共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships and evolutionary patterns of the order Collodaria (Radiolaria) 总被引:1,自引:0,他引:1
Collodaria are the only group of Radiolaria that has a colonial lifestyle. This group is potentially the most important plankton in the oligotrophic ocean because of its large biomass and the high primary productivity associated with the numerous symbionts inside a cell or colony. The evolution of Collodaria could thus be related to the changes in paleo-productivity that have affected organic carbon fixation in the oligotrophic ocean. However, the fossil record of Collodaria is insufficient to trace their abundance through geological time, because most collodarians do not have silicified shells. Recently, molecular phylogeny based on nuclear small sub-unit ribosomal DNA (SSU rDNA) confirmed Collodaria to be one of five orders of Radiolaria, though the relationship among collodarians is still unresolved because of inadequate taxonomic sampling. Our phylogenetic analysis has revealed four novel collodarian sequences, on the basis of which collodarians can be divided into four clades that correspond to taxonomic grouping at the family level: Thalassicollidae, Collozoidae, Collosphaeridae, and Collophidae. Comparison of the results of our phylogenetic analyses with the morphological characteristics of each collodarian family suggests that the first ancestral collodarians had a solitary lifestyle and left no silica deposits. The timing of events estimated from molecular divergence calculations indicates that naked collodarian lineages first appeared around 45.6 million years (Ma) ago, coincident with the diversification of diatoms in the pelagic oceans. Colonial collodarians appeared after the formation of the present ocean circulation system and the development of oligotrophic conditions in the equatorial Pacific (ca. 33.4 Ma ago). The divergence of colonial collodarians probably caused a shift in the efficiency of primary production during this period. 相似文献
2.
3.
Carstens BC Brunsfeld SJ Demboski JR Good JM Sullivan J 《Evolution; international journal of organic evolution》2005,59(8):1639-1652
We examine the evolution of mesic forest ecosystems in the Pacific Northwest of North America using a statistical phylogeography approach in four animal and two plant lineages. Three a priori hypotheses, which explain the disjunction in the mesic forest ecosystem with either recent dispersal or ancient vicariance, are tested with phylogenetic and coalescent methods. We find strong support in three amphibian lineages (Ascaphus spp., and Dicampton spp., and Plethodon vandykei and P. idahoensis) for deep divergence between coastal and inland populations, as predicted by the ancient vicariance hypothesis. Unlike the amphibians, the disjunction in other Pacific Northwest lineages is likely due to recent dispersal along a northern route. Topological and population divergence tests support the northern dispersal hypothesis in the water vole (Microtus richardsoni) and northern dispersal has some support in both the dusky willow (Salix melanopsis) and whitebark pine (Pinus albicaulis). These analyses demonstrate that genetic data sampled from across an ecosystem can provide insight into the evolution of ecological communities and suggest that the advantages of a statistical phylogeographic approach are most pronounced in comparisons across multiple taxa in a particular ecosystem. Genetic patterns in organisms as diverse as willows and salamanders can be used to test general regional hypotheses, providing a consistent metric for comparison among members of an ecosystem with disparate life-history traits. 相似文献
4.
Phylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes 总被引:8,自引:0,他引:8
Phylogenetic relationships among 37 living species of order Carnivora spanning a relatively broad range of divergence times and taxonomic levels were examined using nuclear sequence data from exon 1 of the IRBP gene (approximately 1.3 kb) and first intron of the TTR gene (approximately 1 kb). These data were used to analyze carnivoran phylogeny at the family and generic level as well as the interspecific relationships within recently derived Felidae. Phylogenetic results using a combined IRBP+TTR dataset strongly supported within the superfamily Califormia, the red panda as the closest lineage to procyonid-mustelid (i.e., Musteloidea) clade followed by pinnipeds (Otariidae and Phocidae), Ursidae (including the giant panda), and Canidae. Four feliform families, namely the monophyletic Herpestidae, Hyaenidae, and Felidae, as well as the paraphyletic Viverridae were consistently recovered convincingly. The utilities of these two gene segments for the phylogenetic analyses were extensively explored and both were found to be fairly informative for higher-group associations within the order Carnivora, but not for those of low level divergence at the species level. Therefore, there is a need to find additional genetic markers with more rapid mutation rates that would be diagnostic at deciphering relatively recent relationships within the Carnivora. 相似文献
5.
