首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of (p)ppRNA-DNA chains by purified HeLa cell DNA primase-DNA polymerase alpha (pol alpha-primase) was compared with those synthesized by a multiprotein form of DNA polymerase alpha (pol alpha 2) using unique single-stranded DNA templates containing the origin of replication for simian virus 40 (SV40) DNA. The nucleotide locations of 33 initiation sites were identified by mapping G*pppN-RNA-DNA chains and identifying their 5'-terminal ribonucleotide. Pol alpha 2 strongly preferred initiation sites that began with ATP rather than GTP, thus frequently preferring different initiation sites than pol alpha-primase, depending on the template examined. The initiation sites selected in vitro, however, did not correspond to the sites used during SV40 DNA replication in vivo. Pol alpha 2 had the greatest effect on RNA primer size, typically synthesizing primers 1-5 nucleotides long, while pol alpha-primase synthesized primers 6-8 nucleotides long. These differences were observed even at individual initiation sites. Thus, the multiprotein form of DNA primase-DNA polymerase alpha affects selection of initiation sites, the frequency at which the sites are chosen, and length of RNA primers.  相似文献   

2.
The initiation of new DNA strands at origins of replication in animal cells requires de novo synthesis of RNA primers by primase and subsequent elongation from RNA primers by DNA polymerase alpha. To study the specificity of primer site selection by the DNA polymerase alpha-primase complex (pol alpha-primase), a natural DNA template containing a site for replication initiation was constructed. Two single-stranded DNA (ssDNA) molecules were hybridized to each other generating a duplex DNA molecule with an open helix replication 'bubble' to serve as an initiation zone. Pol alpha-primase recognizes the open helix region and initiates RNA-primed DNA synthesis at four specific sites that are rich in pyrimidine nucleotides. The priming site positioned nearest the ssDNA-dsDNA junction in the replication 'bubble' template is the preferred site for initiation. Using a 40 base oligonucleotide template containing the sequence of the preferred priming site, primase synthesizes RNA primers of 9 and 10 nt in length with the sequence 5'-(G)GAAGAAAGC-3'. These studies demonstrate that pol alpha-primase selects specific nucleotide sequences for RNA primer formation and suggest that the open helix structure of the replication 'bubble' directs pol alpha-primase to initiate RNA primer synthesis near the ssDNA-dsDNA junction.  相似文献   

3.
Nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) possesses an RNA-dependent RNA polymerase activity responsible for viral genome RNA replication. Despite several reports on the characterization of this essential viral enzyme, little is known about the reaction pathway of NS5B-catalyzed nucleotide incorporation due to the lack of a kinetic system offering efficient assembly of a catalytically competent polymerase/template/primer/nucleotide quaternary complex. In this report, specific template/primer requirements for efficient RNA synthesis by HCV NS5B were investigated. For intramolecular copy-back RNA synthesis, NS5B utilizes templates with an unstable stem-loop at the 3' terminus which exists as a single-stranded molecule in solution. A template with a stable tetraloop at the 3' terminus failed to support RNA synthesis by HCV NS5B. Based on these observations, a number of single-stranded RNA templates were synthesized and tested along with short RNA primers ranging from two to five nucleotides. It was found that HCV NS5B utilized di- or trinucleotides efficiently to initiate RNA replication. Furthermore, the polymerase, template, and primer assembled initiation-competent complexes at the 3' terminus of the template RNA where the template and primer base paired within the active site cavity of the polymerase. The minimum length of the template is five nucleotides, consistent with a structural model of the NS5B/RNA complex in which a pentanucleotide single-stranded RNA template occupies a groove located along the fingers subdomain of the polymerase. This observation suggests that the initial docking of RNA on NS5B polymerase requires a single-stranded RNA molecule. A unique beta-hairpin loop in the thumb subdomain may play an important role in properly positioning the single-stranded template for initiation of RNA synthesis. Identification of the template/primer requirements will facilitate the mechanistic characterization of HCV NS5B and its inhibitors.  相似文献   

