首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract— We have in the present study investigated the properties of mevalonate kinase, phosphomevalonate kinase and pyrophosphomevalonate decarboxylase in the 105,000 g supernatant fractions from rat brain, and determined whether the activities of these enzymes change during brain development. All three enzymes in brain showed a specific requirement for ATP for optimal activity. The presence of Mg2+ as divalent cation was also required for optimal activity of mevalonate kinase and phosphomevalonate kinase. Both Mg2+ and Mn2+ were equally effective divalent metal ions for pyrophosphomevalonate decarboxylase in brain. Mevalonate kinase as well as phosphomevalonate kinase were active in a broad pH range of 6.5–8 while the pH curve for pyrophosphomevalonate decarboxylase showed a peak activity at approx 6. No age-dependent change occurred in the activities of mevalonate kinase and phosphomevalonate kinase in developing brain, whereas pyrophosphomevalonate decarboxylase activity in brain increased during the 1st week after birth, reached a peak value at about the 8th day of age and declined slowly thereafter. The Km for brain mevalonate kinase in 2, 13 and 52 day old rats were 312, 400 and 434 μM, respectively. The V max for the kinase in 2, 13 and 52 day old rats were in the range of 45–52 nmol/h/mg protein, respectively. This suggests that, like in liver (R amachandran & S hah , 1976), pyrophosphomevalonate decarboxylase in brain may also be one regulatory step for cholesterol synthesis.  相似文献   

2.
The effect of clofibrate on the activity of the three mevalonate-activating enzymes has been studied for the first time in brain by reactions carried out using [2-14C] mevalonic acid as substrate and 105,000g supernatants from 14-day-old chick brain. Mevalonate-5-pyrophosphate decarboxylase was clearly inhibited, while mevalonate kinase and mevalonate-5-phosphate kinase were not significantly affected. The effect of clofibrate on decarboxylase activity was progressive with increasing concentrations (1.25–5.00 mM) of the inhibitor. A transient inhibition and a subsequent activation as a function of clofibrate concentration seemed to occur for mevalonate kinase. Direct measurements of decarboxylase activity utilizing [2-14C] pyrophosphomevalonate as the specific substrate of this enzyme corroborated these results. Kinetic studies showed that clofibrate competes with the substrate ATP.  相似文献   

3.
3-Hydroxy-3-methylglutaryl-CoA reductase, mevalonate kinase, mevalonate-5-phosphate kinase and mevalonate-5-pyrophosphate decarboxylase activities have been determined in brain, liver, intestine and kidneys from 19-day-old chick embryo. Levels of brain reductase and decarboxylase were clearly higher than those found in the other tissues assayed. However, only small differences were observed in the activity of both kinases among the different tissues. Mevalonate metabolism by sterol and nonsterol pathways has been investigated in chick embryo at the same developmental stage. Mevalonate incorporation into total nonsaponifiable lipids was maximal in liver, followed by intestine, brain and kidneys. The shunt pathway of mevalonate not leading to sterols was negligible in both brain and liver, while a clear CO2 production was observed in intestine and kidneys. Sterols running in TLC as lanosterol and cholesterol were the major sterols formed from mevalonate by brain and kidney slices, while squalene and squalene oxide(s) were found to be mainly synthesized by liver slices. Minor differences in the percentage of different sterols were observed in chick embryo intestine. The importance of free and esterified cholesterol accumulation in the different tissues on the inhibition of cholesterogenic activity is discussed.  相似文献   

4.
The pattern of chick liver and brain 3-hydroxy-3-methylglutaryl-CoA reductase and its relationship with changes in microsomal membrane fluidity was studied during embryonic and postnatal development. A peak of brain activity was found at 19 days of embryonic development, while liver activity only increased after hatching. A significant increase in cholesterol content of brain microsomes occurred at about 14 days of incubation, decreasing afterwards. No significant variations were observed in liver microsomes during the same period. A similar profile was found in the phospholipid content of both brain and liver microsomes. The cholesterol/lipidic phosphorus molar ratio of brain and liver microsomes did not exhibit significant changes throughout embryonic and postnatal development. These results demonstrate that membrane-mediated control does not regulate the evolution of reductase activity during this developmental period.  相似文献   

