首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nodulated Lupinus albus L. was grown on quartz sand in the greenhouseand supplied with a N-free culture solution. Half the plantswere infected with Cuscuta reflexa Roxb. at 33 DAS. An empiricallybased modelling technique was developed to quantitatively depictuptake, flow and utilization of C and N in the host plant andbetween host and parasite over a 12 d period. The modellingincorporated C: N ratios of solutes in phloem and pressure-inducedxylem sap, net increments of C and N and respiratory lossesof C. For assessing the transfer of solutes from host phloemto Cuscuta it was not possible to use the C: N ratio of phloemsap close to the site of parasite attachment, a procedure whichwould have assumed non-specific withdrawal of phloem-borne solutes,since this would have implied unimpeded mass flow from hostto parasite. The relative intake of C and N by the parasiteby specific withdrawal of nitrogenous and carbonaceous solutesfrom the phloem was obtained independently by assuming thatxylem intake occurred non-specifically. Xylem import was thusobtained (a) from transpiration and tissue water increment ofCuscuta and the concentrations of N and C in xylem sap and (b)from the Ca2+ increment of Cuscuta and the ratios Ca: N andCa: C in lupin xylem sap, assuming that Ca2+ intake occurredsolely via xylem. By subtracting net xylem import from totaluptake of C and N by Cuscuta the methods resulted in comparableratios of C: N intake from the phloem. The average ratio (53.4)was smaller than the C:N ratio in host phloem (85.6) indicatingspecific withdrawal of solutes with a distinct preference forN. Using this ratio, modelling of flows of C and N was possibleand showed that Cuscuta abstracted C and N mainly from the hostphloem, but xylem supply was nutrient-dependent and amountedto 6.4% of the N but only 0.5% of the C demand. The resultsindicated that Cuscuta exerted a very strong sink and competedefficiently with the root, the major sink of L. albus, by attracting81% of the current photosynthate and more N (223%) than wascurrently fixed. The massive demand of the parasite led to lossesparticularly of N from leaves and the root and apart from causingcarbon losses it appeared to induce a sink-dependent stimulationof photosynthesis. In contrast, nitrogen fixation in the Cuscuta-infectedlupin was inhibited to 37% of the control. Key words: Cuscuta reflexa, Lupinus albus, carbon, nitrogen, phloem, xylem, transport, parasites, modelling  相似文献   

2.
A recently developed empirically based modelling technique wasused to quantify uptake, flow and utilization of C and N inLupinus albus L., uninfected and parasitized by Cuscuta reflexaRoxb. plants over a 12 d period during flowering and early fruitsetting of the host. The modelling combined data on molar C:Nratios in host phloem and pressure-induced xylem sap, net incrementsof C and N in host and parasite plant parts and respiratorylosses of C. The modelling of the solute transfer between hostand Cuscuta was achieved by assuming non-specific intake fromthe xylem. The models predicted that Cuscuta derived 99.5% ofits carbon and 93.6% of its nitrogen demand from the host phloem.The overriding sink strength of the parasite diverted most ofthe basipetally translocated host assimilates and massivelycompeted with the host root and inhibited fruit setting. Carbonincorporation in Cuscuta consumed 56%, respiration 24% and secretionby extrafloral nectaries 1.8% of the current host photosynthate.Root respiration was inhibited by 59% and carbon was mobilizedfrom host root and leaves. Competition by the parasite for Nwas even more severe and Cuscuta incorporated nitrogen equalling223% of current fixation, but N2 fixation of the host was severelyrestricted to 37%. Withdrawal of N from host phloem led to severelosses of N from leaves and the root and marked decreases inN concentration. It required massive xylem-to-phloem transferof N, because the xylem as the major supply route for N wasnot exploited substantially by Cuscuta. The results are discussedin relation to likely causes for parasite-induced pathogeniceffects, suggesting that Cuscuta affected the host adverselyby depriving it mainly of its nitrogen, but that causal to incipientnitrogen deficiency and restricted N2 fixation was the superiorsink potential of Cuscuta, which prevented adequate supply ofassimilates to the nodulated root. The dominating sink potentialof Cuscuta is compared with the similarly strong sink competitionexerted by fruits at the stage of seed filling in annual plants. Key words: Cuscuta reflexa, Lupinus albus, parasitism, carbon, nitrogen, phloem, xylem, transport  相似文献   

