首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superoxide generated adventitiously by the mitochondrial respiratory chain can give rise to much more reactive radicals, resulting in random oxidation of all classes of macromolecules. Harman's 1956 suggestion that this process might drive aging has been a leading strand of biogerontological thinking since the discovery of superoxide dismutase. However, it has become apparent that the many downstream consequences of free radical damage can also be caused by processes not involving oxidation. Moreover, free radicals have been put to use by evolution to such an extent that their wholesale elimination would certainly be fatal. This multiplicity of parallel pathways and side-effects illustrates why attempts to postpone aging by “cleaning up” metabolism will surely fail for the foreseeable future: we simply understand metabolism too poorly. This has led me to pursue the alternative, “repair and maintenance” approach that sidesteps our ignorance of metabolism and may be feasible relatively soon.  相似文献   

2.
Free radicals and disease.   总被引:6,自引:0,他引:6  
Free radicals and reactive oxygen species (ROS) have been associated with the etiology and/or progression of a number of diseases and in aging. Many of the proteins oxidatively modified by free radicals contain side-chain carbonyl derivatives, which can be used as markers for protein oxidation. The protein carbonyl content has been quantitated as a function of age for human cultured dermal fibroblasts, lens, and brain tissue. These data were analyzed using a simple autocatalytic model with the assumption that free radicals randomly oxidize proteins or peptides to form carbonyl derivatives and lead to their inactivation. The carbonylated proteins and peptides are highly susceptible to proteolytic degradation. Implication of free radicals in aging and in age-dependent susceptibility to neurodegenerative diseases will be discussed in light of this simplified kinetic model.  相似文献   

3.
Free radicals and reactive oxygen or nitrogen species generated during oxidative stress and as by-products of normal cellular metabolism may damage all types of biological molecules. Proteins are major initial targets in cell. Reactions of a variety of free radicals and reactive oxygen and nitrogen species with proteins can lead to oxidative modifications of proteins such as protein hydroperoxides formation, hydroxylation of aromatic groups and aliphatic amino acid side chains, nitration of aromatic amino acid residues, oxidation of sulfhydryl groups, oxidation of methionine residues, conversion of some amino acid residues into carbonyl groups, cleavage of the polypeptide chain and formation of cross-linking bonds. Such modifications of proteins leading to loss of their function (enzymatic activity), accumulation and inhibition of their degradation have been observed in several human diseases, aging, cell differentiation and apoptosis. Formation of specific protein oxidation products may be used as biomarkers of oxidative stress.  相似文献   

4.
The aging brain, metals and oxygen free radicals.   总被引:4,自引:0,他引:4  
In this overview we bring together certa in facts and concepts that support the theory that the aging of "disease-free" brain is a consequence of the accumulated cellular-molecular modifications caused by oxygen free radicals. The relevance of transition metals, especially iron ions, in the production of oxygen free radicals, initiation of oxidative chain-reactions and in site-specific molecular modifications is documented. Mitochondria are identified as the major source of oxygen free radicals, and mitochondrial DNA is a likely target. Special attention is given to iron-sulfur clusters as sources of reactive iron and sites of modifications. Potential mechanisms by which oxygen free radicals can alter membrane receptors and intracellular signaling are cited. Although the evidence is still correlative, the oxygen free radical theory has strong experimental support and has promise for facilitating a better understanding of the "disease-free", aging brain.  相似文献   

5.
褪黑素(melatonin)在哺乳动物中是主要由松果体分泌的一种多功能吲哚激素,具有抗氧化、调节睡眠、调节昼夜节律、增强免疫力、抑制肿瘤等作用,在哺乳动物的复杂衰老进程中发挥重要作用。本文从氧化应激和能量代谢两个方面综述了褪黑素在哺乳动物中延缓衰老的作用机制。褪黑素通过清除自由基、激发抗氧化作用以及保护线粒体功能从而减缓氧化应激;通过调节代谢感知、重建昼夜节律以及促进能量消耗调节能量代谢。最后对该领域今后可能的发展方向进行了展望。  相似文献   

6.
Several unbiased genome‐wide RNA interference (RNAi) screens have pointed to mitochondrial metabolism as the major factor for lifespan regulation. However, conflicting data remain to be clarified concerning the mitochondrial free radical theory of aging (MFRTA). Recently, mTOR (mechanistic target of rapamycin) has been proposed to be the central regulator of aging although how mTOR modulates lifespan is poorly understood. Interestingly, mTOR has been shown to regulate many aspects of mitochondrial function, such as mitochondrial biogenesis, apoptosis, mitophagy and mitochondrial hormesis (mitohormesis) including the retrograde response and mitochondrial unfolded protein response (mito‐UPR). Here we discuss the data linking mitochondrial metabolism to mTOR regulation of lifespan, suggesting that hormetic effects may be key to explaining some controversial results regarding the MFRTA. We also discuss the possibility that dysfunction of mitochondrial adaptive responses rather than free radicals per se contributes to the aging process.  相似文献   