4.
In situ amplification using universal energy transfer-labeled primers.   总被引:7,自引:0,他引:7  
We developed an amplification detection system in which a universal energy transfer-labeled primer (UniPrimer) is used in combination with any target-specific primer pair. The target specific primers each have a 5' tail sequence, which is homologous to the 3' end of the UniPrimer which, in turn, has a hairpin structure on the 5' end. The hairpin structure brings the fluorophore and quencher into close proximity when the primer is free in solution, providing efficient quenching. When the primer is incorporated into the PCR product, the hairpin structure is unfolded and a fluorescent signal can be detected. Using hepatitis C and human papillomavirus as model systems, this study demonstrates several advantages in the hot-start in situ PCR technique with the UniPrimer system, including target specific detection of one DNA copy per cell without a separate in situ hybridization step and detection of an RNA target by RT in situ PCR without overnight DNase digestion. The UniPrimer-based in situ PCR allows rapid and simple detection of any DNA or RNA target without concern for the background from DNA repair invariably evident in paraffin-embedded tissue when a labeled nucleotide is used.  相似文献   

5.
Unique single-stranded regions of simian virus 40 DNA, phage M13 virion DNA, and several homopolymers were used as templates for the synthesis of (p)ppRNA-DNA chains by CV-1 cell DNA primase-DNA polymerase alpha. Intact RNA primers, specifically labeled with an RNA capping enzyme, were typically 6 to 8 ribonucleotides long, although their lengths ranged from 1 to 9 bases. The fraction of intact RNA primers 1 to 4 ribonucleotides long was 14 to 73%, depending on the template used. RNA primer length varied among primers initiated at the same nucleotide, as well as with primers initiated at different sites. Thus, the size of an RNA primer depended on template sequence. Initiation sites were identified by mapping 5' ends of nascent RNA-DNA chains on the template sequence, identifying the 5'-terminal ribonucleotide, and partially sequencing one RNA primer. A total of 56 initiation events were identified on simian virus 40 DNA, an average of 1 every 16 bases. Some sites were preferred over others. A consensus sequence for initiation sites consisted of either 3'-dCTTT or 3'-dCCC centered within 7 to 25 pyrimidine-rich residues; the 5' ends of RNA primers were complementary to the dT or dC. High ATP/GTP ratios promoted initiation of RNA primer synthesis at 3'-dCTTT sites, whereas low ATP/GTP ratios promoted initiation at 3'-dCCC sites. Similarly, polydeoxythymidylic acid and polydeoxycytidylic acid were the only effective homopolymer templates. Thus, both template sequence and ribonucleoside triphosphate concentrations determine which initiation sites are used by DNA primase-DNA polymerase alpha. Remarkably, initiation sites selected in vitro were strikingly different from initiation sites selected during simian virus 40 DNA replication in vivo.  相似文献   

6.
7.
8.
To investigate the role of the priming apparatus at the replication fork in determining Okazaki fragment size, the products of primer synthesis generated in vitro during rolling-circle DNA replication catalyzed by the DNA polymerase III holoenzyme, the single-stranded DNA binding protein, and the primosome on a tailed form II DNA template were isolated and characterized. The abundance of oligoribonucleotide primers and the incidence of covalent DNA chain extension of the primer population was measured under different reaction conditions known to affect the size of the products of lagging-strand DNA synthesis. These analyses demonstrated that the factors affecting Okazaki fragment length could be distinguished by either their effect on the frequency of primer synthesis or by their influence on the efficiency of initiation of DNA synthesis from primer termini. Primase and the ribonucleoside triphosphates were found to stimulate primer synthesis. The observed trend toward smaller fragment size as the concentration of these effectors was raised was apparently a direct consequence of the increased frequency of primer synthesis. The beta subunit of the DNA polymerase III holoenzyme and the deoxyribonucleoside triphosphates did not alter the priming frequency; instead, the concentration of these factors influenced the ability of the lagging-strand DNA polymerase to efficiently utilize primers to initiate DNA synthesis. Maximum utilization of the available primers correlated with the lowest mean value of Okazaki fragment length. These data were used to draw general conclusions concerning the temporal order of enzymatic steps that operate during a cycle of Okazaki fragment synthesis on the lagging-strand DNA template.  相似文献   

9.
Despite extensive studies on oligonucleotide-forming triple helices, which were discovered in 1957, their possible relevance in the initiation of DNA replication remains unknown. Using sequences forming triple helices, we have developed a DNA polymerisation assay by using hairpin DNA templates with a 3′ dideoxynucleotide end and an unpaired 5′-end extension to be replicated. The T7 DNA polymerase successfully elongated nucleotides to the expected size of the template from the primers forming triple helices composed of 9–14 deoxyguanosine-rich residues. The triple helix-forming primer required for this reaction has to be oriented parallel to the homologous sequence of the hairpin DNA template. Substitution of the deoxyguanosine residues by N7 deazadeoxyguanosines in the hairpin of the template prevented primer elongation, suggesting that the formation of a triple helix is a prerequisite for primer elongation. Furthermore, DNA sequencing could be achieved with the hairpin template through partial elongation of the third DNA strand forming primer. The T4 DNA polymerase and the Klenow fragment of DNA polymerase I provided similar DNA elongation to the T7 polymerase–thioredoxin complex. On the basis of published crystallographic data, we show that the third DNA strand primer fits within the catalytic centre of the T7 DNA polymerase, thus underlying this new property of several DNA polymerases which may be relevant to genome rearrangements and to the evolution of the genetic apparatus, namely the DNA structure and replication processes.  相似文献   