5.
The in vivo dipyridamole treatment for 16 days produced a significant decrease in chick plasma cholesterol, mainly due to the esterified form. This effect was especially patent in the VLDL + LDL fraction. Similar results were observed in triglyceride content. To our knowledge, this is the first report on this hypolipidemic effects of dipyridamole. Total and esterified cholesterol increased after the same treatment in chick liver, while brain cholesterol content was not affected. Hepatic 3-hydroxy-3- methylglutaryl-CoA reductase activity was drastically reduced, while other secondary regulatory enzymes such as mevalonate kinase, mevalonate 5-phosphate kinase and mevalonate 5-pyrophosphate decarboxylase did not change significantly. No significant differences were found in cholesterol and lipidic phosphorus from liver microsomes, so that the effect of dipyridamole on reductase activity cannot be due to modifications in cholesterol/lipidic phosphorus molar ratio. Neither of these enzyme activities was affected in vitro by dipyridamole.  相似文献   

6.
Phosphorylation and decarboxylation of mevalonate in chick liver and brain was investigated during early post hatching stages of development. In chick liver, both mevalonate kinase and mevalonate-5-phosphate kinase increased their activity from day 5 of age while pyrophosphate decarboxylase activity remained low during the first days after hatching, increased sharply up to day 9 of age, and remained practically unchanged thereafter. The developmental pattern obtained in brain shows a slight decrease in the phosphorylation and decarboxylation of mevalonate after the first week of postnatal development. Further studies were performed using the specific substrate of mevalonate-5-pyrophosphate decarboxylase, corroborating the results obtained using mevalonate as substrate. Changes in hepatic decarboxylase were more pronounced than those observed in mevalonate-phosphorylating enzymes, thus suggesting an important role for decarboxylase in the control of cholesterogenesis during postnatal development.  相似文献   

7.
The evolution throughout embryonic development of the rate at which acetate was converted into sterols was studied in chick brain and liver. Acetate incorporation (nmol/h/g tissue) was clearly higher in brain than in liver and sharply decreased with the age of embryo. Cholesterol and desmosterol were the major sterols formed from acetate by chick embryo brain, followed by lanosterol and squalene. No desmosterol was found in chick embryo liver, organ where cholesterol was the major sterol synthesized. In brain, the relative percentage of cholesterol increased throughout embryonic development reaching more than 50% at hatching, while the percentage of desmosterol decreased during the same period and represented at hatching only about 10–15% of the total nonsaponifiable fraction. The relative percentages of lanosterol and squalene did not change significantly throughout the period assayed. In liver, the percentage of cholesterol increased until 19 days but sharply decreased at hatching.  相似文献   

8.
The response to different dietary conditions of the enzymes responsible for the transformation of mevalonic acid to isopentenyl pyrophosphate has been studied for the first time in the small bowel of the chick to elucidate the role of these enzymes in the regulation of intestinal cholesterogenesis. Feeding a 2% cholesterol diet from hatching resulted in a small but significant inhibition of mevalonate-5-pyrophosphate decarboxylase, while mevalonate kinase and mevalonate-5-phosphate kinase remained unaltered. Similar results were obtained for the three enzymes when 13-day-old chicks fed a standard fat-free diet were switched to a 5% cholesterol diet. Starved chicks exhibited lower intestinal decarboxylase activity than chicks fed a standard diet, while refeeding resulted in levels of activity similar or slightly greater than controls. None of the enzymes effecting the conversion of mevalonate to isopentenyl pyrophosphate in the small intestine presented diurnal variations. Results obtained suggest that mevalonate-5-pyrophosphate decarboxylase may play a significant role in the regulation of cholesterol synthesis in the small intestine.  相似文献   

9.
Phosphatidylinositol kinase and diphosphoinositide kinase activities were measured in homogenates of brain and sciatic nerve of developing chick embryos and chicks. Characteristics of the chick nervous system enzymes were similar to those reported for rat brain. Diphosphoinositide kinase was inhibited by high concentrations of ATP and by low concentrations of triphosphoinositide. Both activities were greatly enhanced by the non-ionic detergent, Cutscum, and the ratio of detergent to protein in the reaction mixture was important. Optimum phosphatidylinositol kinase activity required a ratio of 7 : 1 for both tissues. The optimum ratio for diphosphoinositide kinase was 3:1 for nerve homogenates and 0.6:1 for brain. Cutscum increased the concentration of diphosphoinositide that is required for maximum diphosphoinositide kinase activity. Developmental changes were the same for both kinase activities, which were low in unmyelinated brain and sciatic nerve. The activities correlated with the concentration of polyphosphoinositides in chick brain where they increased 4-5 fold during the period of active myelination and remained high in the mature brain. The kinase activities correlated with the rate of triphosphoinositide deposition in sciatic nerve. Following a 2-3 fold increase during the initial phase of myelination the activities declined to values as low as those of embryonic nerve.  相似文献   

