首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
EWI-2, a cell surface immunoglobulin SF protein of unknown function, associates with tetraspanins CD9 and CD81 with high stoichiometry. Overexpression of EWI-2 in A431 epidermoid carcinoma cells did not alter cell adhesion or spreading on laminin-5, and had no effect on reaggregation of cells plated on collagen I (alpha2beta1 integrin ligand). However, on laminin-5 (alpha3beta1 integrin ligand), A431 cell reaggregation and motility functions were markedly impaired. Immunodepletion and reexpression experiments revealed that tetraspanins CD9 and CD81 physically link EWI-2 to alpha3beta1 integrin, but not to other integrins. CD81 also controlled EWI-2 maturation and cell surface localization. EWI-2 overexpression not only suppressed cell migration, but also redirected CD81 to cell filopodia and enhanced alpha3beta1-CD81 complex formation. In contrast, an EWI-2 chimeric mutant failed to suppress cell migration, redirect CD81 to filopodia, or enhance alpha3beta1-CD81 complex formation. These results show how laterally associated EWI-2 might regulate alpha3beta1 function in disease and development, and demonstrate how tetraspanin proteins can assemble multiple nontetraspanin proteins into functional complexes.  相似文献   

2.
Tetraspanin CD82 has been implicated in integrin-mediated functions such as cell motility and invasiveness. Although tetraspanins associate with integrins, it is unknown if and how CD82 regulates the functionality of integrins. In this study, we found that Du145 prostate cancer cells underwent morphogenesis on the reconstituted basement membrane Matrigel to form an anastomosing network of multicellular structures. This process entirely depends on integrin alpha6, a receptor for laminin. After CD82 is expressed in Du145 cells, this cellular morphogenesis was abolished, indicating a functional cross-talk between CD82 and alpha6 integrins. Interestingly, antibodies against other tetraspanins expressed in Du145 cells such as CD9, CD81, and CD151 did not block this integrin alpha6-dependent morphogenesis. We further found that CD82 significantly inhibited cell adhesion on laminin 1. Notably, the level of alpha6 integrins on the cell surface was down-regulated upon CD82 expression, although total cellular alpha6 protein levels remained unchanged in CD82-expressing cells. This down-regulation indicates that the diminished cell adhesiveness of CD82-expressing Du145 cells on laminin likely resulted from less cell surface expression of alpha6 integrins. As expected, CD82 physically associated with the integrin alpha6 in Du145-CD82 transfectant cells, suggesting that the formation of the CD82-integrin alpha6 complex reduces alpha6 integrin cell surface expression. Finally, the internalization of cell surface integrin alpha6 is significantly enhanced upon CD82 expression. In conclusion, our results indicate that 1) CD82 attenuates integrin alpha6 signaling during a cellular morphogenic process; 2) the decreased surface expression of alpha6 integrins in CD82-expressing cells is likely responsible for the diminished adhesiveness on laminin and, subsequently, results in the attenuation of alpha6 integrin-mediated cellular morphogenesis; and 3) the accelerated internalization of integrin alpha6 upon CD82 expression correlates with the down-regulation of cell surface integrin alpha6.  相似文献   

3.
The tetraspanin CD151 forms a stoichiometric complex with integrin alpha3beta1 and regulates its endocytosis. We observed that down-regulation of CD151 in various epithelial cell lines changed glycosylation of alpha3beta1. In contrast, glycosylation of other transmembrane proteins, including those associated with CD151 (e.g. alpha6beta1, CD82, CD63, and emmprin/CD147) was not affected. The detailed analysis has shown that depletion of CD151 resulted in the reduction of Fucalpha1-2Gal and bisecting GlcNAc-beta(1-->4) linkage on N-glycans of the alpha3 integrin subunit. The modulatory activity of CD151 toward alpha3beta1 was specific, because stable knockdown of three other tetraspanins (i.e. CD9, CD63, and CD81) did not affect glycosylation of the integrin. Analysis of alpha3 glycosylation in CD151-depleted breast cancer cells with reconstituted expression of various CD151 mutants has shown that a direct contact with integrin is required but not sufficient for the modulatory activity of the tetraspanin toward alpha3beta1. We also found that glycosylation of CD151 is also critical; Asn(159) --> Gln mutation in the large extracellular loop did not affect interactions of CD151 with other tetraspanins or alpha3beta1 but negated its modulatory function. Changes in the glycosylation pattern of alpha3beta1 observed in CD151-depleted cells correlated with a dramatic decrease in cell migration toward laminin-332. Migration toward fibronectin or static adhesion of cells to extracellular matrix ligands was not affected. Importantly, reconstituted expression of the wild-type CD151 but not glycosylation-deficient mutant restored the migratory potential of the cells. These results demonstrate that CD151 plays an important role in post-translation modification of alpha3beta1 integrin and strongly suggest that changes in integrin glycosylation are critical for the promigratory activity of this tetraspanin.  相似文献   

