首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xenopus oocytes expressing fibroblast growth factor receptor 1 (FGFR1) were used as a biological model system to analyse the signal transduction pathways that are triggered by fibroblast growth factor 1 (FGF1). Germinal vesicle breakdown (GVBD) and phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) occured 15 h after FGF1 addition. These events were Ras-dependent as they were blocked by a Ras dominant negative form. The Ras activity was promoted by three upstream effectors, growth factor-bound protein 2 (Grb2), phosphatidylinositol 3-kinase (PI3K) and Src cytoplasmic kinase. Ras activation was inhibited by a Grb2 dominant negative form (P49L), by PI3K inhibitors, including wortmannin, LY294002, the N-SH2 domain of p85alpha PI3K and by the SH2 domain of Src. Src activation induced by FGF1 was blocked by the SH2 domain of Src and PP2, a specific inhibitor of Src. The Grb2 adaptor was recruited by the upstream Src homology 2/alpha-collagen-related (Shc) effector, as the SH2-Shc domain prevented the GVBD and the ERK2 phosphorylation induced by FGF1. The importance of another signalling pathway involving phospholipase Cgamma (PLCgamma) was also investigated. The use of the PLCgamma inhibitory peptide, neomycin and the calcium chelator BAPTA-AM on oocytes expressing FGFR1 or the stimulation by PDGF-BB of oocytes expressing PDGFR-FGFR1 mutated on the PLCgamma binding site, prevented GVBD and ERK2 phosphorylation. This study shows that the transduction cascade induced by the FGFR1-FGF1 interaction in Xenopus oocytes represents the sum of Ras-dependent and PLCgamma-dependent pathways. It emphasizes the role played by PI3K and Src and their connections with the Ras cascade in the FGFR1 signal transduction.  相似文献   

2.
The docking protein SNT1/FRS2 (fibroblast growth factor receptor substrate 2) is implicated in the transmission of extracellular signals from the fibroblast growth factor receptor (FGFR), which plays vital roles during embryogenesis. Activating FGFR mutations cause several craniosynostoses and dwarfism syndromes in humans. Here we show that the Xenopus homolog of mammalian FRS-2 (XFRS2) is essential for the induction of oocyte maturation by an XFGFR1 harboring an activating mutation (XFGFR1act). Using a dominant-negative form of kinase suppressor of Ras, we show the Mek activity is required for germinal vesicle breakdown (GVBD) induced by co-expression of XFGFR1act and XFRS2, but this activity is not required for progesterone-induced GVBD. Furthermore, Mek/MAPK activity is critical for the induction and/or maintenance of H1 kinase activity at metaphase of meiosis II in progesterone-treated oocytes. An activated XFGFR1 containing a mutation in the phospholipase Cgamma binding site (XFGFR1actY672F) displayed a reduced ability to induce cell-cycle progression in oocytes, suggesting phospholipase Cgamma may not be necessary but that it augments XFGFR signaling in this system. Oocytes co-expressing XFGFR1act and XFRS2 showed substantial H1 kinase activity, but this activity was blocked when the oocytes were treated with the phosphatidylinositol 3-kinase inhibitor LY294002. Although phosphatidylinositol 3-kinase activity is essential for XFGFR1act/XFRS2-induced oocyte maturation, this activity is not required for maturation induced by progesterone. Finally, ectopic expression of Xspry2, a negative regulator of XFGFR signaling, greatly reduced MAPK activation and GVBD induced by the expression of either XFGFR1act plus XFRS2 or activated Ras (H-RasV12). In contrast, Xspry2 did not prevent GVBD induced by an activated form of Raf1, suggesting that Xspry2 exerts its inhibitory function upstream or parallel to Raf and downstream of Ras.  相似文献   

