首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Our previous reports showed that cultured human cells secrete non-disulfide-bonded non-helical alpha1(IV) and alpha2(IV) chains under physiological conditions. In the present report we show that the alpha(IV) chains in non-helical form were reactive to lectin ABA (Agaricus bisporus agglutinin), whereas the alpha(IV) chains secreted in triple-helical form were not. These results indicate that ABA could be used to distinguish the two conformational isomers of type IV collagen polypeptides. An alpha1(IV) chain isolated from human placenta with an antibody-coupled column showed a positive reaction to ABA, indicating that gelatin form of the type IV collagen alpha1(IV) chain is produced and retained in the tissue in vivo. A possible significance of the gelatin form is discussed from the finding that the non-helical alpha1(IV) chain purified with EDTA-free buffer contained degraded polypeptides including NC1-size domain and showed an apparent inhibition against activated pro-MMP-9. This is the first report to show that a gelatin form of protein exists in vivo.  相似文献   

2.
We have isolated and characterized overlapping cDNA clones which code for a previously unidentified human collagen chain. Although the cDNA-derived primary structure of this new polypeptide is very similar to the basement membrane collagen alpha 1(IV) and alpha 2(IV) chains, the carboxyl-terminal collagenous/non-collagenous junction sequence does not correspond to the junction sequence in either of the newly described alpha 3(IV) or alpha 4(IV) chains (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B. G. (1987) J. Biol. Chem. 262, 7874-7877). Thus the protein presented here has been designated the alpha 5 chain of type IV collagen. Four clones encode an open reading frame of 1602 amino acids that cover about 95% of the entire chain including half of the amino-terminal 7S domain and all of the central triple-helical region and carboxyl-terminal NC1 domain. The collagenous region of the alpha 5(IV) chain contains 22 interruptions which are in most cases identical in distribution to those in both the alpha 1(IV) and alpha 2(IV) chains. Despite the relatively low degree of conservation among the amino acids in the triple-helical region of the three type IV collagen chains, analysis of the sequences clearly showed that alpha 5(IV) is more related to alpha 1(IV) than to alpha 2(IV). This similarity between the alpha 5(IV) and alpha 1(IV) chains is particularly evident in the NC1 domains where the two polypeptides are 83% identical in contrast to the alpha 5(IV) and alpha 2(IV) identity of 63%. In addition to greatly increasing the complexity of basement membranes, the alpha 5 chain of type IV collagen may be responsible for specialized functions of some of these extracellular matrices. In this regard, it is important to note that we have recently assigned the alpha 5(IV) gene to the region of the X chromosome containing the locus for a familial type of hereditary nephritis known as Alport syndrome (Myers, J.C., Jones, T.A., Pohjalainen, E.-R., Kadri, A.S., Goddard, A.D., Sheer, D., Solomon, E., and Pihlajaniemi, T. (1990) Am. J. Hum. Genet. 46, 1024-1033). Consequently, the newly discovered alpha 5(IV) collagen chain may have a critical role in inherited diseases of connective tissue.  相似文献   

3.
A minicollagen containing the COL1 and NC1 domains of chicken collagen XII has been produced in insect cells. Significant amounts of trimers contain a triple-helical domain in which the cysteines are not involved in inter- but in intrachain bonds. In reducing conditions, providing that the triple-helix is maintained, disulfide exchange between intra- and interchain bonding is observed, suggesting that the triple-helix forms first and that in favorable redox conditions interchain bonding occurs to stabilize the molecule. This hypothesis is verified by in vitro reassociation studies performed in the presence of reducing agents, demonstrating that the formation of interchain disulfide bonds is not a prerequisite to the trimeric association and triple-helical folding of the collagen XII molecule. Shortening the COL1 domain of minicollagen XII to its five C-terminal GXY triplets results in an absence of trimers. This can be explained by the presence of a collagenous domain that is too short to form a stable triple-helix. In contrast, the presence of five additional C-terminal triplets in COL1 allows the formation of triple-helical disulfide-bonded trimers, suggesting that the presence of a triple-helix is essential for the assembly of collagen XII.  相似文献   