4.
Glycosphingolipids (GSLs) at the cell surface membrane are associated or complexed with signal transducers (Src family kinases and small G-proteins), tetraspanins, growth factor receptors, and integrins. Such organizational framework, defining GSL-modulated or -dependent cell adhesion, motility, and growth, is termed "glycosynapse" (Hakomori, S., and Handa, K. (2002) FEBS Lett. 531, 88-92; Hakomori, S. (2004) Ann. Braz. Acad. Sci. 76, 553-572). We describe here the functional organization of the glycosynaptic microdomain, and the mechanisms for control of cell motility and invasiveness, in normal bladder epithelial HCV29 cells versus highly invasive bladder cancer YTS1 cells, both derived from transitional epithelia. (i) Ganglioside GM2, but not GM3 or globoside, interacted specifically with tetraspanin CD82, and such a complex inhibited hepatocyte growth factor (HGF)-induced activation of Met tyrosine kinase in a dose-dependent manner. (ii) Depletion of GM2 in HCV29 cells by treatment with D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4), or reduction of CD82 expression by RNA interference, significantly enhanced HGF-induced Met tyrosine kinase and cell motility. (iii) In contrast, YTS1 cells, lacking CD82, displayed HGF-independent activation of Met tyrosine kinase and high cell motility. Transfection of the CD82 gene to YTS1 inhibited HGF dose-dependent Met tyrosine kinase activity and cell motility, due to formation of the GM2-CD82 complex. (iv) Adhesion of YTS1 or YTS1/CD82 cells to laminin-5-coated plates, as compared with noncoated plates, strongly enhanced Met activation, and the degree of activation was further increased in association with GSL depletion by P4. Laminin-5-dependent Met activation was minimal in HCV29 cells. These findings indicate that GSL, particularly GM2, forms a complex with CD82, and that such complex interacts with Met and thereby inhibits HGF-induced Met tyrosine kinase activity, as well as integrin to Met cross-talk.  相似文献   

5.
The basement membrane protein laminin-5 supports tumor cell adhesion and motility and is implicated at multiple steps of the metastatic cascade. Tetraspanin CD151 engages in lateral, cell surface complexes with both of the major laminin-5 receptors, integrins alpha3beta1 and alpha6beta4. To determine the role of CD151 in tumor cell responses to laminin-5, we used retroviral RNA interference to efficiently silence CD151 expression in epidermal carcinoma cells. Near total loss of CD151 had no effect on steady state cell surface expression of alpha3beta1, alpha6beta4, or other integrins with which CD151 associates. However, CD151-silenced carcinoma cells displayed markedly impaired motility on laminin-5, accompanied by unusually persistent lateral and trailing edge adhesive contacts. CD151 silencing disrupted alpha3beta1 integrin association with tetraspanin-enriched microdomains, reduced the bulk detergent extractability of alpha3beta1, and impaired alpha3beta1 internalization in cells migrating on laminin-5. Both alpha3beta1- and alpha6beta4-dependent cell adhesion to laminin-5 were also impaired in CD151-silenced cells. Reexpressing CD151 in CD151-silenced cells reversed the adhesion and motility defects. Finally, loss of CD151 also impaired migration but not adhesion on substrates other than laminin-5. These data show that CD151 plays a critical role in tumor cell responses to laminin-5 and reveal promotion of integrin recycling as a novel potential mechanism whereby CD151 regulates tumor cell migration.  相似文献   

