首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the role of protein kinase C theta (PKCtheta) in the activation of the NF-kappaB cascade in primary human CD4(+) lymphocytes. Among six or so PKC isoforms expressed in T cells, only PKCtheta participates in the assembly of the supramolecular activation clusters at the contact site of the TCR with Ag. Signaling via both the TCR and CD28 is required for optimal activation of the multisubunit IkappaB kinase (IKK) complex in primary human T lymphocytes; this activation could be inhibited by a Ca(2+)-independent PKC isoform inhibitor, rottlerin. Moreover, endogenous PKCtheta physically associates with activated IKK complexes in CD3/CD28-costimulated primary CD4(+) T cells. The same set of stimuli also induced relocation of endogenous PKCtheta and IKKs to a GM1 ganglioside-enriched, detergent-insoluble membrane compartment in primary T cells. IKKs recruited to these lipid rafts were capable of phosphorylating a recombinant IkappaBalpha sustrate. Confocal microscopy further demonstrated that exogenously expressed PKCtheta and IKKss colocalize in the membrane of CD3/CD28-costimulated Jurkat T cells. Constitutively active but not kinase-inactive PKCtheta activated IKKbeta in Jurkat T cells. Expression of dominant-active PKCtheta also had stimulatory effects on the CD28 response element of the IL-2 promoter. Taken together, these data show that the activation of PKCtheta by the TCR and CD28 plays an important role in the assembly and activation of IKK complexes in the T cell membrane.  相似文献   

2.
3.
Triggering of antigen receptors on lymphocytes is critical for initiating adaptive immune response against pathogens. T-cell receptor (TCR) engagement induces the formation of the Carma1-Bcl10-Malt1 (CBM) complex that is essential for activation of the IkappaB kinase (IKK)/NF-kappaB pathway. However, the molecular mechanisms that link CBM complex formation to IKK activation remain unclear. Here we report that Malt1 is polyubiquitinated upon T-cell activation. Ubiquitin chains on Malt1 provide a docking surface for the recruitment of the IKK regulatory subunit NEMO/IKKgamma. TRAF6 associates with Malt1 in response to T-cell activation and can function as an E3 ligase for Malt1 in vitro and in vivo, mediating lysine 63-linked ubiquitination of Malt1. Multiple lysine residues in the C-terminus of Malt1 serve as acceptor sites for the assembly of polyubiquitin chains. Malt1 mutants that lack C-terminal ubiquitin acceptor lysines are impaired in rescuing NF-kappaB signaling and IL-2 production in Malt1-/- T cells. Thus, our data demonstrate that induced Malt1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing TCR signals to the canonical NF-kappaB pathway.  相似文献   

4.
The NF-kappaB activation pathway induced by T cell costimulation uses various molecules including Vav1 and protein kinase C (PKC)theta. Because Vav1 inducibly associates with further proteins including phospholipase C (PLC)gamma1 and Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), we investigated their role for NF-kappaB activation in Jurkat leukemia T cell lines deficient for expression of these two proteins. Cells lacking SLP-76 or PLCgamma1 failed to activate NF-kappaB in response to T cell costimulation. In contrast, replenishment of SLP-76 or PLCgamma1 expression restored CD3/CD28-induced IkappaB kinase (IKK) activity as well as NF-kappaB DNA binding and transactivation. PKCtheta activated NF-kappaB in SLP-76- and PLCgamma1-deficient cells, showing that PKCtheta is acting further downstream. In contrast, Vav1-induced NF-kappaB activation was normal in SLP-76(-) cells, but absent in PLCgamma1(-) cells. CD3/CD28-stimulated recruitment of PKCtheta and IKKgamma to lipid rafts was lost in SLP-76- or PLCgamma1-negative cells, while translocation of Vav1 remained unaffected. Accordingly, recruitment of PKCtheta to the immunological synapse strictly relied on the presence of SLP-76 and PLCgamma1, but synapse translocation of Vav1 identified in this study was independent from both proteins. These results show the importance of SLP-76 and PLCgamma1 for NF-kappaB activation and raft translocation of PKCtheta and IKKgamma.  相似文献   

5.
6.
Lymphotoxin-beta receptor (LTbetaR) is a member of the tumor necrosis factor receptor (TNFR) superfamily that activates nuclear factor-kappaB (NF-kappaB) through the IkappaB kinase (IKK) complex, the core of which is comprised of IKK1, IKK2 and NF-kappaB essential modulator (NEMO). We demonstrate here that the LTbetaR signaling to NF-kappaB activation does not necessarily require NEMO, which is essential for TNFR signaling. In the absence of NEMO, the p50 and RelB, but not RelA subunits of NF-kappaB are found in the nuclear DNA binding complexes induced by the LTbetaR signaling. Our results thus disclose NEMO-independent NF-kappaB activation by LTbetaR.  相似文献   