4.
A large kindred with adult-type X-linked Alport syndrome was studied with regard to a defect in the recently described COL4A5 collagen gene. Southern blot analysis with COL4A5 cDNA probes showed loss of a MspI restriction site. Direct sequencing of cDNA amplified from lymphoblast mRNA demonstrated a single-base substitution converting a glycine codon to arginine at position 325 in the alpha 5 chain of type IV collagen. The triple-helical collagenous domain of alpha 5(IV), characterized by a Gly-X-Y repeat sequence, is interrupted 22 times by noncollagenous sequences. The mutation creates an additional interruption in the Gly-X-Y repeat motif, between interruptions 4 and 5. It is interesting that such glycine substitutions inside the COL1A1 or COL1A2 genes have been associated with many cases of osteogenesis imperfecta. This gly325-to-arg substitution presumably alters the triple-helix formation, and, in turn, modifies the ultrastructural and functional characteristics of the type IV collagen network inside the glomerular basement membrane.  相似文献   

5.
The organizational relationship between the recently identified alpha 3 chain of basement membrane collagen (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B.G. (1987) J. Biol. Chem. 262, 7874-7877) and collagen IV was determined. This was accomplished by the identification of subunits in hexamers of the NC1 domain of collagen IV that were immunoprecipitated with antibodies prepared against subunits M1, corresponding to alpha 1(IV)NC1 and alpha 2(IV)NC1, and M2, corresponding to alpha 3NC1, and by amino acid sequence analysis. The presence of at least two distinct types of hexamers was revealed, one enriched in M1 and the other enriched in M2, but in both types, M1 and M2 coexist. Evidence was also obtained for the existence of heterodimers comprised of M1 and M2. These results indicate that M2 is an integral component of the NC1 hexamer of collagen IV. The amino acid sequence of the NH2-terminal region of M2 was found to be highly related to the collagenous-NC1 junctional region of the alpha 1 chain of collagen IV. Therefore, M2 is designated alpha 3(IV)NC1 and its parent chain alpha 3(IV). These findings lead to a new concept about the structure of collagen IV: namely, 1) collagen IV is comprised of a third chain (alpha 3) together with the two classical ones (alpha 1 and alpha 2); the alpha 3(IV) chain exists within the same triple-helical molecule together with the alpha 1(IV) and alpha 2(IV) chains and/or within a separate triple-helical molecule, exclusive of alpha 1(IV) and alpha 2(IV) chains, but connected through the NC1 domains to the classical triple-helical molecule comprised of alpha 1(IV) and alpha 2(IV) chains. Additionally, a portion of those triple-helical molecules exclusive of alpha 1(IV) and alpha 2(IV) chains may be connected to each other through their NC1 domains; and 3) the epitope to which the major reactivity of autoantibodies are targeted in glomerular basement membrane in patients with Goodpasture syndrome is localized to the NC1 domain of the alpha 3(IV) chain.  相似文献   

6.
The aim of this investigation was to identify the domains of type IV collagen participating in cell binding and the cell surface receptor involved. A major cell binding site was found in the trimeric cyanogen bromide-derived fragment CB3, located 100 nm away from the NH2 terminus of the molecule, in which the triple-helical conformation is stabilized by interchain disulfide bridges. Cell attachment assays with type IV collagen and CB3 revealed comparable cell binding activities. Antibodies against CB3 inhibited attachment on fragment CB3 completely and on type IV collagen to 80%. The ability to bind cells was strictly conformation dependent. Four trypsin derived fragments of CB3 allowed a closer investigation of the binding site. The smallest, fully active triple-helical fragment was (150)3-amino acid residues long. It contained segments of 27 and 37 residues, respectively, at the NH2 and COOH terminus, which proved to be essential for cell binding. By affinity chromatography on Sepharose-immobilized CB3, two receptor molecules of the integrin family, alpha 1 beta 1 and alpha 2 beta 1, were isolated. Their subunits were identified by sequencing the NH2 termini or by immunoblotting. The availability of fragment CB3 will allow for a more in-depth study of the molecular interaction of a short, well defined triple-helical ligand with collagen receptors alpha 1 beta 1 and alpha 2 beta 1.  相似文献   