10.
The human single-stranded DNA binding protein (HSSB/RPA) is involved in several processes that maintain the integrity of the genome including DNA replication, homologous recombination, and nucleotide excision repair of damaged DNA. We report studies that analyze the role of HSSB in DNA repair. Specific protein-protein interactions appear to be involved in the repair function of HSSB, since it cannot be replaced by heterologous single-stranded DNA binding proteins. Anti-HSSB antibodies that inhibit the ability of HSSB to stimulate DNA polymerase alpha also inhibit repair synthesis mediated by human cell-free extracts. However, antibodies that neutralize DNA polymerase alpha do not inhibit repair synthesis. Repair is sensitive to aphidicolin, suggesting that DNA polymerase epsilon or delta participates in nucleotide excision repair by cell extracts. HSSB has a role other than generally stimulating synthesis by DNA polymerases, as it does not enhance the residual damage-dependent background synthesis displayed by repair-deficient extracts from xeroderma pigmentosum cells. Significantly, when damaged DNA is incised by the Escherichia coli UvrABC repair enzyme, human cell extracts can carry out repair synthesis even when HSSB has been neutralized with antibodies. This suggests that HSSB functions in an early stage of repair, rather than exclusively in repair synthesis. A model for the role of HSSB in repair is presented.  相似文献   

11.
R I Salganik  G L Dianov  A V Mazin 《Genetika》1986,22(10):2398-2407
This study is concerned with an experimental verification of hypotheses postulating the involvement of self-complementary nucleotide sequences in the formation of deletions and insertions. It was suggested that deletions can arise in the regions of self-complementary nucleotide sequences, which allows the formation of the hairpin structures in a single-stranded DNA, arising during excision repair. These hairpin structures can be eliminated by nucleases or during DNA replication. Insertions can arise as a result of homologous recombination, when a migrating DNA strand contains a self-complementary sequence which forms hairpin structure. Model experiments were carried out with the pBR322 plasmid. A plasmid DNA with premutational damage in the palindrome-containing region was constructed by in vitro dimethylsulfate modification of one strand of EcoRI-BamHI restriction fragment. The plasmid was used for transformation of Escherichia coli. Restriction mapping and nucleotide analysis of the mutant DNAs demonstrated that they all contained deletions. The end points of the deletions coincide with the palindrome. To model homologous recombination, a plasmid with D-loop was constructed. A single-stranded DNA fragment containing palindrome forming a hairpin structure was introduced into the plasmid DNA and covalently fixed in the complex. When E. coli cells were transfected with this DNA, plasmid mutants containing insertions predetermined by palindromic structure arose. The evolutionary role of mutations predetermined by primary DNA structure is discussed.  相似文献   

12.
Eukaryotic DNA polymerase delta and its accessory proteins are essential for SV40 DNA replication in vitro. A multi-subunit protein complex, replication factor C (RF-C), which is composed of subunits with apparent molecular weights of 140,000, 41,000, and 37,000, has primer/template binding and DNA-dependent ATPase activities. UV-cross-linking experiments demonstrated that the Mr = 140,000 subunit recognizes and binds to the primer-template DNA, whereas the Mr = 41,000 polypeptide binds ATP. Assembly of a replication complex at a primer-template junction has been studied in detail with synthetic, hairpin DNAs. Following glutaraldehyde fixation, a gel shift assay demonstrated that RF-C alone forms a weak binding complex with the hairpin DNA. Addition of ATP or its nonhydrolyzable analogue, ATP gamma S, increased specific binding to the DNA. Footprinting experiments revealed that RF-C recognizes the primer-template junction, covering 15 bases of the primer DNA from the 3'-end and 20 bases of the template DNA. Another replication factor, proliferating cell nuclear antigen (PCNA) binds to RF-C and the primer-template DNA forming a primer recognition complex and extends the protected region on the duplex DNA. This RF-C.PCNA complex has significant single-stranded DNA binding activity in addition to binding to a primer-template junction. However, addition of another replication factor, RF-A, completely blocked the nonspecific, single-stranded DNA binding by the RF-C.PCNA complex. RF-A therefore functions as a specificity factor for primer recognition. In the absence of RF-C, DNA polymerase delta (pol delta) and PCNA form a complex at the primer-template junction, protecting exactly the same site as the primer recognition complex. Addition of RF-C to this complex produced a higher order complex which is unstable unless its formation is coupled with translocation of pol delta. These results suggest that the sequential binding of RF-C, PCNA, and pol delta to a primer-template junction might directly account for the initiation of leading strand DNA synthesis at a replication origin. We demonstrate this directly in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1961-1968).  相似文献   

