首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral populations of eight species of freshwater bivalves (Unionidae.) extending their geographic ranges into Nova Scotia, Canada, were examined electrophoretically to determine both the extent of genetic variability within such populations, and whether the hypothesized pathway of colonization across the Isthmus of Chignecto is reflected in patterns of genetic resemblance among these populations. The Nova Scotian species examined could be separated into two groups based on levels of observed heterozygosity and levels of variability in allele frequencies. The first group is characterized by low levels of heterozygosity and polymorphism compared with north-eastern American populations, and in the case of one species, Elliptio complanala, considerable variability in allele frequencies among populations occurring in similar habitats in different drainages. Populations of E. complanata from Nova Scotia can be differentiated from conspecific populations on the southern Atlantic Slope by possession of fast alleles at two loci. Multivariate analyses define subgroups within populations of E. complanata consistent with hypothesis that the species invaded Nova Scotia by way of the Isthmus of Chignecto, and then split into two groups, one of which colonized Cape Breton to the north and the other of which colonized southern areas of the Province. The second group of Nova Scotian species is characterized by little reduction in heterozygosity and polymorphism compared with values observed among north-eastern American conspecifics or congeners, little variability in allele frequencies from population to population, and little evidence to suggest that these species were dependent on the land bridge to invade the Province. The type of dispersal is hypothesized to be responsible, in part, for these differences: larvae of species in the first group rely on a parasitic attachment to fish with territorial habits limited to fresh water, and are thus likely to invade new drainages separated by salt water by chance, in small numbers, and in stepping-stone fashion. Species in the second group parasitize anadromous or saltwater tolerant hosts, are likely to be introduced into new habitats in greater numbers and/or receive greater amounts of gene flow subsequent to colonization, and seem less dependent on land-bridges to colonize new habitats.  相似文献   

2.
Spatial patterns of plant cover and species composition in arctic salt marsh and salt affected tundra near Prudhoe Bay, Alaska reflect gradients in elevation, soil conductivity, and soil concentrations of the ions prevalent in seawater. Soil conductivity and soil concentrations of Ca2+, Mg2+, Na+, K+, SO4 = and Cl were significantly related to site elevation, decreasing as elevation increased. Vascular plant species richness increased significantly as soil conductivity and soil ion concentrations decreased, and site elevation increased. Puccinellia phryganodes was the only species present in low elevation sites with low plant cover, high soil conductivity and high soil concentrations of Ca2+, Mg2+, Na+, K+, SO4 = and Cl. Mid-gradient sites were dominated by Carex subspathaceae. Plant cover at these sites was greater than at lower elevation sites, but bare ground was still present. Higher elevation sites had the lowest concentrations of soil ions and the lowest soil conductivities. These sites had little bare ground, contained as many as 16 species, and were dominated by Dupontia fischeri and Eriophorum angustifolium. Ordinations indicated that a complex topographic gradient related most closely to elevation and site distance from the coast best explains variation in the vegetation cover. Irregular deposition along the coastline partially or completely buried three sites in peat or sand up to 20 cm deep. Such rapid changes in plant cover and species composition contributes to the community patch mosaic typical of these marshes. Results suggest an individualistic response of plant species to the environmental gradients in salt marsh and salt affected tundra and are indicative of successional models developed in other marginal arctic environments.  相似文献   