The Cypriniformes comprise approximately 4,200 species accounting for 25% of the diversity of all freshwater fish, which is widely distributed across the world's continents except Antarctica, South America, and Australia. The highest species diversity is found in Southeastern Asia. Despite its remarkable species diversity and broad-scale geographic patterns of distribution, the evolutionary history of this major freshwater fish group remains largely unresolved. To gain insight of the evolutionary history of Cypriniformes, we present a phylogeny of this group using 1 mitochondrial gene and 15 nuclear genes comprising a total of14,061 bp. Bayesian inference using all gene fragments yielded a well resolved phylogeny, which is mostly consistent with topologies obtained from Maximum Likelihood analyses. Our results further confirmed the monophyly of Cypriniformes and seven constituent subclades including Cyprinidae, Catostomidae, Gyrinocheilidae, Balitoridae, Cobitidae, Nemacheilidae, and Botiidae. Bayesian divergence time analysis indicated that the origin of the Cypriniformes was about 193 Mya during the early Jurassic, coinciding with the onset of the Pangaea breakup. The basal divergence of Cypriniformes is 154 Mya during the late Jurassic. Our findings from molecular divergence and biogeographical analysis indicate the most likely initial geographical range of the ancient Cypriniformes was both East and South Asia(Southeastern area of Mesozoic Laurasia). Moreover, the burst in species diversity in Cyprinidae afforded by the nearly worldwide colonization is possibly in response to the plasticity of pharyngeal dentition. The present study demonstrates that the Cypriniformes was about 193 Mya during the early Jurassic,coinciding with the onset of the Pangaea breakup. The plasticity of pharyngeal dentition of cyprinids might contribute to the burst and radiation of this lineage. The phylogenetic and biogeographic analyses in this study help to improve our understanding of the evolutionary history of this diverse and important freshwater fish group. 相似文献
6.
《Genomics》2020,112(5):3511-3517
The Acipenseriformes, as one of the earliest extant vertebrates, plays an important role in the evolution of fishes and even the whole vertebrates. Here we collected and analyzed all complete mitochondrial genomes of Acipenseriformes species. Phylogenetic analyses demonstrated that the polytomous branch included Acipenseridae and Polyodontidae formed five clades. The Polyodontidae clade and the Scaphirhynchus clade both were monophyletic group, whereas the Acipenser species and the Huso species both were polyphyletic group. The Bayesian divergence times showed that the origin time for Acipenseriformes was at 318.0 Mya, which was similar to the some previous results of 312.1 Mya, 346.9 Mya and 389.7 Mya. The result was in good consistent with the paleontological data available and the split time of the Pacific and Atlantic Oceans from the Jurassic to the Cretaceous (Laurasia splits in North America and Eurasia). The dN/dS ratios showed the evolutionary rates gradually slow down in five major Acipenseriformes clades from the Clade A (the Pacific sturgeons species) to Clade C (the genus Scaphirhynchus), which was related to the process of geographical formation. 相似文献
7.
Background
Taxon sampling is a major concern in phylogenetic studies. Incomplete, biased, or improper taxon sampling can lead to misleading results in reconstructing evolutionary relationships. Several theoretical methods are available to optimize taxon choice in phylogenetic analyses. However, most involve some knowledge about the genetic relationships of the group of interest (i.e., the ingroup), or even a well-established phylogeny itself; these data are not always available in general phylogenetic applications. 相似文献8.
