首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Euryhaliotrema dontykoleos n. sp. (Monogenoidea, Polyonchoinea, Dactylogyridae) is described based on specimens collected from the gills of Pachyurus junki (Teleostei, Sciaenidae, Pachyurinae) in the Rio Tocantins and its tributaries, State of Tocantins, Brazil. The new species, the first species of Monogenoidea reported from a pachyurine, is easily differentiated from its congener by the presence of toothlike projections in the border of the vaginal opening and by having a trapezoidal anteromedial projection on the ventral bar. Phylogenetic analysis indicates that the new species is not a member of the clade that includes the Euryhaliotrema spp. from Plagioscion spp., a second lineage of freshwater sciaenids in South America. Euryhaliotrema dontykoleos shares an immediate ancestor with the clade formed by parasites infecting marine Paralonchurus spp., (Sciaenidae), and those of Plagioscion spp.  相似文献   

2.
The family Taeniidae of tapeworms is composed of two genera, Echinococcus and Taenia, which obligately parasitize mammals including humans. Inferring phylogeny via molecular markers is the only way to trace back their evolutionary histories. However, molecular dating approaches are lacking so far. Here we established new markers from nuclear protein-coding genes for RNA polymerase II second largest subunit (rpb2), phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold). Bayesian inference and maximum likelihood analyses of the concatenated gene sequences allowed us to reconstruct phylogenetic trees for taeniid parasites. The tree topologies clearly demonstrated that Taenia is paraphyletic and that the clade of Echinococcus oligarthrus and Echinococcusvogeli is sister to all other members of Echinococcus. Both species are endemic in Central and South America, and their definitive hosts originated from carnivores that immigrated from North America after the formation of the Panamanian land bridge about 3 million years ago (Ma). A time-calibrated phylogeny was estimated by a Bayesian relaxed-clock method based on the assumption that the most recent common ancestor of E. oligarthrus and E. vogeli existed during the late Pliocene (3.0 Ma). The results suggest that a clade of Taenia including human-pathogenic species diversified primarily in the late Miocene (11.2 Ma), whereas Echinococcus started to diversify later, in the end of the Miocene (5.8 Ma). Close genetic relationships among the members of Echinococcus imply that the genus is a young group in which speciation and global radiation occurred rapidly.  相似文献   

3.

Premise

A major goal of systematic biology is to uncover the evolutionary history of organisms and translate that knowledge into stable classification systems. Here, we integrate three sets of genome-wide data to resolve phylogenetic relationships in Cornaceae (containing only Cornus s.l.), reconstruct the biogeographic history of the clade, and provide a revised classification using the PhyloCode to stabilize names for this taxonomically controversial group.

Methods

We conducted phylogenetic analyses using 312 single-copy nuclear genes and 70 plastid genes from Angiosperms353 Hyb-Seq, plus numerous loci from RAD-Seq. We integrated fossils using morphological data and produced a dated phylogeny for biogeographical analysis.

Results

A well-resolved, strongly supported, comprehensive phylogeny was obtained. Biogeographic analyses support an origin and rapid diversification of Cornus into four morphologically distinct major clades in the Northern Hemisphere (with an eastern Asian ancestor) during the late Cretaceous. Dispersal into Africa from eastern Asia likely occurred along the Tethys Seaway during the Paleogene, whereas dispersal into South America likely occurred during the Neogene. Diversification within the northern hemisphere likely involved repeated independent colonization of new areas during the Paleogene and Neogene along the Bering Land Bridge, the North Atlantic Land Bridge, and the Tethys Seaway. Thirteen strongly supported clades were named following rules of the PhyloCode.