3.
4.
Species richness, area and climate correlates   总被引:4,自引:0,他引:4  
Aim Species richness–area theory predicts that more species should be found if one samples a larger area. To avoid biases from comparing species richness in areas of very different sizes, area is often controlled by counting the numbers of co‐occupying species in near‐equal area grid cells. The assumption is that variation in grid cell size accrued from working in a three‐dimensional world is negligible. Here we provide a first test of this idea. We measure the surface area of c. 50 × 50 km and c. 220 × 220 km grid cells across western Europe. We then ask how variation in the area of grid cells affects: (1) the selection of climate variables entering a species richness model; and (2) the accuracy of models in predicting species richness in unsampled grid cells. Location Western Europe. Methods Models are developed for European plant, breeding bird, mammal and herptile species richness using seven climate variables. Generalized additive models are used to relate species richness, climate and area. Results We found that variation in the grid cell area was large (50 × 50 km: 8–3311 km2; 220 × 220: 193–55,100 km2), but this did not affect the selection of variables in the models. Similarly, the predictive accuracy was affected only marginally by exclusion of area within models developed at the c. 50 × 50 km grid cells, although predictive accuracy suffered greater reductions when area was not included as a covariate in models developed for c. 220 × 220 km grid cells. Main conclusions Our results support the assumption that variation in near‐equal area cells may be of second‐order importance for models explaining or predicting species richness in relation to climate, although there is a possibility that drops in accuracy might increase with grid cell size. The results are, however, contingent on this particular data set, grain and extent of the analyses, and more empirical work is required.  相似文献   

5.
This article presents an analysis of plant species richness and diversity and its association with climatic and soil variables along a 1300‐m elevation gradient on the Cerro Tláloc Mountain in the northern Sierra Nevada in Mexico. Two 1000‐m2 tree sampling plots were created at each of 21 selected sampling sites, as well as two 250‐m2 plots for shrubs and six 9‐m2 plots for herbaceous plants. Species richness and diversity were estimated for each plant life form, and beta diversity between sites was estimated along the gradient. The relationship between species richness and diversity and environmental variables was modelled using simple linear correlation and regression trees. Species richness and diversity showed a unimodal pattern with a bias towards high values in the lower half of the elevation gradient under study. This response was consistent for all three life forms. Beta diversity increased steadily along the elevation gradient, being lower between contiguous sites at intermediate elevations and high – the species replacement rate was nearly 100%– between sites at the extremes of the gradient. Few species were adapted to the full spectrum of environmental variation along the elevation gradient studied. The regression tree suggests that differences in species richness are mainly influenced by elevation (temperature and humidity) and soil variables, namely A2 permanent wilting point, organic matter and horizon field capacity and A1 horizon Mg2+.  相似文献   

6.
Aim Variation in species richness has been related to (1) environmental conditions (water, energy and habitat characteristics) and (2) regional differences (contingent historical events and regional particularities that result in differences between regional faunas acting at broad extents). Whereas climatic factors have been widely studied, the effects of regional differences are less often quantified. This work aims to characterize global trends in the species richness of mammal assemblages with respect to both current and historical influences. Location All terrestrial biogeographical realms except Antarctica. Methods Species richness in checklists from 224 sites distributed worldwide were investigated by partitioning the variation between a general set of habitat/climate factors, biogeographical regions, and their overlaps. Additional analyses studied the specific overlaps of region, water and energy. Data were also divided according to area to determine if the strength of these effects varies according to the size of sites. Results Environmental effects explained 38% of richness variation across all sites, whereas environmentally independent regional effects explained 11% and the overlap between region and environment explained 13%. Results were similar when only larger sites (between 1000 km2 and 10,000 km2) were considered. However, the importance of the overlap between region and all environmental variables was greater in smaller sites (between 100 km2 and 1000 km2). In contrast, the specific importance of water and energy variables and their overlap with region was greater in larger sites. The strength of the independent effect of region remained almost invariant regardless of the size of the sites studied. Main conclusions The relationship between species richness and climate varies with scale and among regions. Although environmental variables are the strongest correlates of richness, the unique history and physiographic characteristics of a region produce differences between the richness of mammal assemblages and their response to environmental gradients. The importance of environmental variables varies with scale: climatic gradients are more important at coarse grain (larger sites), possibly as a result of their effects on species ranges, whereas habitat type is more important at the smaller sites, where the importance of ecological interactions increases. Therefore, regional differences and the scale at which richness is measured should be taken into account when evaluating species richness–energy hypotheses.  相似文献   