7.
In order to determine quantitatively the free radical content and its changes affected by additives using spin trapping under in vivo conditions, an approach is suggested carrying out experiments in a completely mixed open system (CMOS). Measurements have been carried out for a chemical oxidation process as a model system, and analysis of products and of the spin trap was extended by kinetic ESR spectrometry of the spin adducts. Since in a CMOS differential equations of accumulation of all species can be transformed into algebraic expressions using available rate constants for the formation of the spin adducts, corresponding concentrations of free radicals have been calculated. In addition, it has been established that triplet excited photosensitizers have a double effect: increasing the rate of initiation by decomposing hydroperoxide-type compounds and inhibiting the overall process by interactions with free radicals. Results indicate that by changing the "reaction vessel" the method can be applied for ex vivo and in vivo systems.  相似文献   

8.
This study was designed to test the free radical theory of aging by using Drosophila melanogaster as a model system. Oxygen free radicals are generated by mitochondria during the process of normal oxidative metabolism. Age-specific measurements of oxygen consumption, heat production and anti-oxidant enzyme activity were obtained from two inbred lines of male flies, one selected for longevity and one normal-lived. The findings of this study demonstrate that although oxygen consumption remains relatively constant over the majority of the life span of each line of flies, aerobic efficiency declines with advancing age. This loss of aerobic efficiency manifests itself as a decline in total body metabolism as measured by heat production, and appears to be associated with an age-specific increase in damage inflicted upon mitochondria by oxygen free radicals.  相似文献   

9.
Cystatins are the inhibitors of thiol proteinases and are ubiquitously present in mammalian system. In brain, they put off unwanted proteolysis and are also involved in several neurodegenerative diseases. In the present study, it was demonstrated that photo-activated HOCl-induced modifications in brain cystatin leading to its inactivation and degradation due to hydroxyl radicals. It has been shown that oxidation of cystatin by ROS in vivo leads to oxidative modification which may direct the damage of this significant protein, as it is so well pronounced in vitro. The interplay between free radicals, antioxidants and co-factors is important in maintaining health, aging and age-related diseases. Body’s endogenous antioxidant systems stabilize free radical-induced oxidative stress by the ingestion of exogenous antioxidants. If the generation of free radicals goes beyond the protective effect of antioxidants, this can cause oxidative damage which accumulates during the life cycle and has been implicated in aging and age-related diseases such as cardiovascular disease, cancer, neurodegenerative disorders and other chronic conditions. Activation of neutrophils in certain diseases (e.g., inflammatory conditions and atherosclerosis) results in the production of highly reactive species, such as OH? and the release of the enzyme myeloperoxidase. Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. Hypochlorous acid (HOCl) is a potent oxidant formed by myeloperoxidase that causes aggregation of many proteins and damage of proteins by reaction with amino-acid side-chains or backbone cleavage.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
Antioxidant lipoate and tissue antioxidants in aged rats   总被引:6,自引:0,他引:6  
Oxidative metabolism produces free radicals that must be removed from the cellular environment for the cell to survive. The levels of nonenzymic antioxidants involved in the elimination of free radicals were investigated in an attempt to correlate any changes in the levels of enzymic antioxidants during aging with changes in free radical mediated cellular damage. Antioxidants were measured in liver and kidney of young and aged rats with respect to DL-alpha-lipoic acid supplemented rats. In both organs lipid peroxidation damage (a marker of free radical mediated damage) increased with age, and a significant decrease in antioxidant systems was observed. Moreover, DL-alpha-lipoic acid treated aged rats showed a decrease in the level of lipid peroxides and an increase in the antioxidant status. The results of this study provide evidence that DL-alpha-lipoic acid treatment can improve antioxidants during aging and minimize the age-associated disorders in which free radicals are the major cause.  相似文献   

11.
Free radicals are molecules with odd number of electrons and a high instability. Free radicals, which can occur in both organic (i.e., quinones) and inorganic molecules (i.e., O2-), are very reactive and their reactions are critical for the normal activity of a wide spectrum of biologic processes. They are also produced in the catalytic action of a variety of cellular enzymes and electron transport processes and are implicated in a number of physiologic and pathologic processes. Organisms can be exposed to free radicals in many ways other than through the processes of normal metabolism. Irradiation of organisms with electromagnetic radiation generates primary radicals (e-aq, OH., and H.), which can then undergo secondary reactions with dissolved O2 or with cellular solutes. In addition, a wide variety of environmental agents (drugs capable of redox cycling, and xenobiotics that can form free radical metabolites) including the aging process cause free radical damage to cells. This review deals with the reactions they can undergo and discusses the free radicals related to toxicology.  相似文献   