6.
Cell motility is highly dependent on the organization and function of microdomains composed of integrin, proteolipid/tetraspanin CD9, and ganglioside (Ono, M., Handa, K., Sonnino, S., Withers, D. A., Nagai, H., and Hakomori, S. (2001) Biochemistry 40, 6414-6421; Kawakami, Y., Kawakami, K., Steelant, W. F. A., Ono, M., Baek, R. C., Handa, K., Withers, D. A., and Hakomori, S. (2002) J. Biol. Chem. 277, 34349-34358), later termed "glycosynapse 3" (Hakomori, S., and Handa, K. (2002) FEBS Lett. 531, 88-92, 2002). Human bladder cancer cell lines KK47 (noninvasive and nonmetastatic) and YTS1 (highly invasive and metastatic), both derived from transitional bladder epithelia, are very similar in terms of integrin composition and levels of tetraspanin CD9. Tetraspanin CD82 is absent in both. The major difference is in the level of ganglioside GM3, which is several times higher in KK47 than in YTS1. We now report that the GM3 level reflects glycosynapse function as follows: (i) a stronger interaction of integrin alpha3 with CD9 in KK47 than in YTS1; (ii) conversion of benign, low motility KK47 to invasive, high motility cells by depletion of GM3 by P4 (D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol) treatment or by knockdown of CD9 by the RNA interference method; (iii) reversion of high motility YTS1 to low motility phenotype like that of KK47 by exogenous GM3 addition, whereby the alpha3-to-CD9 interaction was enhanced; (iv) low GM3 level activated c-Src in YTS1 or in P4-treated KK47, and high GM3 level by exogenous addition caused Csk translocation into glycosynapse, with subsequent inhibition of c-Src activation; (v) inhibition of c-Src by "PP2" in YTS1 greatly reduced cell motility. Thus, GM3 in glycosynapse 3 plays a dual role in defining glycosynapse 3 function. One is by modulating the interaction of alpha3 with CD9; the other is by activating or inhibiting the c-Src activity, possibly through Csk translocation. High GM3 level decreases tumor cell motility/invasiveness, whereas low GM3 level enhances tumor cell motility/invasiveness. Oncogenic transformation and its reversion can be explained through the difference in glycosynapse organization.  相似文献   

7.
Arrest of circulating tumor cells in distant organs is required for hematogenous metastasis, but the tumor cell surface molecules responsible have not been identified. Here, we show that the tumor cell alpha3beta1 integrin makes an important contribution to arrest in the lung and to early colony formation. These analyses indicated that pulmonary arrest does not occur merely due to size restriction, and raised the question of how the tumor cell alpha3beta1 integrin contacts its best-defined ligand, laminin (LN)-5, a basement membrane (BM) component. Further analyses revealed that LN-5 is available to the tumor cell in preexisting patches of exposed BM in the pulmonary vasculature. The early arrest of tumor cells in the pulmonary vasculature through interaction of alpha3beta1 integrin with LN-5 in exposed BM provides both a molecular and a structural basis for cell arrest during pulmonary metastasis.  相似文献   

8.
GM3 ganglioside inhibits tetraspanin CD9-facilitated cell motility in various cell lines (Ono, M., Handa, K., Sonnino, S., Withers, D. A., Nagai, H., and Hakomori, S. (2001) Biochemistry 40, 6414-6421). We now report the following: (i) CD9 has the novel feature of being soluble in chloroform/methanol, and classifiable as "proteolipid"; (ii) CD9 and alpha(3) integrin were concentrated together in the low-density glycolipid-enriched microdomain (GEM) of ldlD/CD9 cells, and the alpha(3) expression ratio (value for cells grown under +Gal condition divided by the value for cells grown under -Gal condition) in GEM of ldlD/CD9 cells was higher than that in control ldlD/moc cells, suggesting that CD9 recruits alpha(3) in GEM under +Gal condition, whereby GM3 is present. (iii) Chemical levels of alpha(3) and CD9 in the total extract or membrane fractions from cells grown under +Gal versus -Gal condition were nearly identical, whereas alpha(3) expressed at the cell surface, probed by antibody binding in flow cytometry, was higher under -Gal than +Gal condition. These results suggest that GM3 synthesized under +Gal condition promotes interaction of alpha(3) with CD9, which restricts alpha(3) binding to its antibody. A concept of the alpha(3)/CD9 interaction promoted by GM3 was further supported by (i) co-immunoprecipitation of CD9 and alpha(3) under +Gal but not -Gal condition, (ii) enhanced co-immunoprecipitation of CD9 and alpha(3) when GM3 was added exogenously to cells under -Gal condition, and (iii) the co-localization images of CD9 with alpha(3) and of GM3 with CD9 in fluorescence laser scanning confocal microscopy. Based on the promotion of alpha(3)/CD9 interaction by GM3 and the status of laminin-5 as a true ligand for alpha(3), the laminin-5/alpha(3)-dependent motility of ldlD/CD9 cells was found to be greatly enhanced under -Gal condition, but strongly inhibited under +Gal condition. Such a motility difference under +Gal versus -Gal condition was not observed for ldlD/moc cells. The inhibitory effect observed in ldlD/CD9 cells under +Gal condition was reversed upon addition of anti-alpha(3) antibody and is therefore based on interaction between alpha(3), CD9, and GM3 in GEM.  相似文献   