7.
Blanding’s turtle is a North American freshwater turtle whose main range occurs south of the Great Lakes; disjunct populations occur east of the Appalachian Mountains from New York to Nova Scotia. The species is listed as threatened or endangered in most of its range. We employed five variable microsatellites to examine samples of 300 individuals in 12 populations. Estimates of F ST based on pairwise comparisons of populations ranged from 0.000 to 0.465. Phylogenetic analysis of these F ST values reveals that the Appalachian Mountains and the Hudson River appear to present major barriers to gene flow in Blanding’s turtle. The extent of fine-scale genetic structure previously reported in the Nova Scotian populations was not found in other parts of the species’ range. We recommend that populations separated by the Appalachian Mountains as well as the highly disjunct Nova Scotian populations of Blanding’s turtle be recognized as evolutionarily significant units.  相似文献   

8.
SUMMARY 1. The effects of catchment urbanisation on water quality were examined for 30 streams (stratified into 15, 50 and 100 km2 ± 25% catchments) in the Etowah River basin, Georgia, U.S.A. We examined relationships between land cover (implying cover and use) in these catchments (e.g. urban, forest and agriculture) and macroinvertebrate assemblage attributes using several previously published indices to summarise macroinvertebrate response. Based on a priori predictions as to mechanisms of biotic impairment under changing land cover, additional measurements were made to assess geomorphology, hydrology and chemistry in each stream. 2. We found strong relationships between catchment land cover and stream biota. Taxon richness and other biotic indices that reflected good water quality were negatively related to urban land cover and positively related to forest land cover. Urban land cover alone explained 29–38% of the variation in some macroinvertebrate indices. Reduced water quality was detectable at c. >15% urban land cover. 3. Urban land cover correlated with a number of geomorphic variables such as stream bed sediment size (–) and total suspended solids (+) as well as a number of water chemistry variables including nitrogen and phosphorus concentrations (+), specific conductance (+) and turbidity (+). Biotic indices were better predicted by these reach scale variables than single, catchment scale land cover variables. Multiple regression models explained 69% of variation in total taxon richness and 78% of the variation in the Invertebrate Community Index (ICI) using phi variability, specific conductance and depth, and riffle phi, specific conductance and phi variability, respectively. 4. Indirect ordination analysis was used to describe assemblage and functional group changes among sites and corroborate which environmental variables were most important in driving differences in macroinvertebrate assemblages. The first axis in a non‐metric multidimensional scaling ordination was highly related to environmental variables (slope, specific conductance, phi variability; adj. R2=0.83) that were also important in our multiple regression models. 5. Catchment urbanisation resulted in less diverse and more tolerant stream macroinvertebrate assemblages via increased sediment transport, reduced stream bed sediment size and increased solutes. The biotic indices that were most sensitive to environmental variation were taxon richness, EPT richness and the ICI. Our results were largely consistent over the range in basin size we tested.  相似文献   