7.
Ascorbic acid stimulates secretion of type I collagen because of its role in 4-hydroxyproline synthesis, but there is some controversy as to whether secretion of type IV collagen is similarly affected. This question was examined in differentiated F9 cells, which produce only type IV collagen, by labeling proteins with [14C]proline and measuring collagen synthesis and secretion. Hydroxylation of proline residues in collagen was inhibited to a greater extent in cells treated with the iron chelator α,α′-dipyridyl (97.7%) than in cells incubated without ascorbate (63.1%), but both conditions completely inhibited the rate of collagen secretion after 2–4 h, respectively. Neither treatment affected laminin secretion. Collagen synthesis was not stimulated by ascorbate even after treatment for 2 days. On SDS polyacrylamide gels, collagen produced by α,α′-dipyridyl-treated cells consisted mainly of a single band that migrated faster than either fully (+ ascorbate) or partially (− ascorbate) hydroxylated α1(IV) or α2(IV) chains. It did not contain interchain disulfide bonds or asn-linked glycosyl groups, and was completely digested by pepsin at 15°C. These results suggested that it was a degraded product lacking the 7 S domain and that it could not form a triple helical structure. In contrast, the partially hydroxylated molecule contained interchain disulfide bonds and it was cleaved by pepsin to collagenous fragments similar in size to those obtained from the fully hydroxylated molecule, but at a faster rate. Kinetic experiments and monensin treatment suggested that completely unhydroxylated type IV collagen was degraded intracellularly in the endoplasmic reticulum or cis Golgi. These studies indicate that partial hydroxylation of type IV collagen confers sufficient helical structure to allow interchain disulfide bond formation and resistance to pepsin and intracellular degradation, but not sufficient for optimal secretion. J Cell. Biochem. 67:338–352, 1997. Published 1997 Wiley-Liss, Inc.  相似文献   

8.
Folding of collagen IV   总被引:5,自引:0,他引:5  
Collagen IV dimers of two collagen IV molecules connected by their C-terminal globular NC1 domains were isolated by limited digestion with bacterial collagenase from mouse Engelbreth-Holm-Swarm (EHS) sarcoma tissue. The collagenous domains were only 300 nm long as compared to 400 nm of intact collagen IV but the disulfide bonds in the N-terminal region of the major triple helix were retained. Unfolding of the collagenous domains as monitored by circular dichroism occurred in a temperature range of 30 to 44 degrees C with a midpoint at 37 degrees C. The transition is significantly broader than that of the continuous triple helices in collagens I, II and III, a feature which can be explained by the frequent non-collagenous interruptions in the triple-helical domain of collagen IV. Refolding at 25 degrees C following complete unfolding at 50 degrees C was monitored by circular dichroism, selective proteolytic digestion of non-refolded segments and by a newly developed method in which the recovered triple-helical segments were visualized by electron microscopy. Triple-helix formation was found to proceed in a zipper-like fashion from the C-terminal NC1 domains towards the N-terminus, indicating that this domain is essential for nucleations. For collagen IV dimers with intact NC1 domains the rate of triple-helix growth was of comparable magnitude to that of collagen III, demonstrating that the non-collagenous interruptions do not slow down the refolding process where the rate-limiting step is the cis-trans isomerization of proline peptide bonds. Refolding was near to 100% and the refolding products were similar to the starting material as judged by thermal stability and electron microscopic appearance. Removal of the NC1 domains by pepsin or dissociation of their hexametric structures by acetic acid led to a loss of the refolding ability. Instead products with randomly dispersed short triple-helical segments were formed in a slow reaction. In no case, even when the disulfide bonds in the N-terminal region of the triple-helical domain were intact, was refolding from the N- towards the C-terminus observed. Taken together with results in other collagens, this suggests that C to N directionality might be an intrinsic property of triple-helix folding.  相似文献   