Conclusions

Our study provides an example of integrating genomic and morphological data to produce a robust, explicit species phylogeny that includes fossil taxa, which we translate into an updated classification scheme using the PhyloCode to stabilize names.  相似文献   

4.
Members of the freshwater stingray family Potamotrygonidae occur throughout the major river systems of eastern South America that empty into the Atlantic Ocean. Ichthyologists have tended to assume that the ancestor of the potamotrygonids was an Atlantic marine or euryhaline stingray that dispersed into freshwater, presumably during the last marine ingression 3-5 million years ago. The helminth parasites that inhabit potamotrygonids suggest an alternative perspective on their origin. Phylogenetic and biogeographic analysis of the helminths inhabiting potamotrygonids suggest that the hosts are derived from an ancestral Pacific urolophid stingray that was trapped in freshwater by the uplifting of the Andes beginning perhaps as early as the early Cretaceous period and ending by the mid-Miocene epoch, changing the course of the Amazon River, which previously had flowed into the Pacific Ocean.  相似文献   

5.
The holly genus, Ilex L., in the monogeneric Aquifoliaceae, is the largest woody dioecious genus (>664 spp.), with a near‐cosmopolitan distribution in mesic environments. We constructed a phylogeny based on two nuclear genes, representing 177 species spread across the geographical range, and dated using macrofossil records. The five main clades had a common ancestor in the early Eocene, much earlier than previously suggested. Ilex originated in subtropical Asia and extant clades colonized South America by 30 Ma, North America by 23 Ma, Australia by 8 Ma, Europe by 6 Ma, and Africa by 4 Ma. South and North America were colonized multiple times. Ilex also reached Hawaii (10 Ma) and other oceanic islands. Macrofossil and pollen records show the genus has tracked mesic climates through time and space, and had a wider distribution before late Miocene global cooling. Our phylogeny provides a framework for studies in comparative ecology and evolution.  相似文献   

6.
Bumble bees (Bombus) are a cold-adapted, largely alpine group that can elucidate patterns of Holarctic historical biogeography, particularly in comparison to the alpine plants with which they likely coevolved. A recently published molecular phylogeny of bumble bees provides uniquely comprehensive species sampling for exploring historical patterns of distribution and diversification. Using this phylogeny and detailed data on extant distributions, I reconstruct the historical distribution of bumble bees in a temporal framework, estimating divergence times using fossil data and molecular rates derived from the literature. The nearly comprehensive phylogeny allows assessment of the tempo of diversification within the bumble bees using lineage-through-time plots and diversification statistics, which have been performed with special consideration to confidence intervals. These analyses reveal movements of Bombus concordant with geographic and climatic events of the late Cenozoic. The initial diversification of extant bumble bee lineages was estimated at around 25 to 40 Ma, near the Eocene-Oligocene boundary 34 Ma, a period of dramatic global cooling. Dispersal-vicariance analysis (DIVA) predicted an Old World Bombus ancestor, with early diversification events largely restricted to the eastern Old World. The numerous intercontinental dispersal events occurred mostly in the direction of Old World to New World and North America to South America. Early movements from the Palearctic into the Nearctic most likely took place after 20 Ma and may have coincided with a period of Miocene cooling that gave rise to taiga habitat across Beringia. Subsequent dispersal between these regions is estimated to have occurred among boreal and tundra-adapted species mostly in the last 5 million years. Radiations are estimated in both Nearctic and Neotropical regions at approximately 6 to 8 Ma and after 3.5 Ma, concordant with the opening of land corridors between the continents.  相似文献   

