首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we found that a mutant strain of Tetrahymena pyriformis without food vacuoles failed to grow unless the nutrient media were richly supplemented with vitamins and trace metals. Here we show that calcium folinate alone can replace the extra vitamin supplementation. The mutant requires approximately 90-fold higher concentration of folinate than the wild-type cells to give similar growth responses in a chemically defined medium. We infer that the food vacuole is an important route of uptake for this vitamin in the wild-type cells. We found no difference between mutant and wild-type cells in their requirements for nicotinic acid, pantothenic acid, riboflavin-monophosphate, and pyridoxal. We infer that an extravacuolar route contributes importantly to uptake of these 4 compounds.  相似文献   

2.
We describe the isolation and characterization of a Pediococcus cerevisiae thymidine-requiring mutant and its thymidine-independent revertant. The mutant strain lacked thymidylate synthetase activity and had an absolute requirement for low concentrations (2 micrograms/ml) of thymidine in addition to a requirement for N-5-formyl tetrahydrofolic acid (folinate). Even at high concentrations (up to 500 micrograms/ml), thymine could not replace thymidine. In contrast to its wild-type parent, which grows only on folinate, the thymidine-requiring mutant (Thy- Fol+) was able to take up and grow on picogram quantities of unreduced folic acid. When both strains were grown on folinate, the Thy- Fol+ strain was at least 10(3)-fold more resistant to the folic acid analogs aminopterin and methotrexate than the wild-type strain. On the other hand, when grown on folic acid, the Thy- Fol+ strain was as sensitive to the folic acid analogs as the Thy+ Fol+ strain and was 10(2)-fold more sensitive than the wild-type strain grown on folinate. The thymidine-independent revertant (Thy+ Fol+) regained the wild-type level of thymidylate synthetase activity, but maintained the ability to take up and grow on unreduced folic acid like its Thy- Fol+ parent.  相似文献   

3.
Abstract The uptake of arginine and proline and their assimilation as nitrogen source have been studied in the cyanobacterium Anabaena cycadeae and its glutamine auxotropic mutant lacking glutamine synthetase activity. The uptake pattern of arginine and proline was found to be biphasic in both wild-type and mutant strains, consisting of an initial fast phase lasting up to 60 s followed by a slower second phase. The uptake activities of both the amino acids were also found to be similar in both the strains. The wild-type strain, having normal glutamine synthetase activity, utilized arginine and proline as sole nitrogen source, whereas the mutant strain lacking glutamine synthetase activity could not do so. These results suggest that: (1) glutamine synthetase activity is necessarily required for the assimilation of arginine and proline as nitrogen source, but it is not required for the uptake of these amino acids; and (2) glutamine synthetase serves as the sole ammonia-assimilating enzyme as well as glutamine-forming route in heterocystous cyanobacteria.  相似文献   

4.
The pho2 mutant of Arabidopsis thaliana (L.) Heynh. accumulates excessive Pi (inorganic phosphate) concentrations in shoots compared to wild-type plants (E. Delhaize and P. Randall, 1995, Plant Physiol. 107: 207–213). In this study, a series of experiments was conducted to compare the uptake and translocation of Pi by pho2 with that of wild-type plants. The pho2 mutants had about a twofold greater Pi uptake rate than wild-type plants under P-sufficient conditions and a greater proportion of the Pi taken up accumulated in shoots of pho2. When shoots were removed, the uptake rate by roots was found to be similar for both genotypes, suggesting that the greater Pi uptake by the intact pho2 mutant is due to a greater shoot sink for Pi. Although pho2 mutants could recycle 32Pi from shoots to roots through phloem the proportion of 32Pi translocated to roots was less than half of that found in wild-type plants. When transferred from P-sufficient to P-deficient solutions, Pi concentrations in pho2 roots had a similar depletion rate to wild-type roots despite pho2 shoots having a fourfold greater Pi concentration than wild-type shoots throughout the experiment. We suggest that the pho2 phenotype could result from a partial defect in Pi transport in the phloem between shoots and roots or from an inability of shoot cells to regulate internal Pi concentrations. Received: 20 August 1997 / Accepted: 4 October 1997  相似文献   