3.
4.
Thrombopoietin and its receptor (Mpl) support survival and proliferation in megakaryocyte progenitors and in BaF3 cells engineered to stably express Mpl (BaF3/Mpl). The binding of thrombopoietin to Mpl activates multiple kinase pathways, including the Jak/STAT, Ras/Raf/MAPK, and phosphatidylinositol 3-kinase pathways, but it is not clear how these kinases promote cell cycling. Here, we show that thrombopoietin induces phosphatidylinositol 3-kinase and that phosphatidylinositol 3-kinase is required for thrombopoietin-induced cell cycling in BaF3/Mpl cells and in primary megakaryocyte progenitors. Treatment of BaF3/Mpl cells and megakaryocytes with the phosphatidylinositol 3-kinase inhibitor LY294002 inhibited mitotic and endomitotic cell cycl-ing. BaF3/Mpl cells treated with thrombopoietin and LY294002 were blocked in G(1), whereas megakaryocyte progenitors treated with thrombopoietin and LY294002 showed both a G(1) and a G(2) cell cycle block. Expression of constitutively active Akt in BaF3/Mpl cells restored the ability of thrombopoietin to promote cell cycling in the presence of LY294002. Constitutively active Akt was not sufficient to drive proliferation of BaF3/Mpl cells in the absence of thrombopoietin. We conclude that in BaF3/Mpl cells and megakaryocyte progenitors, thrombopoietin-induced phosphatidylinositol 3-kinase activity is necessary but not sufficient for thrombopoietin-induced cell cycle progression. Phosphatidylinositol 3-kinase activity is likely to be involved in regulating the G(1)/S transition.  相似文献   

5.
We have examined the role of Ras in integrin expression in ECV304 endothelial cells. Among the integrins examined in stable ECV304 transfectants expressing dominant active H-Ras (DAR-ECV), expression of alpha3beta1 integrin showed a prominent reduction in all the DAR-ECV clones when compared to the parental ECV304 cells. This implies that H-Ras negatively regulates the expression of alpha3beta1 integrin in ECV304 cells. When treated with inhibitors of the Ras downstream pathway (LY294002, PD98059, SB203580), the expression of alpha3beta1 integrin was up-regulated most significantly by LY294002, suggesting that among the downstream pathways of Ras, phosphatidylinositol 3-kinase is a major determinant. With the application of blocking antibody to alpha3beta1 integrin (2 - 2 x 10(4) nM), migration of ECV304 cells was enhanced to maximal (18%) at 20 nM. These results suggest that migration of endothelial cells could be modulated by H-Ras via alteration of the expression levels of alpha3beta1 integrin.  相似文献   

6.
SIP (signaling inositol phosphatase) or SHIP (SH2-containing inositol phosphatase) is a recently identified SH2 domain-containing protein which has been implicated as an important signaling molecule. SIP/SHIP becomes tyrosine phosphorylated and binds the phosphotyrosine-binding domain of SHC in response to activation of hematopoietic cells. The signaling pathways and biological responses that may be regulated by SIP have not been demonstrated. SIP is a phosphatidylinositol- and inositol-polyphosphate 5-phosphatase with specificity in vitro for substrates phosphorylated at the 3' position. Phosphatidylinositol 3'-kinase (PI 3-kinase) is an enzyme which is involved in mitogenic signaling and whose phosphorylated lipid products are predicted to be substrates for SIP. We tested the hypothesis that SIP can modulate signaling by PI 3-kinase in vivo by injecting SIP cRNAs into Xenopus oocytes. SIP inhibited germinal vesicle breakdown (GVBD) induced by expression of a constitutively activated form of PI 3-kinase (p110*) and blocked GVBD induced by insulin. SIP had no effect on progesterone-induced GVBD. Catalytically inactive SIP had little effect on insulin- or PI 3-kinase-induced GVBD. Expression of SIP, but not catalytically inactive SIP, also blocked insulin-induced mitogen-activated protein kinase phosphorylation in oocytes. SIP specifically and markedly reduced the level of phosphatidylinositol (3,4,5) triphosphate [PtdIns(3,4,5)P3] generated in oocytes in response to insulin. These results demonstrate that a member of the phosphatidylinositol polyphosphate 5-phosphatase family can inhibit signaling in vivo. Further, our data suggest that the generation of PtdIns(3,4,5)P3 by PI 3-kinase is necessary for insulin-induced GVBD in Xenopus oocytes.  相似文献   