13.
DNA polymerase III holoenzyme (holoenzyme) processively and rapidly replicates a primed single-stranded DNA circle to produce a duplex with an interruption in the synthetic strand. The precise nature of this discontinuity in the replicative form (RF II) and the influence of the 5' termini of the DNA and RNA primers were analyzed in this study. Virtually all (90%) of the RF II products primed by DNA were nicked structures sealable by Escherichia coli DNA ligase; in 10% of the products, replication proceeded one nucleotide beyond the 5' DNA terminus displacing (but not removing) the 5' terminal nucleotide. With RNA primers, replication generally went beyond the available single-stranded template. The 5' RNA terminus was displaced by 1-5 nucleotides in 85% of the products; a minority of products was nicked (9%) or had short gaps (6%). Termination of synthesis on a linear DNA template was usually (85%) one base shy of completion. Thus, replication by holoenzyme utilizes all, or nearly all, of the available template and shows no significant 5'----3' exonuclease action as observed in primer removal by the "nick-translation" activity of DNA polymerase I.  相似文献   

14.
DNA β is an approx 1350 nucleotide, single-stranded DNA molecule which has been shown to be associated with some monopartite geminiviruses of the genus Begomovirus. This component requires the helper begomovirus for replication in the cells of host plants and for insect transmission, possibly by trans-encapsidation. Sequence comparisons of the two available DNA β sequences has identified a highly conserved region upstream of a predicted hairpin structure. Abutting primers designed to this conserved region allows PCR-mediated amplification of the full-length DNA β component from total nucleic acid extracts isolated from infected plants originating from a variety of geographically distinct sources and host plants.  相似文献   

15.
A complementation experiment was developed to identify the protein component that is essential for the in vitro replication of a cloned template containing a chloroplast DNA replication origin of Chlamydomonas reinhardtii. Using this method, we have identified a DNA primase activity that copurified with DNA polymerase from the crude protein mixture. The primase catalyzed the synthesis of short RNA primers on single-stranded DNA templates. Among the synthetic templates, the order of preference was poly(dA), poly(dT), and poly(dC). The primer size range for these templates was 11-18, 5-12, and 3-11 nucleotides, respectively. On a single-stranded template containing the chloroplast DNA replication origin, the primer length range reached 19 to 27 nucleotides, indicating a better processtivity. Several initiation sites were mapped on both strands of the cloned replication origin. Some preferential initiation sites were located on A tracks spaced at one helical turn apart within the bending locus. Primase improved the template specificity of the in vitro DNA replication system and enhanced the incorporation of radioactive dATP into the supercoiled template containing the core sequences of the chloroplast DNA replication origin.  相似文献   

16.
A series of Escherichia coli strains deficient in single-stranded DNA-binding protein (SSB) and DNA polymerase I was constructed in order to analyze the effects of these mutations on DNA repair resynthesis after UV-irradiation. Since SSB has been suggested to play a role in protecting single-stranded regions which may transiently exist during excision repair and since long single-stranded regions are believed to occur frequently as repair intermediates in strains deficient in DNA polymerase I, studies of repair resynthesis and strand rejoining were performed on strains containing both the ssb-1 and polA1 mutations. Repair resynthesis appears to be slightly decreased in the ssb-1 strain at 42 degrees C relative to the wild-type; however, this effect is not enhanced in a polA1 derivative of this strain. After UV-irradiation, the single-strand molecular weight of the DNA of an ssb-1 strain decreases and fails to recover to normal size. These results are discussed in the context of long patch repair as an inducible component of repair resynthesis and of the protection of intermediates in the excision repair process by SSB. A direct role for SSB in repair resynthesis involving modulation of the proteins involved in this mode of DNA synthesis (particularly stimulation of DNA polymerase II) is not supported by our findings.  相似文献   