9.
Assembly of chick and bovine lens-capsule collagen.   总被引:1,自引:1,他引:0       下载免费PDF全文
Chick-embryo and adult bovine lens-capsular epithelia in organ culture synthesized 4-hydroxy[3H]proline-containing polypeptides when incubated in the presence of [3H]proline. These collagenous polypeptides of apparent Mr 180 000, 175 000 and 160 000 became incorporated with time into aggregates of higher molecular size. The formation of such aggregates was inhibited when the tissues were labelled in the presence of beta-aminopropionitrile, thereby implicating lysine-derived cross-links in aggregate formation. When the tissues were incubated in the presence of tunicamycin, the collagenous polypeptides synthesized exhibited increased electrophoretic mobilities on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The addition to lens-capsule incubation medium of alpha alpha'-bipyridine led to the synthesis of underhydroxylated type IV collagen, also of increased electrophoretic mobility. Extended pulse-chase experiments indicated that such underhydroxylated collagen did not participate in aggregate formation, but was at least as stable as fully hydroxylated non-cross-linked collagen synthesized in the presence of beta-aminopropionitrile. Native type IV collagen, recovered from the culture medium when capsules were incubated with [3H]proline for 24h, was purified by ion-exchange chromatography. Separations conducted on CM-cellulose under denaturing and nondenaturing conditions suggested that the alpha 1(IV) and alpha 2(IV) chains occur in the same heterologous triple helix. Densitometric analyses of appropriate fluorograms indicated that these two polypeptides occur in a 2:1 ratio, suggesting that lens-capsule collagen is synthesized as a triple-helical molecule of composition [alpha 1(IV)]2 alpha 2(IV).  相似文献   

10.
Collagen type IV provides a biomechanically stable scaffold into which the other constituents of basement membranes are incorporated, but it also plays an important role in cell adhesion. This occurs with collagen type IV mainly via the alpha1beta1 integrin, and the proposed epitope involved in this type of collagen/integrin interaction corresponds to a non-sequential R/Xaa/D motif, where the arginine and aspartate residues are provided by the alpha2 and alpha1 chains of the collagen molecule, respectively. Since the stagger of the three alpha chains in native collagen type IV is still unknown and different alignments of the chains lead to different spatial epitopes, two heterotrimeric collagen peptides containing the natural 457-469 sequences of the cell adhesion site were synthesized in which the single chains were assembled via disulfide bonds into the two most plausible alpha1alpha2alpha1' and alpha2alpha1alpha1' registers. The differentiated triple-helical stabilities of the two heterotrimers suggest a significant structural role of the chain register in collagen, although the binding to alpha1beta1 integrin is apparently less affected as indicated by preliminary experiments.  相似文献   

11.
Type IV collagen includes six genetically distinct polypeptides named alpha1(IV) through alpha6(IV). These isoforms are speculated to organize themselves into unique networks providing mammalian basement membranes specificity and inequality. Recent studies using bovine and human glomerular and testis basement membranes have shown that unique networks of collagen comprising either alpha1 and alpha2 chains or alpha3, alpha4, and alpha5 chains can be identified. These studies have suggested that assembly of alpha5 chain into type IV collagen network is dependent on alpha3 expression where both chains are normally present in the tissue. In the present study, we show that in the lens and inner ear of normal mice, expression of alpha1, alpha2, alpha3, alpha4, and alpha5 chains of type IV collagen can be detected using alpha chain-specific antibodies. In the alpha3(IV) collagen-deficient mice, only the expression of alpha1, alpha2, and alpha5 chains of type IV collagen was detectable. The non-collagenous 1 domain of alpha5 chain was associated with alpha1 in the non-collagenous 1 domain hexamer structure, suggesting that network incorporation of alpha5 is possible in the absence of the alpha3 chain in these tissues. The present study proves that expression of alpha5 is not dependent on the expression of alpha3 chain in these tissues and that alpha5 chain can assemble into basement membranes in the absence of alpha3 chain. These findings support the notion that type IV collagen assembly may be regulated by tissue-specific factors.  相似文献   