7.
Aim We propose a phylogenetic hypothesis for the marine‐derived sciaenid genus Plagioscion in the context of geomorphology and adaptation to freshwaters of South America, and assess the extent to which contemporary freshwater hydrochemical gradients influence diversification within a widely distributed Plagioscion species, Plagioscion squamosissimus. Location Amazon Basin and South America. Methods Using nuclear and mitochondrial DNA sequence data, phylogenetic analyses were conducted on the five nominal Plagioscion species, together with representatives from Pachyurus and Pachypops, using character and model‐based methods. Genealogical relationships and population genetic structure of 152 P. squamosissimus specimens sampled from the five major rivers and three hydrochemical settings/‘colours’ (i.e. white, black and clear water) of the Amazon Basin were assessed. Results Phylogenetic analyses support the monophyly of Plagioscion in South America and identify two putative cryptic species of Plagioscion. Divergence estimates suggest that the Plagioscion ancestor invaded South America via a northern route during the late Oligocene to early Miocene. Within P. squamosissimus a strong association of haplotype and water colour was observed, together with significant population structure detected between water colours. Main conclusions Our analyses of Plagioscion are consistent with a biogeographic scenario of early Miocene marine incursions into South America. Based on our phylogenetic results, the fossil record, geomorphological history and distributional data of extant Plagioscion species, we propose that marine incursions into western Venezuela between the late Oligocene and early Miocene were responsible for the adaptation to freshwaters in Plagioscion species. Following the termination of the marine incursions during the late Miocene and the establishment of the modern Amazon River, Plagioscion experienced a rapid diversification. Plagioscion squamosissimus arose during that time. The formation of the Amazon River probably facilitated population and range expansions for this species. Further, the large‐scale hydrochemical gradients within the Amazon Basin appear to be acting as ecological barriers maintaining population discontinuities in P. squamosissimus even in the face of gene flow. Our results highlight the importance of divergent natural selection through time in the generation and maintenance of sciaenid diversity in Amazonia.  相似文献   

8.
There has hitherto been little research into evolutionary and taxonomic relationships amongst species of the freshwater prawn genus Macrobrachium Bate across its global distribution. Previous work by the authors demonstrated that the endemic Australian species did not evolve from a single ancestral lineage. To examine whether other regional Macrobrachium faunas also reflect this pattern of multiple origins, the phylogeny of 30 Macrobrachium species from Asia, Central/South America and Australia was inferred from mitochondrial 16S rRNA sequences. Phylogenetic relationships demonstrate that, despite some evidence for regional diversification, Australia, Asia and South America clearly contain Macrobrachium species that do not share a common ancestry, suggesting that large-scale dispersal has been a major feature of the evolutionary history of the genus. The evolution of abbreviated larval development (ALD), associated with the transition from an estuarine into a purely freshwater lifecycle, was also mapped onto the phylogeny and was shown to be a relatively homoplasious trait and not taxonomically informative. Other taxonomic issues, as well as the evolutionary origins of Macrobrachium , are also discussed.  相似文献   

9.
The modern geographic distribution of the spider family Sicariidae is consistent with an evolutionary origin on Western Gondwana. Both sicariid genera, Loxosceles and Sicarius are diverse in Africa and South/Central America. Loxosceles are also diverse in North America and the West Indies, and have species described from Mediterranean Europe and China. We tested vicariance hypotheses using molecular phylogenetics and molecular dating analyses of 28S, COI, 16S, and NADHI sequences. We recover reciprocal monophyly of African and South American Sicarius, paraphyletic Southern African Loxosceles and monophyletic New World Loxosceles within which an Old World species group that includes L. rufescens is derived. These patterns are consistent with a sicariid common ancestor on Western Gondwana. North American Loxosceles are monophyletic, sister to Caribbean taxa, and resolved in a larger clade with South American Loxosceles. With fossil data this pattern is consistent with colonization of North America via a land bridge predating the modern Isthmus of Panama.  相似文献   