9.
The N-glycosylation of integrin alpha5beta1 is thought to play crucial roles in cell spreading, cell migration, ligand binding, and dimer formation, but the underlying mechanism remains unclear. To investigate the importance of the N-glycans of this integrin in detail, sequential site-directed mutagenesis was carried out to remove single or combined putative N-glycosylation sites on the alpha5 integrin. Removal of the putative N-glycosylation sites on the beta-propeller, Thigh, Calf-1, or Calf-2 domains of the alpha5 subunit resulted in a decrease in molecular weight compared with the wild type, suggesting that all of these domains contain attached N-glycans. Importantly, the absence of N-glycosylation sites (sites 1-5) on the beta-propeller resulted in the persistent association of integrin subunit with calnexin in the endoplasmic reticulum, which subsequently blocked heterodimerization and its expression on the cell surface. Interestingly, the activities for cell spreading and migration for the alpha5 subunit carrying only three potential N-glycosylation sites (3-5 sites) on the beta-propeller were comparable with those of the wild type. In contrast, mutation of these three sites resulted in a significant decrease in cell spreading as well as functional expression, although the total expression level of the Delta3-5 mutant on the cell surface was comparable with that of wild type. Furthermore, we found that site 5 is a most important site for its expression on the cell surface, whereas the S5 mutant did not show any biological functions. Taken together, this study reveals for the first time that the N-glycosylation on the beta-propeller domain of the alpha5 subunit is essential for heterodimerization and biological functions of alpha5beta1 integrin and might also be useful for studies of the molecular structure.  相似文献   

10.
Integrins are involved in several ways in keratinocyte physiology, including cell motility. CD9 is a member of the tetraspanin protein family which is found in association with other transmembrane proteins like the integrins. CD9 is expressed in the epidermal tissue, but this expression is not regulated by differentiation. The present work focuses on association of CD9 with the integrin alpha6beta4 in keratinocytes. In vivo, CD9 does not co-localize with alpha6beta4, and is not internalized with the integrin upon basal detachment with dispase. In vitro, CD9 is found partly in co-localization with alpha6beta4 and is internalized with the integrin after keratinocyte detachment with dispase. Using blocking antibodies in a phagokinetic tracks assay, we show that CD9, and to a lesser extent alpha6beta4, but not the tetraspanin CD82, promote motility of subconfluent keratinocytes on collagen I. Our observations also suggest that CD9 is involved in the formation of lamellipodia. We also report that the phorbol ester TPA has no effect on CD9 expression and association with alpha6beta4, but increases keratinocyte motility, possibly through modulation of integrin subunits expression, or through upregulation of collagenase-1 expression. Together, these results confirm that CD9 associates with alpha6beta4 in cultured keratinocytes, possibly in order to regulate the function of the integrin, and that CD9 is involved in keratinocyte motility on collagen. The data suggest that regulation of adhesion characteristics by CD9 in keratinocytes may play a role in epidermal repair.  相似文献   