9.
Graham  Liza  Knight  Richard L. 《Plant Ecology》2004,170(2):223-234
We developed a nested vegetation sampling protocol to sample the plant diversity on south-facing cliffs and cliff bases in Jefferson County, Colorado. The multi-scale plots included three nested spatial scales, 1 m2, 20 m2, and 40 m2. We compared plant species richness and species diversity among large cliffs, medium cliffs, small cliffs, and non-cliff sites using Hill's diversity numbers (N 0, N 1, and N 2) for the 1-m2 quadrats. Species richness (N 0) was calculated for the 20-m2 and 40-m2 plots. Our results indicate that plant species diversity on the cliff faces did not increase with increasing cliff area. This pattern was consistent at all three sampling scales. A model selection was run to determine if plant species diversity values on the cliff faces were associated with cliff variables. None of the cliff variables measured were good predictors of diversity at the 1-m2 scale. However, at the 20-m2 scale, canyon differences and a positive relationship with increasing cliff surface roughness explained 70% of the variability in species richness. Although most plant species sampled on the cliff faces were also found in the base plots, 13 species were sampled only on the cliff faces. Additionally, dry south facing cliffs support a mix of xeric and mesic plants indicating that cliffs may provide unique microenvironments for plant establishment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The mid-summer phytoplankton communities of more than 100 Adirondack lakes ranging in pH from 4.0 to 7.2 were characterized in relation to 25 physical-chemical parameters. Phytoplankton species richness declined significantly with increasing acidity. Acidic lakes (pH < 5.0) averaged fewer than 20 species while more circumneutral waters (pH > 6.5) averaged more than 33 species. Phytoplankton abundance was not significantly correlated with any of the measured physical-chemical parameters, but standing crop parameters, i.e., chlorophyll a and phytoplankton biovolume, did correlate significantly with several parameters. Midsummer standing crop correlated best with total phosphorus concentration but acidity status affected the standing crop-phosphorus relationship. Circumneutral waters of low phosphorus content, i.e. < 10 µg·1–1 TP, averaged 3.62 µg·1–1 chlorophyll a whereas acidic lakes of the same phosphorus content averaged only 1.96 µg·1–1 chlorophyll a. The midsummer chlorophyll content of lakes of high phosphorus content, i.e. > 10 µg·1–1 TP, was not significantly affected by acidity status.Adirondack phytoplankton community composition changes with increasing acidity. The numbers of species in midsummer collections within all major taxonomic groups of algae are reduced with increasing acidity. The midsummer phytoplankton communities of acidic Adirondack lakes can generally be characterized into four broad types; 1) the depauperate clear water acid lake assemblage dominated by dinoflagellates, 2) the more diverse oligotrophic acid lake community dominated by cryptomonads, green algae, and chrysophytes, 3) the productive acid lake assemblage dominated by green algae, and 4) the chrysophyte dominated community. The major phytoplankton community types of acid lakes are associated with different levels of nutrients, aluminum concentrations, and humic influences.  相似文献   

11.
Abstract Patterns in species richness from a wide range of plant communities in Ku‐ring‐gai Chase National Park, New South Wales, Australia, were examined in relation to a number of environmental variables, including soil physical and chemical characteristics. Total species richness and richness of three growth‐form types (trees, shrubs and ground cover) were determined in duplicate 500‐m2 quadrats from 50 sites on two geological substrata: Hawkesbury Sandstone and Narrabeen shales and sandstones. Generalized linear models (GLM) were used to determine the amount of variation in species richness that could be significantly explained by the measured environmental variables. Seventy‐three per cent of the variation in total species richness was explained by a combination of soil physical and chemical variables and site attributes. The environmental variables explained 24% of the variation in tree species richness, 67% of the variation in shrub species richness and 62% of the variation in ground cover species richness. These results generally support the hypothesis of an environmental influence on patterns in total species richness and richness of shrubs and ground cover species. However, tree species richness was not adequately predicted by any of the measured environmental variables; the present environment exerts little influence on the richness of this growth‐form type. Historical factors, such as fire or climatic/environmental conditions at time of germination or seedling establishment, may be important in determining patterns in tree species richness at the local scale.  相似文献   

12.
We studied the relative importance of local habitat conditions and landscape structure for species richness of vascular plants, bryophytes and lichens in dry grasslands on the Baltic island of Öland (Sweden). In addition, we tested whether relationships between species richness and vegetation cover indicate that competition within and between the studied taxonomic groups is important. We recorded species numbers of vascular plants, bryophytes and lichens in 4 m2 plots (n=452), distributed over dry grassland patches differing in size and degree of isolation. Structural and environmental data were collected for each plot. We tested effects of local environmental conditions, landscape structure and vegetation cover on species richness using generalized linear mixed models. Different environmental variables explained species richness of vascular plants, bryophytes and lichens. Environmental effects, particularly soil pH, were more important than landscape structure. Interaction effects of soil pH with other environmental variables were significant in vascular plants. Plot heterogeneity enhanced species richness. Size and degree of isolation of dry grassland patches significantly affected bryophyte and lichen species richness, but not that of vascular plants. We observed negative relationships between bryophyte and lichen species richness and the cover of vascular plants. To conclude, effects of single environmental variables on species richness depend both on the taxonomic group and on the combination of environmental factors on a whole. Dispersal limitation in bryophytes and lichens confined to dry grasslands may be more common than is often assumed. Our study further suggests that competition between vascular plants and cryptogams is rather asymmetric.  相似文献   