10.
The Neotropics harbors a megadiverse ichthyofauna comprising over 6300 species with approximately 80% in just three taxonomic orders within the clade Characiphysi. This highly diverse group has evolved in tropical South America over tens to hundreds of millions of years influenced mostly by re‐arrangements of river drainages in lowland and upland systems. In this study, we investigate patterns of spatial diversification in Neotropical freshwater fishes in the family Curimatidae, a species‐rich clade of the order Characiformes. Specifically, we examined ancestral areas, dispersal events, and shifts in species richness using spatially explicit biogeographic and macroevolutionary models to determine whether lowlands–uplands serve as museums or cradles of diversification for curimatids. We used fossil information to estimate divergence times in BEAST, multiple time‐stratified models of geographic range evolution in BioGeoBEARS, and alternative models of geographic state‐dependent speciation and extinction in GeoHiSSE. Our results suggest that the most recent common ancestor of curimatids originated in the Late Cretaceous likely in lowland paleodrainages of northwestern South America. Dispersals from lowland to upland river basins of the Brazilian and Guiana shields occurred repeatedly across independently evolving lineages in the Cenozoic. Colonization of upland drainages was often coupled with increased rates of net diversification in species‐rich genera such as Cyphocharax and Steindachnerina. Our findings demonstrate that colonization of novel aquatic environments at higher elevations is associated with an increased rate of diversification, although this pattern is clade‐dependent and driven mostly by allopatric speciation. Curimatids reinforce an emerging perspective that Amazonian lowlands act as a museum by accumulating species along time, whereas the transitions to uplands stimulate higher net diversification rates and lineage diversification.  相似文献   

11.
The Cyathocotylidae is a globally distributed family of digeneans parasitic as adults in fish, reptiles, birds and mammals in both freshwater and marine environments. Molecular phylogenetic analysis of interrelationships among cyathocotylids is lacking with only a few species included in previous studies. We used sequences of the nuclear 28S rRNA gene to examine phylogenetic affinities of 11 newly sequenced taxa of cyathocotylids and the closely related family Brauninidae collected from fish, reptiles, birds and dolphins from Australia, Southeast Asia, Europe, North America and South America. This is the first study to provide sequence data from adult cyathocotylids parasitic in fish and reptiles. Our analyses demonstrated that the members of the genus Braunina (family Brauninidae) belong to the Cyathocotylidae, placing the Brauninidae into synonymy with the Cyathocotylidae. In addition, our DNA sequences supported the presence of a second species in the currently monotypic Braunina. Our phylogeny revealed that Cyathocotyle spp. from crocodilians belong to a separate genus (Suchocyathocotyle, previously proposed as a subgenus) and subfamily (Suchocyathocotylinae subfam. n.). Morphological study of Gogatea serpentum indicum supported its elevation to species as Gogatea mehri. The phylogeny did not support Holostephanoides within the subfamily Cyathocotylinae; instead, Holostephanoides formed a strongly supported clade with members of the subfamily Szidatiinae (Gogatea and Neogogatea). Therefore, we transfer Holostephanoides into the Szidatiinae. DNA sequence data revealed the potential presence of cryptic species reported under the name Mesostephanus microbursa. Our phylogeny indicated at least two major host switching events in the evolutionary history of the subfamily Szidatiinae which likely resulted in the transition of these parasites from birds to fish and snakes. Likewise, the transition to dolphins by Braunina represents another major host switching event among the Cyathocotylidae. In addition, our phylogeny revealed more than a single transition between freshwater and marine environments demonstrated in our dataset by Braunina and some Mesostephanus.  相似文献   

12.
The freshwater sculpins, genus Cottus (Teleostei; Cottidae), comprise bottom-dwelling fishes that exhibit various life-history styles, having radiated throughout Northern Hemisphere freshwater habitats. The phylogenetic relationships among Cottus and related taxa were estimated from mitochondrial DNA 12S rRNA and control region (CR) sequences, the freshwater sculpins examined falling into five lineages (A-E). Lineage A consisted of Trachidermus fasciatus and C. kazika, both having a catadromous life-history. The remaining species (lineages B-E) spawn in freshwater habitats regardless of life-history (amphidromous, lacustrine or fluvial), suggesting that the various life-history types post-dated a common ancestor of lineages B-E. Molecular clock estimates suggested a Pliocene-Pleistocene radiation (or Miocene-Pliocene from the alternative clock) of lineages B-E. In eastern Eurasia, speciation with life-history changes to amphidromous or fluvial styles has apparently occurred independently in some lineages, as a general pattern. Mitochondrial DNA CR phylogeny showed the monophyletic Baikalian cottoids (Cottoidei) to be nested within Cottus and Trachidermus, suggesting that the former ecologically and morphologically divergent cottoids may have originated from a single lineage which invaded the ancient lake.  相似文献   