11.
CD98 heavy chain (CD98hc) is expressed highly in developing human placental trophoblast. CD98hc is an amino acid transporter and is thought to function in cell fusion, adhesion, and invasion by interacting with integrins. In invasive extravillous trophoblast, alpha(v)beta(3) integrin is expressed in a temporally and spatially specific manner, which prompted us to investigate the potential role of CD98hc in signal transduction of alpha(v)beta(3) integrin. Immunocytochemistry of extravillous trophoblast derived from human placenta revealed that CD98hc colocalized with alpha(v)beta(3) integrin and with alpha(v)beta(3)-associated cytoplasmic proteins including paxillin, vinculin, and focal adhesion kinase. Coimmunoprecipitation of CD98hc and its mutants revealed that the transmembrane domain of CD98hc is necessary for the association of CD98hc with alpha(v)beta(3) integrin. When CD98hc negative liver cells (FLC4) were stably transfected with CD98hc and the extracellular domain of CD98hc was cross-linked by anti-CD98 antibody, FLC4 cells binding affinity to fibronectin and cell motility increased. The anti-CD98 antibody cross-linking promoted actin stress fiber formation and activation of signal transduction downstream of RhoA GTPase, and elevated the phosphorylation of focal adhesion kinase, paxillin, and protein kinase B. Pretreatment of transfected FLC4 cells with specific inhibitors for alpha(v)beta(3)integrin, phosphatidylinositol 3-kinase, and RhoA diminished these effects caused by anti-CD98 antibody cross-linking. These results suggest that notoriously invasive activity of extravillous trophoblast is mediated by CD98hc, which promotes alpha(v)beta(3) integrin-dependent signals.  相似文献   

12.
The integrin alpha(7)beta(1) is the major laminin-binding integrin in skeletal, heart, and smooth muscle and is a receptor for laminin-1 and -2. It mediates myoblast migration on laminin-1 and -2 and thus might be involved in muscle development and repair. Previously we have shown that alpha(7)B as well as the alpha(7)A and -C splice variants induce cell motility on laminin when transfected into nonmotile HEK293 cells. In this study we have investigated the role of the cytoplasmic domain of alpha(7) in the laminin-induced signal transduction of alpha(7)beta(1) integrin regulating cell adhesion and migration. Deletion of the cytoplasmic domain did not affect assembly of the mutated alpha(7)Deltacyt/beta(1) heterodimer on the cell surface or adhesion of alpha(7)Deltacyt-transfected cells to laminin. The motility of these cells on the laminin-1/E8 fragment, however, was significantly reduced to the level of mock-transfected cells; lamellipodia formation and polarization of the cells were also impaired. Adhesion to the laminin-1/E8 fragment induced tyrosine phosphorylation of the focal adhesion kinase, paxillin, and p130(CAS) as well as the formation of a p130(CAS)-Crk complex in wild-type alpha(7)B-transfected cells. In alpha(7)BDeltacyt cells, however, the extent of p130(CAS) tyrosine formation was reduced and formation of the p130(CAS)-Crk complex was impaired, with unaltered levels of p130(CAS) and Crk protein levels. These findings indicate adhesion-dependent regulation of p130(CAS)/Crk complex formation by the cytoplasmic domain of alpha(7)B integrin after cell adhesion to laminin-1/E8 and imply alpha(7)B-controlled lamellipodia formation and cell migration through the p130(CAS)/Crk protein complex.  相似文献   

13.
Endogenous GM3 synthesis and full N-glycosylation in membrane receptors occurred in "4-epimerase-less" ldlD (Krieger's CHO mutant) cells cultured in Gal-containing medium, whereby components of detergent-insoluble, low-density, buoyant membrane fraction, termed "glycolipid-enriched microdomain (GEM)," varied significantly by translocation into or out of GEM. Integrins alpha3 and alpha5 were translocated into GEM in the presence of 0.5 or 0.25% Triton X-100, particularly in the absence of Gal, whereby integrins are underglycosylated and GlcCer is the major glycolipid component in GEM. Src family kinase was translocated into and enriched in GEM fractions when prepared in 0.5 or 0.25% Triton X-100 from cells grown in Gal-containing medium, whereby GM3 synthesis is induced. In contrast, caveolin is highly enriched in GEM when GM3 synthesis does not occur, and is translocated into high-density membrane fraction when GM3 synthesis occurs. The results suggest that levels of key molecules controlling cell adhesion and signaling are defined by translocation into or out of GEM, which depends on glycosylation state.  相似文献   