5.
Effect of folinate on thymidine uptake by Pediococcus cerevisiae   总被引:1,自引:1,他引:0  
Uptake of (3)H-thymidine by resting cells of Pediococcus cerevisiae was found to be energy- and temperature-dependent. The pH optimum was between 6.5 and 8.0, and after 2 min of incubation most of the radioactivity was found in the deoxyribonucleic acid (DNA) fraction. Iodoacetate at a concentration of 10(-2)m caused a 50% inhibition of uptake. Preincubation of resting cells for 10 min with folinate (10(-3)mu mole/ml) diminished the (3)H-thymidine uptake by 75%. In growing cells, the folinate-induced inhibition was still more striking. Deoxyuridine augmented the folinate effect, whereas fluorodeoxyuridine and aminopterin or amethopterin abolished it. Preincubation with folinate did not interfere with the uptake of (3)H-amethopterin, and thus the inhibitor did not compete for uptake sites within the cell. The role of these inhibitors in reversing the folinate effect is discussed. Cells preincubated with folinate showed an increased incorporation of (14)C-uracil into DNA, presumably after prior conversion to thymidylate. We concluded that the folinate effect was due to stimulation of de novo thymidylate synthesis with concomitant inhibition of the uptake of external thymidine.  相似文献   

6.
Uptake of [14C]galacturonic acid in Erwinia chrysanthemi was found to be stimulated during growth on pectin and its degradation products, saturated digalacturonic acid and galacturonic acid. Cells isolated from macerated potato tissue also showed increased levels of uptake activity for this molecule compared with those showed by glycerol-grown cells. Uptake was found to be an active process, and it displayed saturation kinetics. An Escherichia coli galacturonic acid transport mutant harboring the E. chrysanthemi exuT gene(s) for galacturonic acid uptake was able to transport galacturonic acid but unable to take up the dimer [3H]digalacturonic acid.  相似文献   

7.
Lysophosphatidic Acid Decreases Glutamate and Glucose Uptake by Astrocytes   总被引:4,自引:0,他引:4  
Abstract: The brain is a rich source of the lipid biomediator lysophosphatidic acid, and lysophosphatidic acid levels can significantly increase following brain trauma. Responses of primary rat brain astrocytes to this novel lipid are defined in the current study. Treatment of cells with lysophosphatidic acid resulted in a time- and dose-dependent inhibition of glutamate uptake. Inhibition of glutamate uptake was specific because the related phospholipids, phosphatidic acid, lysophosphatidylcholine, and lysophosphatidylglycerol, did not inhibit this uptake under comparable conditions, i.e., treatment with 10 µ M lipid for 30 min. Lysophosphatidic acid treatment of cells resulted in an increase in lipid peroxidation, as measured by the thiobarbituric acid assay. This increase in content of thiobarbituric acid-reactive substances was largely inhibited by treatment with dithiothreitol or propyl gallate; however, such treatment did not affect the lysophosphatidic acid-induced inhibition of glutamate uptake. Lysophosphatidic acid also inhibited glucose uptake with a dose-response curve that paralleled the inhibition of glutamate uptake. By impairing uptake of glutamate by astrocytes, lysophosphatidic acid may exacerbate excitotoxic processes in various neurodegenerative conditions.  相似文献   

8.
M Bai  B Harfe    P Freimuth 《Journal of virology》1993,67(9):5198-5205
The adenovirus penton base protein has a cell rounding activity and may lyse endosomes during virus entry into the cytoplasm. We found that penton base that was expressed in Escherichia coli also caused cell rounding and that cells adhered to polystyrene wells that were coated with the protein. Mutant analysis showed that both properties required an Arg-Gly-Asp (RGD) sequence at residues 340 to 342 of penton base. In flat adherent cells, virus mutants with amino acid substitutions in the RGD sequence were delayed in virus reproduction and in the onset of viral DNA synthesis. In nonadherent or poorly spread cells, the kinetics of mutant virus reproduction were similar to those of wild-type adenovirus type 2. Expression of the mutant phenotype exclusively in the flat cells that we tested supports a model in which penton base interacts with an RGD-directed cell adhesion molecule during adenovirus uptake or uncoating.  相似文献   

9.
The in vivo function of polyamine binding protein D (PotD) in Synechocystis sp. PCC 6803 for the transport of spermidine was investigated using Synechocystis mutant disrupted in potD gene. The growth rate of potD mutant was similar to that of wild-type when grown in BG11 medium. However, the mutant exhibited severely reduced growth compared to the wild-type when BG11 medium was supplemented with 0.5 mM spermidine. The mutant accumulated a higher spermidine level than the wild-type when grown in the medium with or without spermidine. Transport experiments revealed that the mutant had a reduction in both the uptake and the excretion of spermidine. Moreover, [14C]spermidine-loaded wild-type and mutant cells showed a decrease of [14C]spermidine excretion when the assay medium contained exogenous spermidine. These data suggest that PotD is involved in both the uptake and the excretion of spermidine in Synechocystis cells.  相似文献   