13.
Urban development and species invasion are two major global threats to biodiversity. These threats often co‐occur, as developed areas are more prone to species invasion. However, few empirical studies have tested if both factors affect biodiversity in similar ways. Here we study the individual and combined effects of urban development and plant invasion on the composition of arthropod communities. We assessed 36 paired invaded and non‐invaded sample plots, invaded by the plant Antigonon leptopus, with half of these pairs located in natural and the other half in developed land‐use types on the Caribbean island of St. Eustatius. We used several taxonomic and functional variables to describe community composition and diversity. Our results show that both urban development and A. leptopus invasion affected community composition, albeit in different ways. Development significantly increased species richness and exponential Shannon diversity, while invasion had no effect on these variables. However, invasion significantly increased arthropod abundance and caused biotic homogenization. Specifically, uninvaded arthropod communities were distinctly different in species composition between developed and natural sites, while they became undistinguishable after A. leptopus invasion. Moreover, functional variables were significantly affected by species invasion, but not by urban development. Invaded communities had higher community‐weighted mean body size and the feeding guild composition of invaded arthropod communities was characterized by the exceptional numbers of nectarivores, herbivores, and detritivores. With the exception of species richness and exponential Shannon diversity, invasion influenced four out of six response variables to a greater degree than urban development did. Hence, we can conclude that species invasion is not just a passenger of urban development but also a driver of change.  相似文献   

14.
Ostracods are important members of the benthos and littoral communities of lake ecosystems. Ostracods respond to hydrochemistry (water chemistry) which is influenced by climatic factors such as water balance, temperature, and chemicals in rainfall runoff from the land. Thus, at local scales, environmental preferences of ostracods and characteristics of lakes are used to infer changes in climate, hydrology, and erosion of lake catchments. This study addresses potential drivers of ostracod community structure and biodiversity at multiple spatial scales using NMS, CART?, and multiple regression models. We identified 23 ostracod species from 12 lake sites. Lake area, maximum depth, spring conductivity, chlorophyll a, pH, dissolved oxygen, sedimentary carbonate, and organic matter all influence ostracod community structure based on our NMS. Based on regression analysis, lake depth, chlorophyll a, and total dissolved solids best explained ostracod richness and abundance. Land uses are also important community structuring elements that varied with scale; locally and regionally agriculture, wetlands, and grasslands were important. Nationally, using regression tree analysis of lakes sites in the North American Non-marine ostracod database (NANODe), row-crop agriculture was the most important predictor of biodiversity. Low agriculture corresponded to low species richness but greater landscape heterogeneity produced sites of high ostracod richness.  相似文献   

15.
Variations in species richness and diversity at a local scale are affected by a number of complex and interacting variables, including both natural environmental factors and human-made changes to the local environment. Here we identified the most important determinants of woody species richness and diversity at different growth stages (i.e. adult, sapling and seedling) in a bamboo–deciduous forest in northeast Thailand. A total of 20 environmental and human disturbance variables were used to determine the variation in species richness and diversity. In total, we identified 125 adult, 111 sapling (within fifty 20 × 20-m plots) and 89 seedling species (within one hundred and twenty 1 × 1-m subplots). Overall results from stepwise multiple regression analyses showed that environmental variables were by far the most important in explaining the variation in species richness and diversity. Forest structure (i.e. number of bamboo clumps and canopy cover) was important in determining the adult species richness and diversity (R 2 = 0.48, 0.30, respectively), while topography (i.e. elevation) and human disturbance (i.e. number of tree stumps) were important in determining the sapling species richness and diversity (R 2 = 0.55, 0.39, respectively). Seedling species richness and diversity were negatively related to soil phosphorus. Based on our results, we suggest that the presence of bamboos should be incorporated in management strategies for maintaining woody species richness and diversity in these forest ecosystems. Specifically, if bamboos cover the forest floor at high densities, it may be necessary to actively control these species for successful tree establishment.  相似文献   