13.
Aim  The present-day geographical distribution of parasites with a direct biological life cycle is guided mostly by the past dispersal and vicariance events that have affected their hosts. The Amphibia– Polystoma association (which satisfies these criteria) also exhibits original traits, such as host specificity and world-wide distribution. This biological model was thus chosen to investigate the common historical biogeography of its widespread representatives.
Location  North and South America, Eurasia and Africa.
Methods  We investigated the phylogeny of 12 species of neobatrachian parasites sampled from North and South America, Eurasia and Africa. Hosts belonged mostly to hyloids and ranoids of families Bufonidae, Hylidae, Leptodactylidae, Ranidae and Hyperoliidae. Phylogenetic reconstructions were inferred from maximum likelihood and maximum parsimony analyses from complete ITS1 sequences.
Results  The group of American species appeared paraphyletic with one species at the base of a Eurafrican clade, within which two lineages were seen: one composed of only Eurasian species, and the other of European and African species, with the two European species basal to an African clade.
Main conclusions  The route of Polystoma evolution is deduced from the phylogenetic tree and discussed in the light of host evolution. We conclude that Polystoma originated in South America on hyloids, after the separation of South America from Africa. The genus must have colonized North America in Palaeocene times and Eurasia by the mid-Cainozoic, taking advantage of the dispersal of either ancestral bufonids or hylids. Africa, however, appears to have been colonized more recently, during the Messinian period.  相似文献   

14.
Aim We used mitochondrial DNA sequence data to reconstruct the phylogeny of a large clade of tanagers (Aves: Thraupini). We used the phylogeny of this Neotropical bird group to identify areas of vicariance, reconstruct ancestral zoogeographical areas and elevational distributions, and to investigate the correspondence of geological events to speciation events. Location The species investigated are found in 18 of the 22 zoogeographical regions of South America, Central America and the Caribbean islands; therefore, we were able to use the phylogeny to address the biogeographical history of the entire region. Methods Molecular sequence data were gathered from two mitochondrial markers (cytochrome b and ND2) and analysed using Bayesian and maximum‐likelihood approaches. Dispersal–vicariance analysis (DIVA) was used to reconstruct zoogeographical areas and elevational distributions. A Bayesian framework was also used to address changes in elevation during the evolutionary history of the group. Results Our phylogeny was similar to previous tanager phylogenies constructed using fewer species; however, we identified three genera that are not monophyletic and uncovered high levels of sequence divergence within some species. DIVA identified early diverging nodes as having a Northern Andean distribution, and the most recent common ancestor of the species included in this study occurred at high elevations. Most speciation events occurred either within highland areas or within lowland areas, with few exchanges occurring between the highlands and lowlands. The Northern Andes has been a source for lineages in other regions, with more dispersals out of this area relative to dispersals into this area. Most of the dispersals out of the Northern Andes were dispersals into the Central Andes; however, a few key dispersal events were identified out of the Andes and into other zoogeographical regions. Main conclusions The timing of diversification of these tanagers correlates well with the main uplift of the Northern Andes, with the highest rate of speciation occurring during this timeframe. Central American tanagers included in this study originated from South American lineages, and the timing of their dispersal into Central America coincides with or post‐dates the completion of the Panamanian isthmus.  相似文献   