10.
Understanding the molecular basis of acid tolerance in the food-borne pathogen Listeria monocytogenes is important as this property contributes to survival in the food-chain and enhances survival within infected hosts. The aim of this study was to identify genes contributing to acid tolerance in L.?monocytogenes using transposon mutagenesis and subsequently to elucidate the physiological role of these genes in acid tolerance. One mutant harboring a Tn917 insertion in the thiT gene (formerly lmo1429), which encodes a thiamine (vitamin B1) uptake system, was found to be highly sensitive to acid. The acid-sensitive phenotype associated with loss of this gene was confirmed with an independently isolated mutant, from which the thiT gene was deleted (?thiT). Cells of both wild-type and ?thiT mutant that were thiamine depleted were found to be significantly more acid sensitive than control cultures. Thiamine-depleted cultures failed to produce significant concentrations of acetoin, consistent with the known thiamine dependence of acetolactate synthase, an enzyme required for acetoin synthesis from pyruvate. As acetoin synthesis is a proton-consuming process, we suggest that the acid sensitivity observed in thiamine-depleted cultures may be owing to an inability to produce acetoin.  相似文献   

11.
12.
Use of an ion-exchange resin assay has shown that leucine is bound to a component of a dialyzed extract of yeast. Leucine binding may be related to in vivo uptake of the amino acid. A yeast strain with a 30-fold lower affinity for leucine uptake in vivo has a parallel reduction in affinity for in vitro leucine binding; the rate of leucine uptake in wild-type yeast can be increased four- to fivefold by growth on leucine as a sole nitrogen source. Under these conditions, the specific activity of the leucine-binding component also increases over threefold. Regulation of leucine uptake was studied by using wild-type strain 60615 and a mutant 60615/fl(2) with a constitutively elevated leucine uptake system. Leucine pool formation in the mutant was accompanied by an overshoot, leading to a loss of leucine from the pool. The phenomenon could be observed in the wild type under certain conditions. The mechanism of this process was examined. The leucine uptake system was found to be stable in the absence of protein synthesis. The rate of leucine uptake increased on reduction of the pool of amino acids, and in strain 60615/fl(2) the ability to overshoot was rapidly recovered on depletion of the leucine pool. The results suggest a control of leucine uptake by feedback inhibition, in which leucine or other amino acids, e.g., isoleucine, inhibit leucine uptake. The results do not exclude control by a rapidly activated-inactivated system.  相似文献   

13.
ATP-binding cassette (ABC) transporter proteins mediate energy-dependent transport of substrates across cell membranes. Numerous ABC transporter-related genes have been found in the Synechocystis sp. PCC6803 genome by genome sequence analysis including H(+), iron, phosphate, polysaccharide, and CO(2) transport-related genes. The substrates of many other ABC transporters are still unknown. To identify ABC transporters involved in acid tolerance, deletion mutants of ABC transporter genes with unknown substrates were screened for acid stress sensitivities in low pH medium. It was found that cells expressing the deletion mutant of slr1045 were more sensitive to acid stress than the wild-type cells. Moreover, slr1045 expression in the wild-type cells was increased under acid stress. These results indicate that slr1045 is an essential gene for survival under acid stress. The mutant displayed high osmotic stress resistance and high/low temperature stress sensitivity. Considering the temperature-sensitive phenotype and homology to the organic solvent-resistant ABC system, we subsequently compared the lipid profiles of slr1045 mutant and wild-type cells by thin-layer chromatography. In acid stress conditions, the phosphatidylglycerol (PG) content in the slr1045 mutant cells was approximately 40% of that in the wild-type cells. Moreover, the addition of PG to the medium compensated for the growth deficiency of the slr1045 mutant cells under acid stress conditions. These data suggest that slr1045 plays a role in the stabilization of cell membranes in challenging environmental conditions. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