12.
Radical-free biology of oxidative stress   总被引:3,自引:0,他引:3  
  相似文献   

13.
We have previously demonstrated the partial protection of the rat liver by 16,16-dmPGE2 (DMPG) against a number of hepatotoxins including carbon tetrachloride (CCl4). However, it has not been determined whether hepatoprotection by DMPG represents a true "cytoprotective" action or if merely accomplished through inhibition of CCl4 metabolism to reactive, toxic trichoromethyl (CCl3.) free radicals. This report details a series of experiments in which the effects of DMPG on CCl4 metabolism was evaluated in the rat. These data indicate that pretreatment with DMPG may reduce the hepatic concentration of the toxic CCl3. free radicals in CCl4 poisoned rats. Evidence is presented which suggests that this reduction in binding may have been due to a decrease in the rate of CCl4 metabolism. However, DMPG did not affect the hepatic concentration of total microsomal cytochrome P450, the necessary enzyme in this metabolic process. On the other hand, free radical spin trapping experiments indicate that the rate of free radical formation from CCl4 was slowed by treatment. Also, indirect evidence suggests that the metabolism of another cytochrome P450 substrate, phenobarbital, was slowed in DMPG treated rats. We conclude that the rate of CCl4 metabolism may be reduced by pretreatment with DMPG. Furthermore, some measure of hepatic protection might be expected to occur as a result of the reduction in the rate of CCl4 metabolism. However, we are unable to determine if this action was solely responsible for the observed hepatic protection.  相似文献   

14.
Biochemical and structural changes occurring in the myocardium with aging are mainly resulting from the association of a general tissue atrophy with the hypertrophy of the remaining myocytes. Whilst hypertrophy seems to be a compensatory process to the loss of cardiomyocytes and to a mild systolic hypertensive condition that accompanies elderly people, atrophy should be the modification more closely related to aging per se. In support to the free radical theory of aging, several signs of oxidative damage have been shown in the aged heart, such as lipofuscin accumulation, decreased phospholipid unsaturation index, greater formation of both hydrogen peroxide and 8-hydroxy-2deoxyguanosine. As a compensatory reaction, the activities of the main oxygen-radical scavenger enzymes are stimulated in the mitochondria of aged rat heart. Endothelium-mediated vasoregulation is more susceptible to oxidative stress in aged with respect to young rats, suggesting that also the vasculature can be negatively influenced by the oxygen free radicals generated during aging. The possible primary role of oxygen free radicals in the development of myocardial atrophy is also discussed.  相似文献   

15.
自由基对线粒体DNA的氧化损伤与衰老   总被引:41,自引:0,他引:41  
自由基是一类氧化剂,对生物具有多种损害作用.衰老的自由基学说是有关衰老机理的诸多学说之一.线粒体DNA组成结构特殊,易受自由基攻击;目前认为,线粒体DNA的氧化损伤是自由基引起衰老的分子基础.  相似文献   

16.
Over the past few years there has been an exponential growth in the number of reports describing the effects of nutritional modulation on aging and age-related diseases. Specific attention has been directed toward the beneficial effects afforded by dietary antioxidants, in particular those from fruit and vegetables, in ameliorating age-related deficits in brain performance. The rationale for studying the effects of dietary intervention stems from evidence implicating free radicals in aspects related to the aging process. Age-dependent neuropathology is a cumulative response to alterations induced by reactive oxygen species. Therefore cognitive aging, according to this hypothesis, should be slowed, and possibly even reversed, by appropriately increasing levels of antioxidants or decreasing overproduction of free radicals in the body.  相似文献   

17.
Oxidative stress, caused by free radicals within the body, has been associated with the process of aging and many human diseases. Because free radicals, in particular superoxide, are difficult to measure, an alternative indirect method for measuring oxidative stress levels has been used successfully in Escherichia coli and yeast. This method is based on a proposed connection between elevated superoxide levels and release of iron from solvent-exposed [4Fe-4S] enzyme clusters that eventually leads to an increase in hydroxyl radical production. In past studies using bacteria and yeast, a positive correlation was found between superoxide production or oxidative stress due to superoxide within the organism and electron paramagnetic resonance (EPR) detectable "free" iron levels. In the current study, we have developed a reliable and efficient method for measuring "free" iron levels in Caenorhabditis elegans using low-temperature Fe(III) EPR at g=4.3. This method uses synchronized worm cultures grown on plates that are homogenized and treated with desferrioxamine, an Fe(III) chelator, prior to packing the EPR tube. Homogenization was found not to alter "free" iron levels, whereas desferrioxamine treatment significantly raised these levels, indicating the presence of both Fe(II) and Fe(III) in the "free" iron pool. The correlation between free radical levels and the observed "free" iron levels was examined by using heat stress and paraquat treatment. The intensity of the Fe(III) EPR signal, and thus the concentration of the "free" iron pool, varied with the treatments that altered radical levels without changing the total iron levels. This study provides the groundwork needed to uncover the correlation among oxidative stress, "free" iron levels, and longevity in C. elegans.  相似文献   