10.
3-Hydroxy-3-methylglutaryl-CoA reductase, mevalonate-5-pyrophosphate decarboxylase and acyl-CoA: cholesterol acyltransferase activities were assayed in mucosal scrapings and isolated enterocytes from chick duodenum, jejunum and ileum. Maximal reductase and decarboxylase specific activities were found in ileum and jejunum, while ileum exhibited the minimal acyltransferase specific activity. The isolated epithelial cells showed levels of reductase and acyltransferase specific activities higher than those found in mucosa scrapings, probably due to the contact of these microsomal proteins with proteolytic enzymes during homogenization of the mucosa. However, no protecting effect of the trypsin inhibitor (2mg/ml) could be observed on reductase activity in mucosa scrapings. The cytosolic location of decarboxylase may account for the similar levels of specific activities found in mucosa scrapings and isolated enterocytes.  相似文献   

11.
Mevalonate phosphorylation was studied in neonatal chick brain. Formation of phosphorylated derivatives of mevalonic acid increased with the pH in the range assayed (5.5–9.5). Phosphomevalonate kinase was completely inactivated after treatment at 50°C for 5–10 min, whereas mevalonate kinase was found to retain its activity under the same conditions. Exposure to 65°C for 5 min resulted in the inactivation of mevalonate kinase. Both mevalonate-activating enzymes from chick brain were located primarily in the soluble fraction. The amounts of phosphomevalonic acid and pyrophosphomevalonic acid did not show a significant diurnal variation to suggest the presence of a circadian rhythm in either kinase. Cholesterol feeding and fasting had no effect on mevalonate phosphorylation by neonatal chick brain.  相似文献   

12.
The ontogeny of brain creatine kinase (CK) was studied during chick embryo development. The cytosolic activity increased 270% in 10 h from the 2nd to the 3rd days of incubation; this was followed by a plateau phase throughout development and at the end of incubation there appeared to be another increase of cytosolic and mitochondrial CK activities. Therefore, early embryonic chick brain CK is another‘constitutive’enzyme like the early embryonic chick heart CK since creatine has not been enzymatically detected in the embryo until day 4 of incubation. Insulin does not appear to stimulate the early increase of brain CK activity since the hormone is not present in the embryo until day 5 of incubation. It is likely that CK increase is associated with neuronal multiplication at early stages and possibly to neuronal maturation before hatching.  相似文献   

13.
The in vivo effect of clofibrate on the main regulatory enzymes of cholesterogenesis has been comparatively studied for the first time in chick liver and brain. 3-Hydroxy-3-methylglutaryl-CoA reductase and mevalonate 5-pyrophosphate decarboxylase from chick liver were significantly inhibited by this hypocholesterolenic drug, while mevalonate kinase and mevalonate 5-phosphate kinase were not affected. No enzyme from chick brain was significantly inhibited by the in vivo treatment. However, both liver and brain reductase activity was inhibited in vitro by clofibrate, inhibition that was progressive with increasing concentrations (1.25-5.00 mM) of drug.  相似文献   

14.
Phenylalanine, phenylpyruvate and phenylacetate produced a considerable inhibition of chick liver mevalonate 5-pyrophosphate decarboxylase while mevalonate kinase and mevalonate 5-phosphate kinase were not significantly affected. Phenolic derivatives of phenylalanine produced a similar inhibition of decarboxylase activity than that found in the presence of phenyl metabolites. The degree of inhibition was progressive with increasing concentrations of inhibitors (1.25–5.00 mM). Simultaneous supplementation of different metabolites in conditions similar to those in experimental phenylketonuria (0.25 mM each) produced a clear inhibition of liver decarboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase. To our knowledge, this is the first report on the in vitro inhibition of both liver regulatory enzymes of cholesterogenesis in phenylketonuria-like conditions. Our results show a lower inhibition of decarboxylase than that of reductase but suggest an important regulatory role of decarboxylase in cholesterol synthesis.  相似文献   

15.
The activities of DNA polymerases α, β, and γ and of thymidine kinase were determined in the chick neural retina at different stages of embryonic development (starting at seven days) and after hatching (up to five years). Crude extracts of neural retinae were fractionated by centrifugation on sucrose gradients and the enzymatic activities measured using specific assays. The DNA polymerase a activity decreases greatly between 7 and 11 days of incubation. This decrease parallels the decline in mitotic activity. However, a constant residual activity remains after hatching, even in the oldest animals. DNA polymerase β activity increases slightly between 7 and 14 days of incubation; it then decreases slowly until seven days after hatching and remains constant thereafter. DNA polymerase γ activity is maximal between 7 and 14 days of incubation and then decreases until hatching. The activity of thymidine kinase increases slightly during the embryonic life until hatching and remains almost constant thereafter. The implication of these enzymes in DNA replication and repair processes is discussed.  相似文献   