Phylogenetic relationships and evolutionary history of the reef fish family Labridae 总被引:4,自引:0,他引:4
The family Labridae (including scarines and odacines) contains 82 genera and about 600 species of fishes that inhabit coastal and continental shelf waters in tropical and temperate oceans throughout the world. The Labridae (the wrasses) is the fifth largest fish family and second largest marine fish family, and is one of the most morphologically and ecologically diversified families of fishes in size, shape, and color. Labrid phylogeny is a long-standing problem in ichthyology that is part of the larger question of relationships within the suborder Labroidei. A phylogenetic analysis of labrids was conducted to investigate relationships among the six classical tribes of wrasses, the affinities of the wrasses to the parrotfishes (scarines), and the broad phylogenetic structure among labrid genera. Four gene fragments were sequenced from 98 fish species, including 84 labrid fishes and 14 outgroup taxa. Taxa were chosen from all major labrid clades and most major global ocean regions where labrid fishes exist, as well as cichlid, pomacentrid, and embiotocid outgroups. From the mitochondrial genome we sequenced portions of 12S rRNA (1000 bp) and 16S rRNA (585 bp), which were aligned by using a secondary structure model. From the nuclear genome, we sequenced part of the protein-coding genes RAG2 (846 bp) and Tmo4C4 (541 bp). Maximum likelihood, maximum parsimony, and Bayesian analyses on the resulting 2972 bp of DNA sequence produced similar topologies that confirm the monophyly of a family Labridae that includes the parrotfishes and butterfishes and strong support for many previously identified taxonomic subgroups. The tribe Hypsigenyini (hogfishes, tuskfishes) is the sister group to the remaining labrids and includes odacines and the chisel-tooth wrasse Pseudodax moluccanus, a species previously considered close to scarines. Cheilines and scarines are sister-groups, closely related to the temperate Labrini, and pseudocheilines and cheilines are split in all phylogenies. The razorfishes (novaculines) and temperate pseudolabrines form successive sister clades to the large crown group radiation of the Julidini. The cleaner wrasses (Labrichthyini) are nested within this radiation and several julidine genera do not appear to be monophyletic (e.g., Coris and Halichoeres). Invasion of temperate water by this predominantly tropical group has occurred multiple times and the reconstruction of biogeography assuming an Indo-Pacific ancestor results in five different lineages invading the Atlantic/Caribbean region. Functional novelties in the feeding apparatus have allowed labrid fishes to occupy nearly every feeding guild in reef environments, and trophic variation is a central axis of diversification in this family. 相似文献
9.
Unlike rare mendelian diseases, which are due to new mutations (i.e. derived alleles), several alleles that increase the risk to common diseases are ancestral. Moreover, population genetics studies suggest that some derived alleles that protect against common diseases became advantageous recently. These observations can be explained within an evolutionary framework in which ancestral alleles reflect ancient adaptations to the lifestyle of ancient human populations, whereas the derived alleles were deleterious. However, with the shift in environment and lifestyle, the ancestral alleles now increase the risk of common diseases in modern populations. In this article, we develop an explicit evolutionary model and use population genetics simulations to investigate the expected haplotype structure and type of disease-association signals of ancestral risk alleles. 相似文献
10.
We investigated evolutionary relationships among orders in phylum Rotifera and among species in genus Notholca (Rotifera) by computing parsimonious cladograms. All of the most-parsimonious cladograms generated for the ordinal level confirm the view that class Monogononta, superclass Eurotatoria, and phylum Rotifera are monophyletic. Species within the genus Notholca were separated into six groups (clades), but some species have been defined based on highly variable characters not reliably studied using cladistics. Therefore, phenetic studies are warranted, especially for species possessing caudal processes. 相似文献
11.
Phylogenetic relationships within the Drosophila sulfurigaster species-complex, which belongs to the D. nasuta subgroup, were investigated on the basis of chromosomal constitution and morphology. D. pulaua is thought to be the most ancestral species, from which D. s. sulfurigaster and D. s. bilimbata derived in one branch and D. s. albostrigata and D. s. neonasuta in another branch. 相似文献
12.
Three nominal species are known in East Asian balitorid loaches of the genus Lefua, i.e. L. echigonia, L. nikkonis, and L. costata. Lefua echigonia, with large morphological variations was recently separated into two groups, L. echigonia including the holotype and L. sp., based on morphological and ecological traits. We performed protein and DNA analyses to elucidate phylogenetic relationships among loaches of the genus Lefua and to settle the taxonomic status of L. sp. We also investigated intraspecific variations in L. echigonia s. str. to shed light on the process of formation of freshwater fish fauna in Japan. Protein analyses using two-dimensional gel electrophoresis showed that genetic distances between L. sp. and L. echigonia s. str. and between L. sp. and L. nikkonis were as large as that between L. echigonia s. str. and L. nikkonis. DNA analyses of the mitochondrial D-loop region showed that L. sp. and L. echigonia s. str. were monophyletic, respectively, while neither L. nikkonis nor L. costata was monophyletic and these species formed together a clade. The results supported the specific status of L. sp. and proposed reevaluation of the taxonomic status of L. nikkonis and L. costata. DNA analyses also showed that L. sp. was more closely related to L. echigonia s. str. than to the L. nikkonis-L. costata complex, and four local populations were distinguished in L. echigonia s. str. Distribution patterns of the four local populations of L. echigonia s. str. in Japan were approximately congruent with those of the medaka, Oryzias latipes, suggesting that differentiation in the two distantly related fishes have a common historical background. 相似文献
13.