15.
The first dated phylogeny of the weevil subfamily Cryptorhynchinae is presented within a framework of Curculionoidea. The inferred pattern and timing of weevil family relationships are generally congruent with previous studies, but our data are the first to suggest a highly supported sister-group relationship between Attelabidae and Belidae. Our biogeographical inferences suggest that Cryptorhynchinae s.s. originated in the Late Cretaceous (c. 86 Ma) in South America. Within the ‘Acalles group’ and the ‘Cryptorhynchus group’, several independent dispersal events to the Western Palaearctic via the Nearctic occurred in the Late Cretaceous and Early Paleogene. A second southern route via Antarctica may have facilitated the colonization of Australia in the Late Cretaceous (c. 82 Ma), where a diverse Indo-Australian clade probably emerged c. 73 Ma. In the Early Eocene (c. 50–55 Ma), several clades independently dispersed from Australia to proto-New Guinea, i.e. the tribe Arachnopodini s.l., the ‘Rhynchodes group’ and the genus Trigonopterus. New Zealand was first colonized in the Late Palaeocene (c. 60 Ma). Divergence time estimations and biogeographical reconstructions indicate that the colonization of New Guinea is older than expected from current geological reconstructions of the region.  相似文献   

16.
Previous hypotheses of phylogenetic relationships among Neotropical parrots were based on limited taxon sampling and lacked support for most internal nodes. In this study we increased the number of taxa (29 species belonging to 25 of the 30 genera) and gene sequences (6388 base pairs of RAG-1, cyt b, NADH2, ATPase 6, ATPase 8, COIII, 12S rDNA, and 16S rDNA) to obtain a stronger molecular phylogenetic hypothesis for this group of birds. Analyses of the combined gene sequences using maximum likelihood and Bayesian methods resulted in a well-supported phylogeny and indicated that amazons and allies are a sister clade to macaws, conures, and relatives, and these two clades are in turn a sister group to parrotlets. Key morphological and behavioral characters used in previous classifications were mapped on the molecular tree and were phylogenetically uninformative. We estimated divergence times of taxa using the molecular tree and Bayesian and penalized likelihood methods that allow for rate variation in DNA substitutions among sites and taxa. Our estimates suggest that the Neotropical parrots shared a common ancestor with Australian parrots 59 Mya (million of years ago; 95% credibility interval (CrI) 66, 51 Mya), well before Australia separated from Antarctica and South America, implying that ancestral parrots were widespread in Gondwanaland. Thus, the divergence of Australian and Neotropical parrots could be attributed to vicariance. The three major clades of Neotropical parrots originated about 50 Mya (95% CrI 57, 41 Mya), coinciding with periods of higher sea level when both Antarctica and South America were fragmented with transcontinental seaways, and likely isolated the ancestors of modern Neotropical parrots in different regions in these continents. The correspondence between major paleoenvironmental changes in South America and the diversification of genera in the clade of amazons and allies between 46 and 16 Mya suggests they diversified exclusively in South America. Conversely, ancestors of parrotlets and of macaws, conures, and allies may have been isolated in Antarctica and/or the southern cone of South America, and only dispersed out of these southern regions when climate cooled and Antarctica became ice-encrusted about 35 Mya. The subsequent radiation of macaws and their allies in South America beginning about 28 Mya (95% CrI 22, 35 Mya) coincides with the uplift of the Andes and the subsequent formation of dry, open grassland habitats that would have facilitated ecological speciation via niche expansion from forested habitats.  相似文献   

17.
Three species of sticklebacks ( Apeltes quadracus, Gasterosteus aculeatus , and Pungitius pungitius ( n = 236) were collected from five ponds on Sable Island. The nematodes Pseudoterranova decipiens, Contracaecum sp., Paracuaria adunca , and Cosmucephalus obvelatus , and the cestode Diphyllobothrium ditremum parasitized three-spined sticklebacks ( G. aculeatus ) and four-spined sticklebacks ( A. quadracus ) inhabiting four brackish water ponds. All the parasites except P. decipiens infected nine-spined sticklebacks ( P. pungitius ) from a freshwater pond. In addition, the cestode Schistocephalus pungitii , the copepod Thersitina gasterostei , and the monogenean Gyrodactylus canadensis occurred in nine-spined sticklebacks from the freshwater pond. The two cestodes, the copepod, and the sealworm, P. decipiens , were the most common parasites encountered. The remaining helminths were relatively rare. Most of the parasite species were larval forms which use gulls or seals as definitive hosts. These parasites probably colonized Sable Island with their definitive hosts, whereas only two species ( T. gasterostei and G. canadensis ) successfully colonized the island ponds with their fish hosts. The low parasite species richness encountered is attributed to the impoverished nature of the host fauna of Sable island, and the difficulty of colonization as a result of the island's isolation with respect to the mainland.  相似文献   