12.
We studied tissue and cultured skin fibroblasts from a newborn with the lethal perinatal form of osteogenesis imperfecta born to a mother with the Marfan syndrome and her unrelated husband. Dermis from the infant was thinner and fibril diameter smaller than control; dermal fibroblastic cells had dilated endoplasmic reticulum. His fibroblasts in culture synthesized two different species of pro alpha 1(I) chains in about equal quantity. One chain was normal, the other contained cysteine within the triple-helical portion of the COOH-terminal cyanogen bromide peptide alpha 1(I)CB6. Molecules which contained two copies of the mutant chain formed alpha 1(I)-dimers linked through interchain disulfide bonds. Molecules which contained either one or two mutant chains were delayed in secretion and underwent excessive lysyl hydroxylation and hydroxylysyl glycosylation of all chains in the molecule, probably as a result of delayed triple-helix formation. Molecules containing either one or two copies of the mutant chain melted at 38 degrees C instead of 41 degrees C. The most likely explanation for these findings is that a cysteine is substituted for a glycine in the triple-helical domain of the products of one of the alpha 1(I) alleles. Such a substitution would interfere with triple-helix formation and stability and thus explain 1) the decreased melting temperature, 2) the increased post-translational modification, 3) the altered rate of secretion and accumulation of intracellular material, 4) the increased intracellular degradation of newly synthesized collagen, and 5) the decreased collagen production. Since neither parental cell strain produced the same mutant chain, the findings are best explained by a new mutation in one of the alpha 1(I) genes. The role of the uncharacterized "Marfan" gene in modifying the phenotype in this patient is unclear.  相似文献   

13.
We have determined the primary structure of the alpha 1(IV)-chain of human type IV collagen by nucleotide sequencing of overlapping cDNA clones that were isolated from a human placental cDNA library. The present data provide the sequence of 295 amino acids not previously determined. Altogether, the alpha 1(IV)-chain contains 1642 amino acids and has a molecular mass of 157625 Da. There are 1413 residues in the collagenous domain and 229 amino acids in the carboxy-terminal globular domain. The human alpha 1(IV)-chain contains a total of 21 interruptions in the collagenous Gly-X-Y repeat sequence. These interruptions vary in length between two and eleven residues. The alpha 1(IV)-chain contains four cysteine residues in the triple-helical domain, four cysteines in the 15-residue long noncollagenous sequence at the amino-terminus and 12 cysteines in the carboxy-terminal NC-domain.  相似文献   

14.
We have isolated two overlapping cDNA clones that provide the complete nucleotide sequence coding for the NC-1 domain and 3'-untranslated region of the alpha 2 chain of human type IV collagen as well as a sequence encoding 232 residues of the collagenous domain. An extensive homology was observed between the sequences of the NC-1 domain of the alpha 1(IV) and alpha 2(IV) chains, but considerably less between the sequences encoding collagenous and 3'-untranslated regions. There were four interruptions in the collagenous sequence studied whereas the comparable region of the alpha 1(IV) chain had only two. A potential oligosaccharide attachment site was found in a 6-residue long interruption of the collagenous domain but none in the NC-1 domain.  相似文献   