We estimated phylogenetic relationships among species of the bee genus Diadasia, a group of new world, specialist bees. We sequenced approximately 2 kb of the mitochondrial genes cytochrome oxidase subunit I and II and tRNA leucine and approximately 1 kb of the nuclear gene elongation factor 1-alpha for 24 North American Diadasia species, 4 South American species, and five outgroup genera. Parsimony analyses of the two data sets were highly congruent. A combined analysis produced a well-resolved phylogenetic hypothesis that supported the monophyly of Diadasia, but not that of traditional subgenera: Diadasia s. str. was paraphyletic in all analyses. With one exception, the North and South American species formed separate clades, supporting previous hypotheses that two lineages of Diadasia have dispersed from South to North America: a more recent dispersal of D. ochracea and an older dispersal of the ancestor to all other North American species. Different species of Diadasia specialize on pollen from at least five different plant families; the phylogeny presented here, along with known host affinities, indicates that host-switching has been rare. 相似文献
14.
Masaharu Motokawa 《Journal of Zoology》2004,263(2):147-157
15.
Phylogenetic and evolutionary relationships among torovirus field variants: evidence for multiple intertypic recombination events 下载免费PDF全文
Smits SL Lavazza A Matiz K Horzinek MC Koopmans MP de Groot RJ 《Journal of virology》2003,77(17):9567-9577
Toroviruses (family Coronaviridae, order Nidovirales) are enveloped, positive-stranded RNA viruses that have been implicated in enteric disease in cattle and possibly in humans. Despite their potential veterinary and clinical relevance, little is known about torovirus epidemiology and molecular genetics. Here, we present the first study into the diversity among toroviruses currently present in European swine and cattle herds. Comparative sequence analysis was performed focusing on the genes for the structural proteins S, M, HE, and N, with fecal specimens serving as sources of viral RNA. Sequence data published for animal and human torovirus variants were included. Four genotypes, displaying 30 to 40% divergence, were readily distinguished, exemplified by bovine torovirus (BToV) Breda, porcine torovirus (PToV) Markelo, equine torovirus Berne, and the putative human torovirus. The ungulate toroviruses apparently display host species preference. In phylogenetic analyses, all PToV variants clustered, while the recent European BToVs mostly resembled the New World BToV variant Breda, identified 19 years ago. However, we found ample evidence for recurring intertypic recombination. All newly characterized BToV variants seem to have arisen from a genetic exchange, during which the 3' end of the HE gene, the N gene, and the 3' nontranslated region of a Breda virus-like parent had been swapped for those of PToV. Moreover, some PToV and BToV variants carried chimeric HE genes, which apparently resulted from recombination events involving hitherto unknown toroviruses. From these observations, the existence of two additional torovirus genotypes can be inferred. Toroviruses may be even more promiscuous than their closest relatives, the coronaviruses and arteriviruses. 相似文献
16.
Phylogenetic relationships among isolates of Cryptosporidium: evidence for several new species 总被引:5,自引:0,他引:5
Isolates of Cryptosporidium were characterized using nucleotide sequence analysis of the 18S rRNA and dihydrofolate reductase genes and also random-amplified polymorphic DNA analysis. Phylogenetic analysis confirmed the validity of the species of Cryptosporidium examined in this study such as Cryptospordium muris and Cryptosporidium baileyi, and also reinforced evidence from numerous researchers worldwide suggesting that Cryptosporidium parvum is not a single uniform species. The data obtained provided strong support for the validity of Cryptosporidium felis. Evidence suggests that the newly identified marsupial and pig genotypes may also be distinct and valid species, but biological studies are required for confirmation. 相似文献
17.