7.
8.
Insulin stimulates a rapid phosphorylation and sequestration of the beta(2)-adrenergic receptor. Analysis of the signaling downstream of the insulin receptor with enzyme inhibitors revealed roles for both phosphatidylinositol 3-kinase and pp60Src. Inhibition of Src with PP2, like the inhibition of phosphatidylinositol 3-kinase with LY294002 [2-(4-morpholynyl)-8-phenyl-4H-1-benzopyran-4-one], blocked the activation of Src as well as insulin-stimulated sequestration of the beta(2)-adrenergic receptor. Depletion of Src with antisense morpholinos also suppressed insulin-stimulated receptor sequestration. Src is shown to be phosphorylated/activated in response to insulin in human epidermoid carcinoma A431 cells as well as in mouse 3T3-L1 adipocytes and their derivative 3T3-F422A cells, well-known models of insulin signaling. Inhibition of Src with PP2 blocks the ability of insulin to sequester beta(2)-adrenergic receptors and the translocation of the GLUT4 glucose transporters. Insulin stimulates Src to associate with the beta(2)-adrenergic receptor/AKAP250/protein kinase A/protein kinase C signaling complex. We report a novel positioning of Src, mediating signals from insulin to phosphatidylinositol 3-kinase and to beta(2)-adrenergic receptor trafficking.  相似文献   

9.
The cellular pathways involved in the impairment of insulin signaling by cellular stress, triggered by the inflammatory cytokine tumor necrosis factor-alpha (TNF) or by translational inhibitors like cycloheximide and anisomycin were studied. Similar to TNF, cycloheximide and anisomycin stimulated serine phosphorylation of IRS-1 and IRS-2, reduced their ability to interact with the insulin receptor, inhibited the insulin-induced tyrosine phosphorylation of IRS proteins, and diminished their association with phosphatidylinositol 3-kinase (PI3K). These defects were partially reversed by wortmannin and LY294002, indicating that a PI3K-regulated step is critical for the impairment of insulin signaling by cellular stress. Induction of cellular stress resulted in complex formation between PI3K and ErbB2/ErbB3 and enhanced PI3K activity, implicating ErbB proteins as downstream effectors of stress-induced insulin resistance. Indeed, stimulation of ErbB2/ErbB3 by NDFbeta1, the ErbB3 ligand, inhibited IRS protein tyrosine phosphorylation and recruitment of downstream effectors. Specific inhibitors of the ErbB2 tyrosine kinase abrogated the activation of ErbB2/ErbB3 and in parallel prevented the reduction in IRS protein functions. Taken together, our results suggest a novel mechanism by which cellular stress induces cross-talk between two different signaling pathways. Stress-dependent transactivation of ErbB2/ErbB3 receptors triggers a PI3K cascade that induces serine phosphorylation of IRS proteins culminating in insulin resistance.  相似文献   

10.
The signaling pathways that mediate the ability of NGF to support survival of dependent neurons are not yet completely clear. However previous work has shown that the c-Jun pathway is activated after NGF withdrawal, and blocking this pathway blocks neuronal cell death. In this paper we show that over-expression in sympathetic neurons of phosphatidylinositol (PI) 3-kinase or its downstream effector Akt kinase blocks cell death after NGF withdrawal, in spite of the fact that the c-Jun pathway is activated. Yet, neither the PI 3-kinase inhibitor LY294002 nor a dominant negative PI 3-kinase cause sympathetic neurons to die if they are maintained in NGF. Thus, although NGF may regulate multiple pathways involved in neuronal survival, stimulation of the PI 3-kinase pathway is sufficient to allow cells to survive in the absence of this factor.  相似文献   