3.
Michael Wink  Thomas Hartmann 《Planta》1982,156(6):560-565
A tigloyl-CoA: 13-hydroxylupanine O-tigloyl-transferase could be demonstrated in crude enzyme preparations from Lupinus albus seedlings. The enzyme activity increases concomitantly with for formation of 13-tigloyloxylupanine in developing lupin seedlings. The transferase catalyzes specifically the transfer of an acyl group to 13-hydroxylupanine. The apparent Km-values are 140 M for tigloyl-CoA and 18 M for 13-hydroxylupanine. Other hydroxylated compounds, e.g., lupinine, 4-hydroxylupanine, and cholesterol are not acylated. The transferase shows optimal activity at pH 7–8 and at 30°C. It is activated by dithioerythritol and inhibited by thiol reagents. Tigloyl-CoA can be replaced as acyl donor by benzoyl-CoA and to a lesser extent by valeroyl-CoA, 3-methylbutyryl-CoA, butyryl CoA and propionyl-CoA but not acetyl-CoA. Preliminary evidence indicates that the transfer of the tigloyl and benzoyl moieties is catalyzed by different enzymes. The transferase activity could only be demonstrated in plants which produce quinolizidine alkaloids.Abbreviations DIECA diethyldithiocarbamate - DTE dithioerythritol - GLC gas-liquid chromatography  相似文献   

4.
Each of the principal quinolizidine alkaloids (QA) found in both xylem and phloem exudates together with extracts from all component organs collected from bitter (cv. Lupini) and sweet (cv. Ultra) cultivars of Lupinus albus L. were quantified by gas chromatographic analyses throughout reproductive development. In addition to establishing the major translocated QA species estimates for fluxes of QA to developing fruits based on their sap composition and water economy showed that around half of the QA that accumulated in fruit tissues was due to synthesis in situ and half to translocation principally by phloem. Detailed analyses of QA in transport fluids and component organs were extended to reciprocal homo- and hetero-grafts using bitter (cv. Fest) and sweet (cv. Danja) cultivars of L. angustifolius L. These data confirmed that the majority of QA were synthesized in shoot tissues. In both lupin species feeding and analysis of deuterated QA (lupanine and 13-hydroxylupanine) were used as tracers to demonstrate direct redistribution of alkaloids by translocation from mature leaves in phloem.  相似文献   

5.
Wild white lupins have high levels of alkaloids, which cause a bitter taste, whereas domesticated white lupin varieties have a very low content of alkaloids in seeds. Genes for bitterness from wild white lupins are a contamination threat to domesticated white lupin via cross‐pollination. The gene(s) for alkaloid synthesis have not been clearly identified, and the associated molecular background among wild white lupin, domesticated and contaminated domesticated plant materials is unknown. So far, only tigloyl‐CoA:(?)‐13alpha‐hydroxymultiflorine/(+)‐13alpha‐hydroxylupanine O‐tigloyltransferase (HMT/HLTase) cDNA has been cloned based on protein analysis, which was suggested as encoding a quinolizidine alkaloid transferase regulating quinolizidine alkaloid biosynthesis. This gene has not yet been well characterised in important white lupin genotypes. In this study, we found that the majority of the intron sequence of the HMT/HLTase gene differed between wild white lupin accessions P25758 and P27593, and between the commercial varieties. The expression pattern as well as the expression level of the HMT/HLTase gene showed no difference between the P25758 and the low‐alkaloid variety Kiev mutant, suggesting the expression of the HMT/HLTase gene has no correlation with bitterness. However, the intron sequence is useful as a DNA marker in the identification of the contamination source of bitter seeds in commercial lupin seed lots.  相似文献   

6.
Alkaloid profiles of two Lupinus species growing naturally in Egypt (L. albus albus [synonym L. termis], L. varius orientalis) in addition to two New World species (L. hartwegii, L. densiflorus) which were cultivated in Egypt were studied by capillary GLC and GLC-mass spectrometry with respect to quinolizidine alkaloids. Altogether 44 quinolizidine, bipiperidyl and proto-indole alkaloids were identified; 29 in L. albus, 13 in L. varius orientalis, 15 in L. hartwegii, 6 in L. densiflorus. Some of these alkaloids were identified for the first time in these plants. The alkaloidal patterns of various plant organs (leaves, flowers, stems, roots, pods and seeds) are documented. Screening for antimicrobial activity of these plant extracts demonstrated substantial activity against Candida albicans, Aspergillus flavus and Bacillus subtilis.  相似文献   