18.
Cytochrome c (cyt c) is an electron carrier involved in the mitochondrial respiratory chain and a critical protein in apoptosis. The oxidation of cytochrome c can therefore be relevant biologically. We studied whether cytochrome c underwent the attack of reactive oxygen species (ROS) during ionizing irradiation-induced oxidative stress. ROS were generated via water radiolysis under ionizing radiation (IR) in vitro. Characterization of oxidation was performed by mass spectrometry, after tryptic digestion, and UV-visible spectrophotometry. When both hydroxyl and superoxide free radicals were generated during water radiolysis, only five tryptic peptides of cyt c were reproducibly identified as oxidized according to a relation that was dependent of the dose of ionizing radiation. The same behavior was observed when hydroxyl free radicals were specifically generated (N(2)O-saturated solutions). Specific oxidation of cyt c by superoxide free radicals was performed and has shown that only one oxidized peptide (MIFAGIK+16), corresponding to the oxidation of Met80 into methionine sulfoxide, exhibited a radiation dose-dependent formation. In addition, the enzymatic site of cytochrome c was sensitive to the attack of both superoxide and hydroxyl radicals as observed through the reduction of Fe(3+), the degradation of the protoporphyrin IX and the oxidative disruption of the Met80-Fe(3+) bond. Noteworthy, the latter has been involved in the conversion of cyt c to a peroxidase. Finally, Met80 appears as the most sensitive residue towards hydroxyl but also superoxide free radicals mediated oxidation.  相似文献   

19.
There is presently an intense discussion if electromagnetic field (EMF) exposure has consequences for human health. This include exposure to structures and appliances that emit in the extremely low frequency (ELF) range of the electromagnetic spectrum, as well as emission coming from communication devices using the radiofrequency part of the spectrum. Biological effects of such exposures have been noted frequently, although the implication for specific health effects is not that clear. The basic interaction mechanism(s) between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. In addition, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. Although 50/60 Hz EMF do not directly lead to genotoxic effects, it is possible that certain cellular processes altered by exposure to EMF indirectly affect the structure of DNA causing strand breaks and other chromosomal aberrations. The aim of this article is to present a hypothesis of a possible initial cellular event affected by exposure to ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation by means of increasing levels of free radicals. Such a general activation is compatible with the diverse nature of observed effects. Free radicals are intermediates in natural processes like mitochondrial metabolism and are also a key feature of phagocytosis. Free radical release is inducible by ionizing radiation or phorbol ester treatment, both leading to genomic instability. EMF might be a stimulus to induce an "activated state" of the cell such as phagocytosis, which then enhances the release of free radicals, in turn leading to genotoxic events. We envisage that EMF exposure can cause both acute and chronic effects that are mediated by increased free radical levels: (1) Direct activation of, for example macrophages (or other cells) by short-term exposure to EMF leads to phagocytosis (or other cell specific responses) and consequently, free radical production. This pathway may be utilized to positively influence certain aspects of the immune response, and could be useful for specific therapeutic applications. (2) EMF-induced macrophage (cell) activation includes direct stimulation of free radical production. (3) An increase in the lifetime of free radicals by EMF leads to persistently elevated free radical concentrations. In general, reactions in which radicals are involved become more frequent, increasing the possibility of DNA damage. (4) Long-term EMF exposure leads to a chronically increased level of free radicals, subsequently causing an inhibition of the effects of the pineal gland hormone melatonin. Taken together, these EMF induced reactions could lead to a higher incidence of DNA damage and therefore, to an increased risk of tumour development. While the effects on melatonin and the extension of the lifetime of radicals can explain the link between EMF exposure and the incidence of for example leukaemia, the two additional mechanisms described here specifically for mouse macrophages, can explain the possible correlation between immune cell system stimulation and EMF exposure.  相似文献   

20.
B Kalyanaraman  J Nemec  B K Sinha 《Biochemistry》1989,28(11):4839-4846
Spectroscopic evidence for the radical-mediated metabolism of VP-16, VP-16 catechol, and VP-16 quinone during enzymatic oxidation and autoxidation has been obtained. Autoxidation of the catechol yields the primary semiquinone together with the primary molecular product VP-16 quinone, which subsequently undergoes hydrolytic oxidation to form secondary quinones and semiquinones. Both primary and secondary phenoxyl radicals were detected during peroxidatic oxidation of VP-16. Neither the primary nor the secondary radicals react with DNA at a detectable rate. Evidence for the production of hydroxyl radical during iron-catalyzed oxidation of VP-16 catechol was obtained. These free radical reactions may have implications for the mechanism of antitumor action of VP-16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号