15.
We have isolated and characterized cDNA and genomic DNA clones which encode an alpha 2(IV) collagen chain from the parasitic nematode Ascaris suum. In addition we have determined, by nucleic acid sequence analysis, the structural organization of approximately two-thirds of the gene. This analysis has shown that the gene contains at least 15 introns, and those that have been characterized range in size from 141 to 854 base pairs. The derived protein sequence contains 1763 amino acids and includes a putative 26-amino acid signal sequence. The collagenous triple-helical region contains 17 interruptions, many of which occur in the same positions as those in the human alpha 1(IV) and alpha 2(IV) chains. Comparison of the genomic DNA sequence with the cDNA sequence has revealed the presence of a sequence within the gene which appears to be an intact and normal exon that is not represented in our cDNA sequence. The presence of this putative exon raises the possibility that the A. suum alpha 2(IV) collagen gene may undergo alternative splicing.  相似文献   

16.
The sequence of 511 residues from the C-terminal portion of the triple helix of mouse alpha 2(IV) chain was determined by using the pepsin fragment P2 of collagen IV and two cDNA clones selected from an Engelbreth-Holm-Swarm (EHS) tumor library. The sequence contains nine interruptions of the triplet repeat Gly-Xaa-Yaa ranging in size from single insertions or deletions up to stretches of eleven amino acid residues. Five of these interruptions match those present in the homologous segment of the alpha 1(IV) chain but are otherwise different in length and/or sequence. A low homology was found for the triplet regions of the alpha 1(IV) and alpha 2(IV) chain which constitute more than 90% of the sequence. The data indicate a remote evolutionary relationship of the triple-helical sequences of the two constituent chains of basement membrane collagen.  相似文献   

17.
We have determined the nucleotide and amino acid sequences of mouse alpha 2(IV) collagen which is 1707 amino acids long. The primary structure includes a putative 28-residue signal peptide and contains three distinct domains: 1) the 7 S domain (residues 29-171), which contains 5 cysteine and 8 lysine residues, is involved in the cross-linking and assembly of four collagen IV molecules; 2) the triple-helical domain (residues 172-1480), which has 24 sequence interruptions in the Gly-X-Y repeat up to 24 residues in length; and 3) the NC1 domain (residues 1481-1707), which is involved in the end-to-end assembly of collagen IV and is the most highly conserved domain of the protein. Alignment of the primary structure of the alpha 2(IV) chain with that of the alpha 1(IV) chain reported in the accompanying paper (Muthukumaran, G., Blumberg, B., and Kurkinen, M. (1989) J. Biol. Chem. 264, 6310-6317) suggests that a heterotrimeric collagen IV molecule contains 26 imperfections in the triple-helical domain. The proposed alignment is consistent with the physical data on the length and flexibility of collagen IV.  相似文献   

18.
We have examined the collagenous proteins extracted from skin and produced by skin fibroblast cultures from the members of a family with mild dominant osteogenesis imperfecta (OI type I). The two affected patients, mother and son, produce two populations of alpha 1(I) chains of type I collagen, one chain being normal, the other containing a cysteine within the triple-helical domain. Both forms can be incorporated into triple-helical molecules with an alpha 2(I) chain. When two mutant alpha (I) chains are incorporated into the same molecule, a disulfide bonded dimer is produced. We have characterized these chains by sodium dodecyl sulfate-gel electrophoresis and CNBr-peptide mapping and by measuring a number of biosynthetic and physical variables. The cysteine was localized to the COOH-terminal peptide alpha (I) CB6. Molecules containing the mutant chains are stable, have a normal denaturation temperature, are secreted normally, and have normal levels of post-translational modification of lysyl residues and intracellular degradation. We have compared and contrasted these observations with those made in a patient with lethal osteogenesis imperfecta in which there was a cysteine substitution in alpha 1(I) CB6 (Steinmann, B., Rao, V. H., Vogel, A., Bruckner, P., Gitzelmann, R., and Byers, P. H. (1984) J. Biol. Chem 259, 11129-11138) and have concluded that the mutation in the present family occurs in the X or Y position of a Gly-X-Y repeating unit of collagen and not in the glycine position shown for the previous patient (Cohn, D. H., Byers, P. H., Steinmann, B, and Gelinas, R. E. (1986) Proc. Natl. Acad. Sci. U. S. A., in press.  相似文献   