18.
Aim We reconstructed the phylogeny of the lichen genus Nephroma (Peltigerales) to assess the relationships of species endemic to Macaronesia. We estimated dates of divergences to test the hypothesis that the species arose in Macaronesia (neo‐endemism) versus the oceanic archipelagos serving as refugia for formerly widespread taxa (palaeo‐endemism). Location Cosmopolitan with a special focus on the archipelagos of the Azores, Madeira and the Canary Islands. Methods DNA sequences were obtained from 18 species for three loci and analysed using maximum parsimony, maximum likelihood and Bayesian inferences. Divergence dates were estimated for the internal transcribed spacer (ITS)‐based phylogeny using a relaxed molecular clock. Reconstruction of the ancestral geographical range was conducted using the Bayesian 50% majority rule consensus tree under a parsimony method. Results The backbone phylogenetic tree was fully supported, with Nephroma plumbeum as sister to all other species. Four strongly supported clades were detected: the Nephroma helveticum, the N. bellum, the N. laevigatum and the N. parile clades. The latter two share a common ancestor and each includes a widespread Holarctic species (N. laevigatum and N. parile, respectively) and all species endemic to Macaronesia. The data suggest a neo‐endemic origin of Macaronesian taxa, a recent range expansion from Macaronesia of both widespread species, a range expansion limited to the Mediteranean Basin and south‐western Europe for another taxon, and a long dispersal event that resulted in a speciation event in the western parts of North America. Main conclusions The Macaronesian endemic species belong to two sister clades and originated from a most recent common ancestor (MRCA) shared with one widely distributed taxon, either N. parile or N. laevigatum. Estimates of the mean divergence dates suggest that the endemics originated in the archipelagos after the rise of the volcanic islands, along with the ancestor to the now widespread species, which probably expanded their range beyond Macaronesia via long‐distance dispersal. This study provides the first phylogenetic evidence of Macaronesian neo‐endemism in lichenized fungi and provides support for the hypothesis that oceanic islands may serve as a source for the colonization of continents. However, further data are needed to properly assess the alternative hypothesis, namely colonization from western North America.  相似文献   

19.
ABSTRACT: BACKGROUND: The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. RESULTS: The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33-42 Ma) origin in North America. Two independent lineages (Battus and Euryades+Parides) reached South America via the GAARlandia connection, and later became extinct in North America. They only began substantive diversification during the Miocene in Amazonia. Macroevolutionary analysis supports the "museum model" of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. CONCLUSIONS: This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies.  相似文献   

20.
An integrative study was performed to understand the phylogenetic relationships of an undescribed, freshwater species of microcotylid parasitizing Plagioscion squamosissimus from the Amazon River Basin. Based on morphological and molecular analysis (18S rDNA and partial 28S rDNA genes), a new genus is proposed to accommodate this new species, Pauciconfibuloides amazonica gen. n. sp. n. The new genus is closely related to Protastomicrocotylinae and Pauciconfibula by sharing the vagina, male copulatory organ, and genital atrium all unarmed. However, Pauciconfibuloides gen. n. can be distinguished from those taxa by the prostatic system and position of the vaginal pore. Molecular phylogenetic inference suggests a sister relationship with species of Polylabris (Prostatomicrocotylinae), but to date, there are no available 18S or 28S rDNA sequences of Pauciconfibula to be compared. This is the first report of a microcotylid parasitizing a freshwater sciaenid from South America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号