7.
Summary The mechanism of parasitism of Cuscuta, especially the absorption of nutrients from its host, is not clear. As it might be connected with the function of plant hormones, the endogenous levels of all hormone groups in the parasite, Cuscuta reflexa, and its host, Vicia faba, were investigated. Since the content of auxins, gibberellins and cytokinins is higher in the host than in the parasite, there is no indication that any of these phytohormones is involved in the absorption of nutrients by Cuscuta. However, the content of growth inhibitors, especially free abscisic acid, is much higher in Cuscuta than in the host. There is a gradient of abscisic acid with a maximum in the basal, haustoria-bearing stem region in which the transfer of nutrients from host to parasite occurs. The high content of abscisic acid within the parasite may be a causal connection with the parasitic absorption of nutrients from host sieve tubes.This publication is respectfully dedicated to the academician Prof. Dr. A. L. Kursanov, Moscow, on the occasion of the 80th anniversary of his birthday.  相似文献   

8.
The parasitic angiosperm Cuscuta reflexa contains unusually high amounts of the carotenoids lutein-5,6-epoxide and 9- cis -violaxanthin. In this study the light-dependent conversions of these carotenoids in entire plant tissue and purified LHCII b was compared with that of the xanthophyll cycle carotenoid violaxanthin when plants are exposed to high irradiance followed by low irradiance. In entire tissue under high irradiance, similar conversion kinetics and stoichiometry with de-epoxidation products suggest that both lutein-5,6-epoxide and all- trans -violaxanthin are equally suitable substrates for de-epoxidase. This is not the case under low irradiance as, although epoxidation of zeaxanthin and antheraxanthin rapidly restores the violaxanthin pool, the recovery of the lutein-5,6-epoxide pool is comparatively slow and has no stoichiometric relationship with its de-epoxidation product, lutein. Light-dependent changes in the concentration of 9- cis -violaxanthin mimic violaxanthin. However, the inability to detect de-epoxidation products or to de-epoxidize 9- cis -violaxanthin in vitro suggests that it is not subject to de-epoxidation and, instead, its concentration changes may reflect the equilibrium between isomers of violaxanthin. Light exposure did not affect the composition of carotenoids bound to purified LHCII b , indicating that these bound carotenoids are not subject to de-epoxidation and do not contribute to the isomer pool equilibrium. The biosynthetic origins of lutein-5,6-epoxide and the potential role of these carotenoid cycles in photoprotection are discussed.  相似文献   

9.
Michael Wink  Ludger Witte 《Planta》1984,161(6):519-524
Quinolizidine alkaloids formed in the leaves of Lupinus albus L. are translocated via the phloem to the other plant organs, especially the maturing fruits. Compared with amino-acid transport in the phloem, the alkaloids contribute about 8% to the overall nitrogen being exported from the leaf. Since it is likely that the alkaloids are subsequently degraded in the target tissues a minor role of quinolizidine alkaloids might be nitrogen transport. A marked diurnal fluctuation of alkaloids was observed in the leaves, the phloem sap, the roots and the fruits with an increase during the day and an amplitude of several hundred percent thus providing evidence for a rapid turnover of endogenous alkaloids.Abbreviations QA quinolizidine alkaloids - GLC gas-liquid chromatography  相似文献   

10.
11.
Endogenous levels of cytokinin activity were examined in Lupinus albus L. seed at intervals of 2 weeks after anthesis using the soybean callus bioassay. High levels of cytokinin activity per gram seed material were present in the seeds at 2, 4, and 6 weeks after anthesis. The cytokinin activity per gram seed material was low at 8 and 10 weeks after anthesis. Cytokinin activity associated with each seed was greatest at 6 weeks after anthesis. The majority of the activity in the seeds at 4, 6, and 8 weeks after anthesis was in the endosperm. Cytokinin activity was also detected in the testas and embryos at 4, 6, 8, and 10 weeks, and the suspensors at 4 weeks. Column chromatography of extracts of the different seed fractions on Sephadex LH-20 indicated that the cytokinins present coeluted with zeatin, zeatin riboside, and the glucoside cytokinins. It is suggested that cytokinins are accumulated in the seeds and are stored in the endosperm mainly in the form of ribosides and glucosides of zeatin. The reduction in cytokinin activity in the seed coincides with the reduction in endosperm volume and embryo growth and suggests that these compounds are utilized during the course of seed maturation.  相似文献   