14.
Myxococcus xanthus RppA and MmrA are homologous to methyl-accepting chemotaxis proteins (MCPs) and to multidrug transporters, respectively. We reported previously that rppA-mmrA double mutant exhibited reduced colony expansion, agglutination, and polysaccharide levels. We have demonstrated here that the rppA-mmrA mutant also exhibited reduced amino acid uptake. Furthermore, the double mutant appeared to be more susceptible to some antimicrobial agents, such as streptomycin, ethidium bromide and norfloxacin, than the wild-type. These phenotypes were not shown in the rppA or mmrA single mutant. These results indicate that M. xanthus RppA and MmrA are also involved in the uptake of amino acids and efflux of some antimicrobial agents.  相似文献   

15.
Macroautophagy/autophagy is a unique protein degradation process by which intracellular materials are recycled for energy homeostasis. However, the metabolic status and energy source of autophagy-defective tumor cells is poorly understood. Here in this study, we found ATF4-dependent amino acid transporter (AAT) gene expression and amino acid uptake were increased in autophagy-deficient cells under conditions of Gln deprivation. Notably, inhibition of amino acid uptake reduced the viability of Gln-deprived autophagy-deficient cells, but not significantly in wild-type cells, suggesting the reliance of autophagy-deficient tumor cells on extracellular amino acid uptake.  相似文献   

16.
From the severe neurological syndromes resulting from vitamin E deficiency, it is evident that an adequate supply of the brain with alpha-tocopherol (alphaTocH), the biologically most active member of the vitamin E family, is of utmost importance. However, uptake mechanisms of alphaTocH in cells constituting the blood-brain barrier are obscure. Therefore, we studied the interaction of low (LDL) and high (HDL) density lipoproteins (the major carriers of alphaTocH in the circulation) with monolayers of primary porcine brain capillary endothelial cells (pBCECs) and compared the ability of these two lipoprotein classes to transfer lipoprotein-associated alphaTocH to pBCECs. With regard to potential binding proteins, we could identify the presence of the LDL receptor and a putative HDL3 binding protein with an apparent molecular mass of 100 kDa. At 4 degrees C, pBCECs bound LDL with high affinity (K(D) = 6 nM) and apolipoprotein E-free HDL3 with low affinity (98 nM). The binding capacity was 20,000 (LDL) and 200,000 (HDL3) lipoprotein particles per cell. alphaTocH uptake was approximately threefold higher from HDL3 than from LDL when [14C]alphaTocH-labeled lipoprotein preparations were used. The majority of HDL3-associated alphaTocH was taken up in a lipoprotein particle-independent manner, exceeding HDL3 holoparticle uptake 8- to 20-fold. This uptake route is less important for LDL-associated alphaTocH (alphaTocH uptake approximately 1.5-fold higher than holoparticle uptake). In line with tracer experiments, mass transfer studies with unlabeled lipoproteins revealed that alphaTocH uptake from HDL3 was almost fivefold more efficient than from LDL. Biodiscrimination studies indicated that uptake efficacy for the eight different stereoisomers of synthetic alphaTocH is nearly identical. Our findings indicate that HDL could play a major role in supplying the central nervous system with alphaTocH in vivo.  相似文献   

17.
Hyponatremia leads to hyperexcitability of neurons, seizures, and coma. It is well established that uptake of neurotransmitters is a sodium-dependent process. Therefore, we suggest that inhibition of neurotransmitter uptake can lead to the clinical manifestations of hyponatremia. Decreasing of sodium concentration down to 92 mM in incubation medium, which corresponds to lowering the osmolarity down to 230 mOsm/l, leads to a 45% decrease in glutamate uptake and a 46% decrease in gamma-aminobutyric acid (GABA) uptake. However, this effect was mediated by the nonspecific lowering of osmolarity rather than by decreasing sodium concentration. Hypotonic shock was able to reduce glutamate uptake in the presence of protein kinase inhibitors staurosporine and genistein, the phosphatase inhibitor okadaic acid, the phosphatidylinositol 3-kinase inhibitor wortmannin, and cytoskeleton modulators colchicine and cytochalasin B. Therefore, we suggest that intracellular signaling is not mediating the effect of osmolarity reduction on neurotransmitter uptake.  相似文献   

