcoholic liver disease is usually initiated in the centrilobular region of the liver. We hypothesized that the combination of TGF-beta1 and CYP2E1 produces increased oxidative stress and liver cell toxicity. To test this possibility, we studied the effects of TGF-beta1 on the viability of HepG2 E47 cells that express human CYP2E1, and C34 HepG2 cells, which do not express CYP2E1. E47 cells underwent greater growth inhibition and enhanced apoptosis after TGF-beta1 treatment, as compared to the C34 cells. There was an enhanced production of reactive oxygen species (ROS) and a decline in reduced glutathione (GSH) levels in the TGF-beta1-treated E47 cells and the enhanced cell death could be prevented by antioxidants. The CYP2E1 inhibitor diallyl sulfide prevented the potentiated cell death in E47 cells validating the role of CYP2E1. Mitochondrial membrane potential declined in the TGF-beta1-treated E47 cells, prior to developing toxicity, and cell death could be prevented by trifluoperazine, an inhibitor of the mitochondrial membrane permeability transition. TGF-beta1 also produced a loss of cell viability in hepatocytes from pyrazole-treated rats with elevated levels of CYP2E1, compared to control hepatocytes. In conclusion, increased toxic interactions by TGF-beta1 plus CYP2E1 can occur by a mechanism involving increased production of intracellular ROS and depletion of GSH, resulting in mitochondrial membrane damage and loss of membrane potential, followed by apoptosis. Potentiation of TGF-beta1-induced cell death by CYP2E1 may contribute to mechanisms of alcohol-induced liver disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号