14.
We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.  相似文献   

15.
Laminin-2 (LN-2, alpha2beta1gamma1) is a basement membrane-associated laminin isoform usually considered in the context of muscle and nerve tissues. To test the hypothesis that LN-2 can additionally modulate epithelial cell biology, an analysis of the role of LN-2 in cell adhesion, activation of signalling intermediates and proliferation was undertaken. A virally transformed human conjunctival epithelial cell line (HC0597) was utilized in this study. Adhesion assays using function-inhibiting antibodies demonstrated that alpha3beta1 integrin is essential for the rapid attachment of conjunctival epithelial cells to LN-2. Bromodeoxyuridine (BrdU) incorporation analyses revealed that, compared with LN-1 or LN-10, LN-2 significantly promotes epithelial proliferation. Phosphorylation of the signalling intermediates Erk1/2 and Akt-1 was observed within 15 min of cell adhesion to LN-2. Inhibiting alpha3beta1 integrin function decreased total cellular phosphotyrosine levels, specifically inhibited phosphorylation of Erk1/2 and Akt-1, and dampened the proliferation response of epithelial cells adherent to LN-2. Inhibition of Erk or Akt activation inhibited cell proliferation in a dose-dependent manner. However, the inhibition of Erk resulted in a stronger suppression of proliferation compared with Akt inhibition. From these results, it is concluded that human conjunctival epithelial cells adhere to immobilized LN-2 using alpha3beta1 integrin. alpha3beta1 integrin/LN-2 signalling, transduced primarily through an Erk pathway, enhances epithelial cell proliferation. These results demonstrate that LN-2 can impact on epithelial cell biology in addition to nerve and muscle, and provide information regarding the role of this isoform in ocular surface epithelial cells.  相似文献   

16.
The control point by which chondrocytes take the decision between the cartilage differentiation program or the joint formation program is unknown. Here, we have investigated the effect of alpha5beta1 integrin inhibitors and bone morphogenetic protein (BMP) on joint formation. Blocking of alpha5beta1 integrin by specific antibodies or RGD peptide (arginine-glycine-aspartic acid) induced inhibition of pre-hypertrophic chondrocyte differentiation and ectopic joint formation between proliferating chondrocytes and hypertrophic chondrocytes. Ectopic joint expressed Wnt14, Gdf5, chordin, autotaxin, type I collagen and CD44, while expression of Indian hedgehog and type II collagen was downregulated in cartilage. Expression of these interzone markers confirmed that the new structure is a new joint being formed. In the presence of BMP7, inhibition of alpha5beta1 integrin function still induced the formation of the ectopic joint between proliferating chondrocytes and hypertrophic chondrocytes. By contrast, misexpression of alpha5beta1 integrin resulted in fusion of joints and formation of pre-hypertrophic chondrocytes. These facts indicate that the decision of which cell fate to make pre-joint or pre-hypertrophic is made on the basis of the presence or absence of alpha5beta1 integrin on chondrocytes.  相似文献   

17.
Crk-associated substrate (Cas) lymphocyte-type (Cas-L) is a 105-kDa cytoplasmic protein consisting of Src homology-3 domain and multiple YXXP motifs (substrate domain). Our previous studies showed that Cas-L is tyrosine-phosphorylated following the ligation of TCR and beta 1 integrins in T lymphocytes. Here we show that Cas-L is involved in T cell motility following the ligation of TCR and beta 1 integrin. Peripheral T lymphocytes showed a marked increase of migration on fibronectin (FN) after the ligation of TCR. In contrast, the migrating Jurkat cells, in which Cas-L was marginally expressed, were less than one-tenth in number on the same condition. Transfection of wild-type Cas-L into Jurkat cells resulted in restoring CD3 plus FN-induced cell migration. Furthermore, following the ligation of beta 1 integrin alone, the Cas-L transfectants significantly migrated better than the vector control. Mutational analysis of Cas-L revealed that the substrate domain is required for both FN- and CD3-induced tyrosine phosphorylation of Cas-L and cell migration caused by FN alone and CD3 plus FN. In contrast, the Src homology-3 domain is required only for the FN-induced tyrosine phosphorylation of Cas-L and cell migration, but not for CD3-induced tyrosine phosphorylation or CD3 plus FN-induced cell migration. These data strongly suggest that Cas-L is a key molecule in T cell migration induced by the ligation of CD3 and beta 1 integrins and that tyrosine phosphorylation of Cas-L is essential for T cell migration.  相似文献   