12.
Cytokinins in the different regions of Cuscuta reflexa Roxb. vine have been extracted and assayed using the Xanthium cotyledon bioassay with N6-benzylaminopurine as the reference cytokinin. Maximum cytokinin level was found in the haustoria-bearing region with the gradient decreasing towards the apex. The cytokinin content of the apex was less than 1% of that in the whole haustorial region. Interestingly, the concave half of the vine contained about forty times more cytokinin in the haustorial region than the corresponding convex half. The high concentration of cytokinin or cytokinin-like substances in the haustoria-bearing site in Cuscuta might be due either to a high RNase activity in the region or translocation from the host to parasite or both.  相似文献   

13.
Peroxidases (EC 1.11.1.7) from hypocotyls of Lupinus albus L. cv. Rio Maior have been characterised using one- and two-dimensional, native electrophoretic techniques. Data are presented showing the complexity in charge and molecular size or shape of these peroxidases. We report the finding of a new acidic peroxidase and several new basic peroxidases in these hypocotyls, and of their stability to treatments considered to break ligand-induced variants and conformational variants derived from differences in polypeptide folding. Densitometric data demonstrate that these new peroxidases contribute up to 60 of the total peroxidase activity in hypocotyls. Studies of intercellular fluid, cell-wall and soluble fractions, with assays of purity were conducted in an attempt to define the subcellular locations of these additional peroxidases. The acidic form (pI 4.1) is greatly enriched in soluble fractions, three of the basic peroxidases (pIs 9.5, 9.7 and >9.7) are strongly associated to the cell wall, ad a minor, basic component (pI 9.7) is enriched in the intercellular fluid. Individual peroxidase activities with the substrates coniferyl alcohol, ferulic acid or indole acetic acid were compared by densitometric analysis of zymograms with those for guaiacol, and notable differences between these peroxidases in their capacity to oxidise indole acetic acid in vitro were identified. The possible functions of these peroxidases in vivo and their implications to current understanding of peroxidases in L. albus are discussed.Abbreviations APAGE anionic polyacrylamide gel electrophoresis - CA coniferyl alcohol - CPAGE cationic polyacrylamide gel electrophoresis - IEF isoelectric focusin - NEIEF non-equilibrated isoelectric focusing - 2D two dimensional - pI isoelectric point - RCPAGE reversed current polyacrylamide gel electrophoresis  相似文献   

14.
Using polyacrylamide gel electrophoresis in the glycine-acetic acid system (pH 3.2), variants of proteins of white-lupine seeds were revealed. The study of conglutin polymorphism in the culture of the autogamous population F→∞ (var. Dega) revealed two loci, Con A and Con B, which control protein synthesis. The loci were situated in the same linkage group within a distance of 11.48 ± 3.4% of recombination. Natural selection in favor of genotypes that contain Con A1 and Con B2 alleles is proposed. It is established that conglutins A and B (CON A and CON B) contain cysteine residues, which form intermolecular disulfide bonds between peptides.  相似文献   