18.
Vertebrate embryonic hematopoiesis is a complex process that involves a number of cellular interactions, notably those occurring between endothelial and blood cells. The zebrafish cloche mutation affects both the hematopoietic and endothelial lineages from an early stage (Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W. R., Zon, L. I. and Fishman, M. C. (1995) Development 121, 3141-3150). cloche mutants lack endocardium, as well as head and trunk endothelium, and nearly all blood cells. Cell transplantation studies have revealed that the endocardial defect in cloche is cell-autonomous: wild-type cells can form endocardium in mutant hosts, but mutant cells never contribute to the endocardium in wild-type or mutant hosts. In this paper, we analyze the cell-autonomy of the blood defect in cloche. The blood cell deficiency in cloche mutants could be an indirect effect of the endothelial defects. Alternatively, cloche could be required cell-autonomously in the blood cells themselves. To distinguish between these possibilities, we cotransplanted wild-type and mutant cells into a single wild-type host in order to compare their respective hematopoietic capacity. We found that transplanted wild-type cells were much more likely than mutant cells to contribute to circulating blood in a wild-type host. Furthermore, in the few cases where both wild-type and mutant donors contributed to blood in a wild-type host, the number of blood cells derived from the wild-type donor was always much greater than the number of blood cells derived from the mutant donor. These data indicate that cloche is required cell-autonomously in blood cells for their differentiation and/or proliferation. When we assessed early expression of the erythropoietic gene gata-1 in transplant recipients, we found that mutant blastomeres were as likely as wild-type blastomeres to give rise to gata-1-expressing cells in a wild-type host. Together, these two sets of data argue that cloche is not required cell-autonomously for the differentiation of red blood cells, as assayed by gata-1 expression, but rather for their proliferation and/or survival, as assayed by their contribution to circulating blood. In addition, we found that transplanted wild-type cells were less likely to express gata-1 in a mutant environment than in a wild-type one, suggesting that cloche also acts non-autonomously in red blood cell differentiation. This non-autonomous function of cloche in red blood cell differentiation may reflect its cell-autonomous requirement in the endothelial lineage. Thus, cloche appears to be required in erythropoiesis cell non-autonomously at a step prior to gata-1 expression, and cell-autonomously subsequently.  相似文献   

19.
Amino acids are available to plants in some soils in significant amounts, and plants frequently make use of these nitrogen sources. The goal of this study was to identify transporters involved in the uptake of amino acids into root cells. Based on the fact that high concentrations of amino acids inhibit plant growth, we hypothesized that mutants tolerating toxic levels of amino acids might be deficient in the uptake of amino acids from the environment. To test this hypothesis, we employed a forward genetic screen for Arabidopsis thaliana mutants tolerating toxic concentrations of amino acids in the media. We identified an Arabidopsis mutant that is deficient in the amino acid permease 1 (AAP1, At1g58360) and resistant to 10 mm phenylalanine and a range of other amino acids. The transporter was localized to the plasma membrane of root epidermal cells, root hairs, and throughout the root tip of Arabidopsis. Feeding experiments with [(14)C]-labeled neutral, acidic and basic amino acids showed significantly reduced uptake of amino acids in the mutant, underscoring that increased tolerance of aap1 to high levels of amino acids is coupled with reduced uptake by the root. The growth and uptake studies identified glutamate, histidine and neutral amino acids, including phenylalanine, as physiological substrates for AAP1, whereas aspartate, lysine and arginine are not. We also demonstrate that AAP1 imports amino acids into root cells when these are supplied at ecologically relevant concentrations. Together, our data indicate an important role of AAP1 for efficient use of nitrogen sources present in the rhizosphere.  相似文献   

20.
The distribution ratio of the lipophilic cation dibenzyldimethylammonium between the cells of Saccharomyces cerevisiae and the medium appears to reflect changes in the membrane potential in a way that is qualitatively correct: the addition of a proton conductor or of an agent which blocks metabolism causes an apparent depolarization of the cell membrane; monovalent cations cause also a lowering of the equilibrium distribution, whereas the addition of divalent cations results in an increase of the partition ratio.However, uptake of dibenzyldimethylammonium and probably also of other liophilic cations proceeds via the thiamine transport system of the yeast. Dibenzyldimethylammonium transport is inducible, like thiamine transport. A kinetic analysis of the mutual interaction between thiamine and dibenzyldimethylammonium uptake shows that these compounds share a common transport system; moreover, dibenzyldimethylammonium uptake is inhibited completely by thiamine disulfide, a competitive inhibitor of thiamine transport and dibenzyldimethylammonium uptake in a thiamine-transport mutant is reduced considerably.It is concluded that one should be cautious when using lipophilic cations to measure the membrane potential of cells of S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号