18.
p21-activated kinase 1 (PAK1) can affect cell migration (Price et al., 1998; del Pozo et al., 2000) and modulate myosin light chain kinase and LIM kinase, which are components of the cellular motility machinery (Edwards, D.C., L.C. Sanders, G.M. Bokoch, and G.N. Gill. 1999. Nature Cell Biol. 1:253-259; Sanders, L.C., F. Matsumura, G.M. Bokoch, and P. de Lanerolle. 1999. SCIENCE: 283:2083-2085). We here present a novel cell motility pathway by demonstrating that PAK4 directly interacts with an integrin intracellular domain and regulates carcinoma cell motility in an integrin-specific manner. Yeast two-hybrid screening identified PAK4 binding to the cytoplasmic domain of the integrin beta 5 subunit, an association that was also found in mammalian cells between endogenous PAK4 and integrin alpha v beta 5. Furthermore, we mapped the PAK4 binding to the membrane-proximal region of integrin beta 5, and identified an integrin-binding domain at aa 505-530 in the COOH terminus of PAK4. Importantly, engagement of integrin alpha v beta 5 by cell attachment to vitronectin led to a redistribution of PAK4 from the cytosol to dynamic lamellipodial structures where PAK4 colocalized with integrin alpha v beta 5. Functionally, PAK4 induced integrin alpha v beta 5-mediated, but not beta1-mediated, human breast carcinoma cell migration, while no changes in integrin cell surface expression levels were observed. In conclusion, our results demonstrate that PAK4 interacts with integrin alpha v beta 5 and selectively promotes integrin alpha v beta 5-mediated cell migration.  相似文献   

19.
The high-affinity heparin-binding domain and the V region of fibronectin (FN) mediate invasion and migration of human oral squamous cell carcinoma (SCC) cells. We investigated the role of the alpha4, alpha5, and alphav integrin receptors--which are central to mediating interactions with these domains of FN--in regulating SCC cell migration. SCC cells expressed the alpha4, alpha5, and alphav integrin subunits on their surface, although alpha4 expression was low. Treatment with recombinant FN proteins containing an alternatively spliced V region (V+) and either an unmutated (H+) or a mutated, nonfunctional high-affinity heparin-binding domain (H-) increased expression of alpha5 and alphav and cell motility. Antisense alpha5 or alphav oligonucleotides inhibited cell motility stimulated by FN proteins, as did blocking antibodies to alpha5 or alphav. Blocking antibodies to alpha5 increased alphav and alpha4 levels, and blocking antibodies to alphav increased the levels of alpha5 and alpha4, without increasing cell motility. In contrast, an antisense alpha4 oligonucleotide and alpha4-blocking antibodies increased cell motility, especially migration stimulated by V+H+ and V+H- FN proteins. alpha4-Blocking antibodies alone increased motility, probably by inducing alpha5 and alphav expression. Transfection with alpha4 cDNA decreased cell motility and alpha5 and alphav expression. Thus, the increased motility induced by the FN protein is probably mediated by alphav and alpha5, whereas alpha4 downregulates this process in a transdominant fashion.  相似文献   

20.
We investigated the molecular and cellular actions of receptor protein tyrosine phosphatase (PTP) alpha in integrin signaling using immortalized fibroblasts derived from wild-type and PTP alpha-deficient mouse embryos. Defects in PTP alpha-/- migration in a wound healing assay were associated with altered cell shape and focal adhesion kinase (FAK) phosphorylation. The reduced haptotaxis to fibronectin (FN) of PTP alpha-/- cells was increased by expression of active (but not inactive) PTP alpha. Integrin-mediated formation of src-FAK and fyn-FAK complexes was reduced or abolished in PTP alpha-/- cells on FN, concomitant with markedly reduced phosphorylation of FAK at Tyr397. Reintroduction of active (but not inactive) PTP alpha restored FAK Tyr-397 phosphorylation. FN-induced cytoskeletal rearrangement was retarded in PTP alpha-/- cells, with delayed filamentous actin stress fiber assembly and focal adhesion formation. This mimicked the effects of treating wild-type fibroblasts with the src family protein tyrosine kinase (Src-PTK) inhibitor PP2. These results, together with the reduced src/fyn tyrosine kinase activity in PTP alpha-/- fibroblasts (Ponniah et al., 1999; Su et al., 1999), suggest that PTP alpha functions in integrin signaling and cell migration as an Src-PTK activator. Our paper establishes that PTP alpha is required for early integrin-proximal events, acting upstream of FAK to affect the timely and efficient phosphorylation of FAK Tyr-397.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号