Phylogenetic relationships within the superfamily Desmodoroidea (Nematoda: Desmodorida), with descriptions of two new and one known species 下载免费PDF全文
Three nematode species of the superfamily Desmodoroidea Filipjev, 1922, were isolated from beach sediments in Wellington, New Zealand, for morphological and molecular analyses. Two of these species, D esmodorella verscheldei sp. nov. and D racograllus ngakei sp. nov. , were new to science and are described herein. Epsilonema rugatum Lorenzen, 1973, comb. nov. , which was originally described from New Zealand material as a subspecies of Epsilonema dentatum from Chile, is redescribed and elevated to the rank of species based on cuticular ornamentation. The phylogenetic relationships amongst the three Desmodoroidea families are investigated based on new and existing sequences of the D2 and D3 expansions segments of large subunit (LSU) 28S rRNA gene and small subunit (SSU) of 18S rDNA gene. Our analyses suggest that the Draconematidae is a sister taxon to the Desmodorinae and Spiriniinae, with the Draconematidae forming a monophyletic crown group and the Desmodorinae and Spiriniinae forming a paraphyletic stem group. Phylogenetic relationships between the Epsilonematidae and Stilbonematinae, however, could not be determined with certainty. The SSU and D2‐D3 of LSU consensus trees indicate that the morphological resemblance between the Draconematidae and Epsilonematidae, which are both characterized by swollen pharyngeal body regions and mid‐posterior body regions with specialized setae, reflects distinct and independently evolved adaptations to their unusual mode of locomotion, with differences in the structure and distribution of specialized setae between the two families also consistent with convergent evolution. We show that the family Desmodoridae and superfamily Desmodoroidea as currently defined are not monophyletic. It was not possible to determine whether the Prodesmodorinae are more closely related to the Desmodoroidea or Microlaimoidea, although it is clear that they do not belong to the Desmodoridae. The single Molgolaiminae sequence available formed a distinct clade together with the superfamily Microlaimoidea, and should therefore be placed with the latter. Clarifying the phylogenetic relationships within the Desmodoroidea will require greater focus on the Pseudonchinae, Molgolaiminae, and Epsilonematidae, for which no or very few sequences are available at present. © 2016 The Linnean Society of London 相似文献
18.
The phylogenetic relatedness of Issatchenkia spp. was estimated from partial rRNA sequences in two regions of the large subunit and one region of the small subunit. I. terricola was the most divergent species of the genus, differing from other members by 18% nucleotide differences in the highly variable 25S-635 region. These data indicate Issatchenkia to be the most divergent ascomycetous yeast genus presently known. 相似文献
19.
20.
KEVIN W. CONWAY 《Zoological Journal of the Linnean Society》2011,163(1):50-154
Members of the genus Psilorhynchus are small benthic fishes, commonly referred to as torrent minnows, which inhabit the fast to swift flowing water bodies of the Indo‐Burma region and the Western Ghats of Peninsular India. Despite being described scientifically in the mid 18th century, the morphology of Psilorhynchus remains poorly known and its phylogenetic placement within the order Cypriniformes is a matter of considerable debate. In this paper the osteology of Psilorhynchus sucatio is described and illustrated in detail. Notes and/or illustrations on the osteology of 12 other species of Psilorhynchus are also provided for the first time. A phylogenetic investigation of the position of Psilorhynchus within the order Cypriniformes is also conducted. Analysis of 127 morphological characters scored for 52 ingroup taxa (including 12 species of Psilorhynchus) and four outgroup taxa resulted in 14 equally parsimonious cladograms (287 steps long; consitency index, CI = 0.48; retention index, RI = 0.88). Psilorhynchus is recovered as the sister group to the family Cyprinidae, and is regarded as a member of the superfamily Cyprinoidea, which forms the sister group to the Cobitoidea (including all other cypriniform families). The sistergroup relationship between Psilorhynchus and Cyprinidae is supported by eight derived characters (five of which are homoplastic within the order Cypriniformes). The monophyly of Psilorhynchus is supported by 16 derived characters (eight of which are homoplastic within Cypriniformes). Three species groups of Psilorhynchus are proposed, the Psilorhynchus balitora group (including P. amplicephalus, P. balitora, P. breviminor, P. nepalensis, P. rahmani, P. pavimentatus, and P. brachyrhynchus), the Psilorhynchus gracilis group (including P. gracilis, P. melissa, P. robustus, and P. tenura), and the Psilorhynchus homaloptera group (including P. arunachalensis, P. homaloptera, P. microphthalmus, and P. pseudecheneis). The continued use of the family group name Psilorhynchidae is recommended. Comments on the interrelationships of the Cypriniformes are also provided. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011. 相似文献