19.
Goodpasture's (GP) disease is caused by autoantibodies that target the alpha3(IV) collagen chain in the glomerular basement membrane (GBM). Goodpasture autoantibodies bind two conformational epitopes (E(A) and E(B)) located within the non-collagenous (NC1) domain of this chain, which are sequestered within the NC1 hexamer of the type IV collagen network containing the alpha3(IV), alpha4(IV), and alpha5(IV) chains. In this study, the quaternary organization of these chains and the molecular basis for the sequestration of the epitopes were investigated. This was accomplished by physicochemical and immunochemical characterization of the NC1 hexamers using chain-specific antibodies. The hexamers were found to have a molecular composition of (alpha3)(2)(alpha4)(2)(alpha5)(2) and to contain cross-linked alpha3-alpha5 heterodimers and alpha4-alpha4 homodimers. Together with association studies of individual NC1 domains, these findings indicate that the alpha3, alpha4, and alpha5 chains occur together in the same triple-helical protomer. In the GBM, this protomer dimerizes through NC1-NC1 domain interactions such that the alpha3, alpha4, and alpha5 chains of one protomer connect with the alpha5, alpha4, and alpha3 chains of the opposite protomer, respectively. The immunodominant Goodpasture autoepitope, located within the E(A) region, is sequestered within the alpha3alpha4alpha5 protomer near the triple-helical junction, at the interface between the alpha3NC1 and alpha5NC1 domains, whereas the E(B) epitope is sequestered at the interface between the alpha3NC1 and alpha4NC1 domains. The results also reveal the network distribution of the six chains of collagen IV in the renal glomerulus and provide a molecular explanation for the absence of the alpha3, alpha4, alpha5, and alpha6 chains in Alport syndrome.  相似文献   

20.
Invasion of the basement membrane is believed to be a critical step in the metastatic process. Melanoma cells have been shown previously to bind distinct triple-helical regions within basement membrane (type IV) collagen. Additionally, tumor cell binding sites within type IV collagen contain glycosylated hydroxylysine residues. In the present study, we have utilized triple-helical models of the type IV collagen alpha1(IV)1263-1277 sequence to (a) determine the melanoma cell receptor for this ligand and (b) analyze the results of single-site glycosylation on melanoma cell recognition. Receptor identification was achieved by a combination of methods, including (a) cell adhesion and spreading assays using triple-helical alpha1(IV)1263-1277 and an Asp(1266)Abu variant, (b) inhibition of cell adhesion and spreading assays, and (c) triple-helical alpha1(IV)1263-1277 affinity chromatography with whole cell lysates and glycosaminoglycans. Triple-helical alpha1(IV)1263-1277 was bound by melanoma cell CD44/chondroitin sulfate proteoglycan receptors and not by the collagen-binding integrins or melanoma-associated proteoglycan. Melanoma cell adhesion to and spreading on the triple-helical alpha1(IV)1263-1277 sequence was then compared for glycosylated (replacement of Lys(1265) with Hyl(O-beta-d-galactopyranosyl)) versus non-glycosylated ligand. Glycosylation was found to strongly modulate both activities, as adhesion and spreading were dramatically decreased due to the presence of galactose. CD44/chondroitin sulfate proteoglycan did not bind to glycosylated alpha1(IV)1263-1277. Overall, this study (a) is the first demonstration of the prophylactic effects of glycosylation on tumor cell interaction with the basement membrane, (b) provides a rare example of an apparent unfavorable interaction between carbohydrates, and (c) suggests that sugars may mask "cryptic sites" accessible to tumor cells with cell surface or secreted glycosidase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号