16.
The activities of DNA polymerases alpha, beta, and gamma and of thymidine kinase were determined in the chick neural retina at different stages of embryonic development (starting at seven days) and after hatching (up to five years). Crude extracts of neural retinae were fractionated by centrifugation on sucrose gradients and the enzymatic activities measured using specific assays. The DNA polymerase alpha activity decreases greatly between 7 and 11 days of incubation. This decrease parallels the decline in mitotic activity. However, a constant residual activity remains after hatching, even in the oldest animals. DNA polymerase beta activity increases slightly between 7 and 14 days of incubation; it then decreases slowly until seven days after hatching and remains constant thereafter. DNA polymerase gamma activity is maximal between 7 and 14 days of incubation and then decreases until hatching. The activity of thymidine kinase increases slightly during the embryonic life until hatching and remains almost constant thereafter. The implication of these enzymes in DNA replication and repair processes is discussed.  相似文献   

17.
Both in vivo and in vitro incorporation of mevalonic acid into nonsaponifiable lipids by 17-day-old chick liver and kidney did not show diurnal rhythm. Using 14CO2 production from MVA as an index of the shunt pathway not leading to sterols, we have demonstrated for the first time that there is no diurnal rhythm in this pathway. No significant differences were found in the specific activities of mevalonate kinase, mevalonate-5-phosphate kinase and mevalonate-5-pyrophosphate decarboxylase from chick liver and kidney throughout a period of 24 hr, using [1-14C]mevalonate as substrate. The absence of diurnal rhythm in the decarboxylase activity was corroborated by further experiments carried out using [2-14C]mevalonate-5-pyrophosphate as specific substrate of this enzyme.  相似文献   

18.
Lipid synthesis from acetoacetate and 3-hydroxybutyrate was studied in chick embryo from 15 to 21 days and in chick neonate from 1 to 21 days. Embryonic spinal cord showed higher ability than brain to incorporate acetoacetate into total lipids, although a sharp decrease was found at hatching. 3-Hydroxybutyrate incorporation into total lipids was also higher in spinal cord than in brain, especially during the embryonic period. Phospholipids were the main lipids formed in both tissues from both precursors. An appreciable percentage of radioactivity was also recovered as free cholesterol, especially during the embryonic phase. The developmental patterns of amino acid synthesis from acetoacetate and 3-hydroxybutyrate were similar in both tissues: a clear increase after hatching was followed by a decrease at day 4 of neonatal life. Acetoacetate was a better substrate for amino acid synthesis than 3-hydroxybutyrate during the embryonic development in both tissues. Oxidation of both precursors to CO2 strongly decreased between 15 and 21 days of embryonic development both in brain and spinal cord.  相似文献   

19.
6-Fluoromevalonate blocks the incorporation of mevalonic acid, but not that of isopentenyl pyrophosphate, into non-saponifiable lipids in a rat liver multienzyme system. With 3H-labelled 6-fluoromevalonate, it was found that 6-fluoromevalonate is converted to its phospho and pyrophospho derivatives in this system. The kinetics of the two kinases were studied. 6-Fluoromevalonate 5-pyrophosphate is a potent competitive inhibitor of pyrophosphomevalonate decarboxylase (Ki 37 nM). In the multienzyme assay for cholesterol biosynthesis, there is accumulation of mevalonate 5-phosphate and mevalonate 5-pyrophosphate in the presence of 5 microM-6-fluoromevalonate, and 6-fluoromevalonate 5-pyrophosphate is more effective than 6-fluoromevalonate in inhibiting cholesterol biosynthesis. We suggest therefore that 6-fluoromevalonate blocks cholesterol biosynthesis at the level of pyrophosphomevalonate decarboxylase after being pyrophosphorylated.  相似文献   

20.
In chick embryo retina during development, DNA synthesis and the activities of DNA polymerase, thymidine kinase, thymidylate synthetase, and ornithine decarboxylase (ODC) declined in parallel from day 7 to 12. The administration in ovo of hydrocortisone reduced significantly, particularly at 8-10 days of incubation, both DNA synthesis and the four enzyme activities tested. The effect was dose dependent, reaching the maximum with 50-100 nmol of hydrocortisone, 8-16 h after treatment. The highest inhibition was found for ODC activity (70%), followed by thymidine kinase activity (62%) and DNA synthesis (45%), whereas activities of DNA polymerase and thymidylate synthetase were reduced only by 30%. The inhibitory effect was exerted by all the glucocorticoids tested, with dexamethasone and hydrocortisone being the most efficacious. The results support the view that glucocorticoids reduce the proliferative events in chick embryo retina, particularly at 8-10 days of embryonic life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号