11.
Exposure of fully grown fish and amphibian oocytes to a maturation-inducing steroid (MIS) activates numerous signal transduction pathways to initiate the final stage of oocyte maturation. These events culminate in the activation of maturation-promoting factor and germinal vesicle breakdown (GVBD). In most species, exposure to MIS causes a transient decrease in oocyte cAMP levels. Whether this reduction in oocyte cAMP concentration is sufficient to induce GVBD is unclear. The current study tested the hypothesis that activation of cAMP-independent signal transduction pathways by the naturally occurring MIS, 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S), is necessary for GVBD in Atlantic croaker (Micropogonias undulatus) oocytes. Results indicate that although 20beta-S treatment of oocyte membranes significantly reduced cAMP production, incubation of follicles with the cell-permeable cAMP-dependent protein kinase (Prka) inhibitors Rp-cAMP or KT5720 did not promote GVBD in the absence of 20beta-S. Additionally, treatment of follicles with the phosphodiesterase (Pde) inhibitors Cilostamide (Pde3) or Rolipram (Pde4) significantly reduced GVBD, but they were not able to completely block it. In contrast, pharmacologic inhibition of the cAMP-independent phosphatidylinositol 3-kinase (Pik3)/Akt signal transduction pathway using the Pik3 inhibitors Wortmannin or LY294002, or the Akt inhibitor ML-9, blocked 20beta-S-induced GVBD. Finally, mitogen-activated protein kinase (Mapk1/3) activity increased after treatment with 20beta-S; however, inhibition of Mapk1/3 activity using PD98059 or U0126 had no effect on GVBD. These results demonstrate that activation of cAMP-independent signaling pathways, especially the Pik3/Akt pathway, is necessary for 20beta-S-induced GVBD in Atlantic croaker oocytes.  相似文献   

12.
The Ras/Raf/extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway is known to cross-talk with other signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, the role of PI3K in ERK-1/2 activation induced by tyrosine kinase receptors was not fully understood. Here, we report that two structurally distinct PI3K inhibitors, wortmannin and LY294002, inhibited insulin-induced activation of ERK1/2 but had no effect on EGF-induced activation of ERK1/2 in hepatocellular carcinoma BEL-7402 and SMMC-7721 cells, breast cancer MCF-7 cells, and prostate cancer LNCaP cells. Although protein kinase C could act as a mediator between PI3K and ERK1/2, protein kinase C inhibitor chelerythrine chloride did not inhibit insulin-induced ERK1/2 activation. Both insulin- and EGF-induced ERK1/2 activation are strictly dependent on Ras activation, however, wortmannin only inhibited insulin-induced, but not EGF-induced Ras activation. These results indicate that PI3K plays different roles in the activation of Ras/ERK1/2 signaling by insulin and EGF, and that insulin-stimulated, but not EGF-stimulated, ERK1/2 and Akt signalings diverge at PI3K.  相似文献   

13.
Insulin regulates the inclusion of the exon encoding protein kinase C (PKC) betaII mRNA. In this report, we show that insulin regulates this exon inclusion (alternative splicing) via the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway through the phosphorylation state of SRp40, a factor required for insulin-regulated splice site selection for PKCbetaII mRNA. By taking advantage of a well known inhibitor of PI 3-kinase, LY294002, we demonstrated that pretreatment of L6 myotubes with LY294002 blocked insulin-induced PKCbetaII exon inclusion as well as phosphorylation of SRp40. In the absence of LY294002, overexpression of SRp40 in L6 cells mimicked insulin-induced exon inclusion. When antisense oligonucleotides targeted to a putative SRp40-binding sequence in the betaII-betaI intron were transfected into L6 cells, insulin effects on splicing and glucose uptake were blocked. Taken together, these results demonstrate a role for SRp40 in insulin-mediated alternative splicing independent of changes in SRp40 concentration but dependent on serine phosphorylation of SRp40 via a PI 3-kinase signaling pathway. This switch in PKC isozyme expression is important for increases in the glucose transport effect of insulin. Significantly, insulin regulation of PKCbetaII exon inclusion occurred in the absence of cell growth and differentiation demonstrating that insulin-induced alternative splicing of PKCbetaII mRNA in L6 cells occurs in response to a metabolic change.  相似文献   