15.
Kerley  S. J.  Leach  J. E.  Swain  J. L.  Huyghe  C. 《Plant and Soil》2000,222(1-2):241-253
In calcareous soils, genotypes of Lupinus albus L. generally grow poorly, resulting in stunted plants that often develop lime-induced chlorosis. In contrast, some genotypes of L. pilosus Murr. occur naturally in calcareous soils without developing any visible symptoms of stress. Some genotypic variation for tolerance to calcareous soil does exist in L. albus and the tolerance mechanisms need to be determined. The adaptation through root system morphological plasticity of L. albus and L. pilosus, to heterogeneous limed soil profiles (pH 7.8) containing either patches of acid (non-limed) soil, or vertically split between acid and limed soil, was investigated. When grown in the presence of patches of acid soil, L. albus had a 52% greater shoot dry weight and visibly greener leaves compared with plants grown in the homogeneous limed soil. Total root dry matter in the acid-soil patches was greater than in the control limed-soil patches. This was due to a four-fold increase in the cluster root mass, accounting for 95% of the root dry matter in the acid-soil patch. Although these cluster roots secreted no more citric acid per unit mass than those in the limed soil did, their greater mass resulted in a higher citrate concentration in the surrounding soil. L. pilosus responded to the patches of acid soil in a manner comparable with L. albus. When grown in the homogeneous limed soil, L. pilosus had a greater maximum net CO2 assimilation rate (Pmax) than L. albus, however, the Pmax of both species increased after they had accessed a patch of acid soil. Differences were apparent between the L. albus genotypes grown in soil profiles split vertically into limed and acid soil. A genotype by soil interaction occurred in the partitioning between soils of the cluster roots. The genotype La 674 was comparable with L. pilosus and produced over 11% of its cluster roots in the limed soil, whereas the other genotypes produced only 1–3% of their cluster roots in the limed soil. These results indicate L. pilosus is better adapted to the limed soil than L. albus, but that both species respond to a heterogeneous soil by producing mainly cluster roots in an acid-soil patch. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
17.
Werner M  Uehlein N  Proksch P  Kaldenhoff R 《Planta》2001,213(4):550-555
A subtractive suppression hybridization technique was used to identify genes that were induced during early phases of the interaction between Cuscuta reflexa, a phanerogamic plant parasite and the incompatible host tomato (Lycopersicon esculentum Mill.). One of the identified genes encodes a new aquaporin (LeAqp2) from tomato. Its function was concluded from the swelling kinetics of LeAqp2-expressing Xenopus laevis oocytes under hypo-osmotic conditions. It was shown that, 6 h after attachment of the plant parasite, the corresponding mRNA accumulated in cells at and adjacent to the attachment site of Cuscuta, while artificial wounding did not modify steady-state LeAqp2- RNA levels. Expression of a close homologue named TRAMP (tomato-ripening-associated protein) was not affected by the plant-plant interaction. Levels of indole-3-acetic acid (IAA) in tomato tissue after infection by Cuscuta have been found to increase at a similar stage of infection. In contrast to the different behavior with respect to infection, IAA induced both LeAqp2 and TRAMP expression. The observed pattern of LeAqp2 expression during the interaction at a stage where cell elongation occurs together with the water-channel activity in the heterologous expression system suggest a function for LeAqp2 during the tomato-Cuscuta interaction.  相似文献   

18.
白羽扇豆在缺磷或缺铁条件下均有排根形成,并且根系还原力显著增加。缺磷、缺铁根系还原力在高峰期分别高于对照。缺磷与缺铁根系还原力高峰不仅出现的时期不同,而且还原力增加部位也不一样。缺磷处理的排根区具有很高的还原力,缺铁处理还原力较高的部位是在主根和侧根的根尖以及排根区。由于Mn4+比Fe3+更易被还原,致使根系还原力提高促使根际大量锰被还原,这是缺磷和缺铁造成白羽扇豆锰中毒的主要原因之一。  相似文献   

19.
In a study of host-parasite interrelationship and the mechanism of parasitization, ribonuclease activity was determined in Cuscuta reflexa Roxb, and in infected and control host plants of Lantana camara L. In the haustoria-bearing region of Cuscuta , the concave half of the vine bearing the haustorial site, always showed significantly higher RNase activity than the convex half, irrespective of the differing enzyme activity of the parasite tissue growing on different hosts — Brassica campestris L., Helianthus animus L., Lantana camara L., Medicago saliva L. and Solatium nigrum L. The uninfected host branch of L. camara showed the maximum specific RNase activity in the apical region which decreased toward the base, while the infected host branch showed minimum specific RNase activity in the apical region, gradually increasing towards the infected region.  相似文献   

20.
Lupin nodule cells maintain their ability to divide for several cycles after being infected by endosymbiotic rhizobia. The conformation of the cytoskeletal elements of nodule cells was studied by fluorescence labelling, immunocytochemistry, and laser confocal and transmission electron microscopy. The dividing infected cells showed the normal microtubule and actin patterns of dividing plant cells. The clustered symbiosomes were tethered to the spindle-pole regions and moved to the cell poles during spindle elongation. In metaphase, anaphase, and early telophase, the symbiosomes were found at opposite cell poles where they did not interfere with the spindle filaments or phragmoplast. This symbiosome positioning was comparable with that of the organelles (which ensures organelle inheritance during plant cell mitosis). Tubulin microtubules and actin microfilaments appeared to be in contact with the symbiosomes. The possible presence of actin molecular motor myosin in nodules was analysed using a monoclonal antibody against the myosin light chain. The antigen was detected in protein extracts of nodule and root cytosol as bands of approximately 20 kDa (the size expected). In the nodules, an additional polypeptide of 65 kDa was found. Immunogold techniques revealed the antigen to be localized over thin microfilaments linked to the cell wall, as well as over the thicker microfilament bundles and surrounding the symbiosomes. The pattern of cytoskeleton rearrangement in dividing infected cells, along with the presence of myosin antigen, suggests that the positioning of symbiosomes in lupin nodule cells might depend on the same mechanisms used to partition genuine plant cell organelles during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号