16.
17.
Tropical dry forests have been reduced to less than 0.1% of their original expanse on the Pacific side of Central America and are considered by some to be the most endangered ecosystem in the lowland tropics. Plots 1000 m2 were established in seven tropical dry forests in Costa Rica and Nicaragua in order to compare levels of species richness to other Neotropical dry forest sites and to identify environmental variables associated with species richness and abundance. A total of 204 species and 1484 individuals 2.5 cm were encountered. Santa Rosa National Park was the richest site with the highest family (33), genera (69), and species (75) diversity of all sites. Species richness and forest structure were significantly different between sites. Fabaceae was the dominant tree and shrub family at most sites, but no species was repeatably dominant based on number of stems in all fragments of tropical dry forest. Central American dry forests had similar species richness when compared to other Neotropical forests. There was no correlation between forest cover within reserves, or precipitation and plant species richness. There was a significant correlation between anthropogenic disturbance (intensity and frequency of fire, wood collection, grazing) and total species richness, tree and shrub species richness, and liana abundance. These results suggest controlling levels on anthropogenic disturbance within reserves should be a high priority for resource managers in Central America. Further research in forest fragments which examine individual and a combination of disturbance agents would help clarify the importance of anthropogenic disturbance on species richness and abundance.  相似文献   

18.
Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km2) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.  相似文献   

19.
The marine benthic cyanobacteria of the Iles Eparses, Mozambique Channel, were surveyed for the first time. A total of 39 species are reported: 29 from Europa, 17 from Glorioso and 23 from Juan de Nova Islands. The higher biodiversity in Europa is explained by greater habitat diversity on this Island with unique ecosystems (mangroves, fossil reefs, pools). Average species richness varied between the geomorphological habitat types with higher diversity in shallow environments (fossil reef pools, mangroves, reef flats), which are characterized by high temperatures and high irradiances. The most common species observed on the three islands were Hydrocoleum coccineum, Hydrocoleum glutinosum, Hydrocoleum lyngbyaceum, Phormidium laysanense, Lyngbya sordida, and Symploca hydnoides; which are also the dominant species observed in the Southwest Indian Ocean region. The most frequent species was Phormidium laysanense with extensive cover observed in the northwest of Juan de Nova Island. Our study provided a comparison between the cyanobacterial flora of Iles Eparses and the recorded surveys in the Southwest Indian Ocean region. The low similarity observed between these species lists could be explained by differences in sampling strategies and efforts, as well as by different taxonomic approaches employed in past regional studies.  相似文献   

20.
We studied how two methods to promote biodiversity in managed forests, i.e. green tree retention and prescribed fire, affect the assemblages of carabid beetles. Our experiment consisted of 24 study sites, each 3–5 ha in size, which had been prepared according to factorial design. Each of the eight treatment combinations determined by the two factors explored – tree retention level (0, 10, 50 m3/ha?1 and uncut controls) and prescribed use of fire (yes/no) – was replicated three times. We sampled carabids using pitfall traps one year after the treatments. Significantly more individuals were caught in most of the burned sites, but this difference was partially reflective of the trap‐catches of Pterostichus adstrictus. The fire did not increase no. of P. adstrictus in the uncut sites as much as in the other sites. Species richness was significantly affected by both factors, being higher in the burned than in the unburned sites and in the harvested than in the unharvested sites. Many species were concentrated in the groups of retention trees in the burned sites, but only a few were in the unburned sites. The species turnover was greater in the burned than in the unburned sites, as indicated by the NMDS ordinations. Greater numbers of smaller sized species and proportion of brachypterous species were present in the burned sites. Fire‐favored species, and also the majority of other species that prefer open habitats were more abundantly caught in the burned sites than in the unburned sites. Dead wood or logging waste around the traps did not correlate with the occurrence of species. We conclude that carabids are well adapted to disturbances, and that frequent use of prescribed fire is essential for the maintenance of natural assemblages of carabid beetles in the boreal forest. Small retention tree groups can not maintain assemblages of uncut forest, but they can be important by providing food, shelter and breeding sites for many species, particularly in the burned sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号