14.
We have investigated the signaling pathways initiated by insulin, insulin-like growth factor-1 (IGF-I), and platelet-derived growth factor (PDGF) leading to activation of the extracellular signal-regulated kinase (ERK) in L6 myotubes. Insulin but not IGF-I or PDGF-induced ERK activation was abrogated by Ras inhibition, either by treatment with the farnesyl transferase inhibitor FTP III, or by actin disassembly by cytochalasin D, previously shown to inhibit Ras activation. The protein kinase C (PKC) inhibitor bisindolylmaleimide abolished PDGF but not IGF-I or insulin-induced ERK activation. ERK activation by insulin, IGF-I, or PDGF was unaffected by the phosphatidylinositol 3-kinase inhibitor wortmannin but was abolished by the MEK inhibitor PD98059. In contrast, activation of the pathway involving phosphatidylinositol 3-kinase (PI3k), protein kinase B, and glycogen synthase kinase 3 (GSK3) was mediated similarly by all three receptors, through a PI 3-kinase-dependent but Ras- and actin-independent pathway. We conclude that ERK activation is mediated by distinct pathways including: (i) a cytoskeleton- and Ras-dependent, PKC-independent, pathway utilized by insulin, (ii) a PKC-dependent, cytoskeleton- and Ras-independent pathway used by PDGF, and (iii) a cytoskeleton-, Ras-, and PKC-independent pathway utilized by IGF-I.  相似文献   

15.
Treatment with insulin or progesterone or microinjection of the transforming protein product of Ha-rasVal-12,Thr-59 (p21) is known to induce germinal vesicle breakdown in Xenopus oocytes. We have investigated the effect of p21 on S6 kinase and the H1 histone kinase of maturation-promoting factor in the presence and absence of antisense oligonucleotides against the c-mosxe proto-oncogene. Injection of p21 led to a rapid increase in S6 phosphorylation, with kinetics similar to those previously observed with insulin. Microinjection of c-mosxe antisense oligonucleotides inhibited germinal vesicle breakdown induced by p21 and totally abolished S6 kinase activation by insulin or progesterone but only partially inhibited activation by p21. However, the activation of p34cdc2 protein kinase by all three stimuli was blocked by antisense oligonucleotides. The results suggest that in oocyte maturation c-mosxe functions downstream of p21 but upstream of p34cdc2 and S6 kinase activation, although not all p21-induced events require c-mosxe.  相似文献   

16.
17.
An insulin receptor substrate 1 (IRS-1)-like cDNA was isolated from a Xenopus ovary cDNA library by low-stringency hybridization using rat IRS-1 cDNA as a probe. The deduced amino acid sequence encoded by this cDNA (termed XIRS-L) is 67% identical (77% similar) to that of rat IRS-1. Significantly, all the insulin-induced tyrosine phosphorylation sites identified in rat IRS-1, including those responsible for binding to the Src homology domains of phosphatidylinositol (PI) 3-kinase, Syp and Grb2, are conserved in XIRS-L. Both mRNA and protein corresponding to the cloned XIRS-L can be detected in immature Xenopus oocytes. Recombinant XIRS-L protein produced in insect cells or a bacterial glutathione S-transferase fusion protein containing the putative PI 3-kinase binding site can be phosphorylated in vitro by purified insulin receptor kinase (IRK) domain, and the IRK-catalyzed phosphorylation renders both proteins capable of binding PI 3-kinase in Xenopus oocyte lysates. Another glutathione S-transferase fusion protein containing the C terminus of XIRS-L and including several putative tyrosine phosphorylation sites is also phosphorylated by IRK in vitro, but it failed to bind PI 3-kinase. Insulin stimulation of immature Xenopus oocytes activates PI 3-kinase in vivo [as indicated by an elevation of PI(3,4)P2 and PI(3,4,5)P3] as well as oocyte maturation (as indicated by germinal vesicle breakdown). Pretreatment of these oocytes with wortmannin inhibited insulin-induced activation of PI 3-kinase in vivo. The same treatment also abolished insulin-induced, but not progesterone-induced, germinal vesicle breakdown. These results (i) identify an IRS-1-like molecule in immature Xenopus oocytes, suggesting that the use of IRS-1-like Scr homology 2 domain-docking proteins in signal transduction is conserved in vertebrates, and (ii) strongly implicate PI 3-kinase as an essential effector of insulin-induced oocyte maturation.  相似文献   