17.
Bacterial primases are essential for DNA replication due to their role in polymerizing the formation of short RNA primers repeatedly on the lagging-strand template and at least once on the leading-strand template. The ability of recombinant Staphylococcus aureus DnaG primase to utilize different single-stranded DNA templates was tested using oligonucleotides of the sequence 5'-CAGA (CA)5 XYZ (CA)3-3', where XYZ represented the variable trinucleotide. These experiments demonstrated that S. aureus primase synthesized RNA primers predominately on templates containing 5'-d(CTA)-3' or TTA and to a much lesser degree on GTA-containing templates, in contrast to results seen with the Escherichia coli DnaG primase recognition sequence 5'-d(CTG)-3'. Primer synthesis was initiated complementarily to the middle nucleotide of the recognition sequence, while the third nucleotide, an adenosine, was required to support primer synthesis but was not copied into the RNA primer. The replicative helicases from both S. aureus and E. coli were tested for their ability to stimulate either S. aureus or E. coli primase. Results showed that each bacterial helicase could only stimulate the cognate bacterial primase. In addition, S. aureus helicase stimulated the production of full-length primers, whereas E. coli helicase increased the synthesis of only short RNA polymers. These studies identified important differences between E. coli and S. aureus related to DNA replication and suggest that each bacterial primase and helicase may have adapted unique properties optimized for replication.  相似文献   

18.
The molecular structure of the single-stranded fd DNA inside its filamentous virion has been stabilized by the photochemical reaction with a psoralen derivative and examined in the electron microscope. The results support the notion that the 6389 nucleotide-long DNA molecule is folded back on itself inside the 1 μm-long protein coat. At one end of the virion, there exists a DNA hairpin region 200±50 base-pairs long. This “end hairpin” is mapped on the fd genome to the site of the replication origin. The most stable in vitro hairpin of fd DNA has been mapped previously to this same site. This unique duplex region of fd DNA may play an important role in the formation of specific protein-DNA complexes which are crucial to stages of the fd life cycle: the adsorption of the phage to the bacteria, the initiation of replication of the single-stranded DNA, and the assembly of newly synthesized DNA strands into the filamentous virions.  相似文献   

19.
DnaB helicase stimulated the second-order RNA primer synthesis activity of primase by over 5000-fold on DNA templates that were 23 nucleotides long. This template length is the same as the DnaB helicase thermodynamic binding site size [Jezewska, M. J., and Bujalowski, W. (1996) Biochemistry 35, 2117-2128]. This phenomenal stimulation was achieved by increasing the template affinity of primase by over 300-fold and increasing the catalytic rate by over 15-fold. It was necessary to determine the optimal amount of DnaB helicase to achieve this stimulation because helicase stimulation was cooperative at low concentration and inhibitory at high helicase concentration. The cooperative stimulation at low concentration indicated the presence of a time-dependent assembly step that preceded the active state. Besides stimulating primase activity, DnaB helicase also prevented primase from synthesizing RNA primers that were longer than the template sequence. In the absence of DnaB helicase, the majority of primers synthesized by primase were longer than the template and were named "overlong primers" [Swart, J. R., and Griep, M. A. (1995) Biochemistry 34, 16097-16106]. In contrast, the helicase-stimulated RNA primers were from 10 to 14 nucleotides in length with the 12-mer representing the majority of the total RNA primers produced. It was shown that DnaB helicase stabilized the open or single-stranded conformation of the template, which favored the synthesis of the template-length-dependent primers. In contrast, when primase acted alone, it stabilized the 3'-end hairpin conformation of the template so that the template's 3'-hydroxyl served as a "DNA primer" from which primase elongated to create the overlong primers.  相似文献   

20.
DNA excision repair in mammalian cell extracts.   总被引:3,自引:0,他引:3  
The many genetic complementation groups of DNA excision-repair defective mammalian cells indicate the considerable complexity of the excision repair process. The cloning of several repair genes is taking the field a step closer to mechanistic studies of the actions and interactions of repair proteins. Early biochemical studies of mammalian DNA repair in vitro are now at hand. Repair synthesis in damaged DNA can be monitored by following the incorporation of radiolabelled nucleotides. Synthesis is carried out by mammalian cell extracts and is defective in extracts from cell lines derived from individuals with the excision-repair disorder xeroderma pigmentosum. Biochemical complementation of the defective extracts can be used to purify repair proteins. Repair of damage caused by agents including ultraviolet irradiation, psoralens, and platinating compounds has been observed. Neutralising antibodies against the human single-stranded DNA binding protein (HSSB) have demonstrated a requirement for this protein in DNA excision repair as well as in DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号