18.
We investigated the extent to which phosphatidylinositol 3-kinase (PI 3-kinase) and Rac, a member of the Rho family of small GTPases, are involved in the signaling cascade triggered by tumor necrosis factor (TNF)-alpha leading to activation of c-fos serum response element (SRE) and c-Jun amino-terminal kinase (JNK) in Rat-2 fibroblasts. Inhibition of PI 3-kinase by LY294002 or wortmannin, two specific PI 3-kinase antagonists, or co-transfection with a dominant negative mutant of PI 3-kinase dose-dependently blocked stimulation of c-fos SRE by TNF-alpha. Similarly, LY294002 significantly diminished TNF-alpha-induced activation of JNK, suggesting that nuclear signaling triggered by TNF-alpha is dependent on PI 3-kinase-mediated activation of both c-fos SRE and JNK. We also found nuclear signaling by TNF-alpha to be Rac-dependent, as demonstrated by the inhibitory effect of transient co-transfection with a dominant negative Rac mutant, RacN17. Our findings suggest that Rac is situated downstream of PI 3-kinase in the TNF-alpha signaling pathway to the nucleus, and we conclude that PI 3-kinase and Rac each plays a pivotal role in the nuclear signaling cascade triggered by TNF-alpha.  相似文献   

19.
In hematopoietic cells, Ras has been implicated in signaling pathways that prevent apoptosis triggered by deprivation of cytokines, such as interleukin-3 (IL-3). However, the mechanism whereby Ras suppresses cell death remains incompletely understood. We have investigated the role of Ras in IL-3 signal transduction by using the cytokine-dependent BaF3 cell line. Herein, we show that the activation of the pro-apoptotic protease caspase-3 upon IL-3 removal is suppressed by expression of activated Ras, which eventually prevents cell death. For caspase-3 suppression, the Raf/extracellular signal-regulated kinase (ERK)- or phosphatidylinositol 3-kinase (PI3-K)/Akt-mediated signaling pathway downstream of Ras was required. However, inhibition of both pathways did not block activated Ras-dependent suppression of cell death-associated phenotypes, such as nuclear DNA fragmentation. Thus, a pathway that is independent of both Raf/ERK and PI3-K/Akt pathways may function downstream of Ras, preventing activated caspase-3-initiated apoptotic processes. Conditional activation of c-Raf-1 also suppressed caspase-3 activation and subsequent cell death without affecting Akt activity, providing further evidence for a PI3-K/Akt-independent mechanism.  相似文献   

20.
Abstract: Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for midbrain dopaminergic neurons. To begin to understand the intracellular signaling pathways used by GDNF, we investigated the role of phosphatidylinositol 3-kinase activity in GDNF-stimulated cellular function and differentiation of dopaminergic neurons. We found that treatment of dopaminergic neuron cultures with 10 ng/ml GDNF induced maximal levels of Ret phosphorylation and produced a profound increase in phosphatidylinositol 3-kinase activity, as measured by western blot analysis and lipid kinase assays. Treatment with 1 µ M 2-(4-morpholinyl)-8-phenylchromone (LY294002) or 100 n M wortmannin, two distinct and potent inhibitors of phosphatidylinositol 3-kinase activity, completely inhibited GDNF-induced phosphatidylinositol 3-kinase activation, but did not affect Ret phosphorylation. Furthermore, we examined specific biological functions of dopaminergic neurons: dopamine uptake activity and morphological differentiation of tyrosine hydroxylase-immunoreactive neurons. GDNF significantly increased dopamine uptake activity and promoted robust morphological differentiation. Treatment with LY294002 completely abolished the GDNF-induced increases of dopamine uptake and morphological differentiation of tyrosine hydroxylase-immunoreactive neurons. Our findings show that GDNF-induced differentiation of dopaminergic neurons requires phosphatidylinositol 3-kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号