7.
The IkappaB kinase (IKK)-related kinase NAK (also known as TBK or T2K) contributes to the activation of NF-kappaB-dependent gene expression. Here we identify NAP1 (for NAK-associated protein 1), a protein that interacts with NAK and its relative IKK epsilon (also known as IKKi). NAP1 activates NAK and facilitates its oligomerization. Interestingly, the NAK-NAP1 complex itself effectively phosphorylated serine 536 of the p65/RelA subunit of NF-kappaB, and this activity was stimulated by tumor necrosis factor alpha (TNF-alpha). Overexpression of NAP1 specifically enhanced cytokine induction of an NF-kappaB-dependent, but not an AP-1-dependent, reporter. Depletion of NAP1 reduced NF-kappaB-dependent reporter gene expression and sensitized cells to TNF-alpha-induced apoptosis. These results define NAP1 as an activator of IKK-related kinases and suggest that the NAK-NAP1 complex may protect cells from TNF-alpha-induced apoptosis by promoting NF-kappaB activation.  相似文献   

8.
Je JH  Lee JY  Jung KJ  Sung B  Go EK  Yu BP  Chung HY 《FEBS letters》2004,566(1-3):183-189
4-Hydroxyhexenal (HHE) is known to affect redox balance during aging, included are vascular dysfunctions. To better understand vascular abnormality through the molecular alterations resulting from HHE accumulation in aging processes, we set out to determine whether up-regulation of mitogen-activated protein kinase (MAPK) by HHE is mediated through nuclear factor kappa B (NF-kappaB) activation in endothelial cells. HHE induced NF-kappaB activation by inhibitor of kappaB (IkappaB) phosphorylation via the IkappaB kinase (IKK)/NF-kappaB inducing kinase (NIK) pathway. HHE increased the activity of p38 MAPK and extracellular signal regulated kinase (ERK), but not c-jun NH(2)-terminal kinase, indicating that p38 MAPK and ERK are closely involved in HHE-induced NF-kappaB transactivation. Pretreatment with ERK inhibitor PD98059, and p38 MAPK inhibitor SB203580, attenuated the induction of p65 translocation, IkappaB phosphorylation, and NF-kappaB luciferase activity. These findings strongly suggest that HHE induces NF-kappaB activation through IKK/NIK pathway and/or p38 MAPK and ERK activation associated with oxidative stress in endothelial cells.  相似文献   

9.
10.
11.
12.
13.
14.
Lipid peroxidation plays a major role in vascular dysfunction and age-related cardiovascular diseases. A major product of lipid peroxidation, tert-butyl hydroperoxide (t-BHP), has been reported to modulate vascular reactivity and cellular signaling. To better understand vascular abnormality, we set out to delineate the activation mechanism of nuclear factor kappa B (NF-kappaB) by t-BHP and the regulation of MAPK in endothelial cells. The results showed that t-BHP induces NF-kappaB activation by an inhibitor of kappaB (IkappaB) phosphorylation through IkappaB kinase (IKK) activation. Our data from this t-BHP study also showed increased p38 MAP kinase and ERK activity; however, interestingly, t-BHP showed no influence on JNK. Pretreatment with the p38 MAP kinase inhibitor, SB203580 and the ERK1/2 inhibitor, PD98059, prevented t-BHP-induced increases in p65 translocation, NF-kappaB luciferase activity, and phospho-IKKalpha/beta. Data suggested that t-BHP induces NF-kappaB activation through the IKK pathway, which involves p38 MAPK and ERK activation. This study illustrates a role of t-BHP in NF-kappaB activation and MAPK related-signaling pathways. The t-BHP-induced activation of NF-kappaB and MAPK could be a major player in vascular dysfunctions, as seen in oxidative stressed responses and the vascular inflammatory process.  相似文献   

15.
Activating NK cell receptors transduce signals through ITAM-containing adaptors, including FcRgamma and DAP12. Although the caspase recruitment domain (CARD)9-Bcl10 complex is essential for FcRgamma/DAP12-mediated NF-kappaB activation in myeloid cells, its involvement in NK cell receptor signaling is unknown. Herein we show that the deficiency of CARMA1 or Bcl10, but not CARD9, resulted in severe impairment of cytokine/chemokine production mediated by activating NK cell receptors due to a selective defect in NF-kappaB activation, whereas cytotoxicity mediated by the same receptors did not require CARMA1-Bcl10-mediated signaling. IkappaB kinase (IKK) activation by direct protein kinase C (PKC) stimulation with PMA plus ionomycin (P/I) was abrogated in CARMA1-deficient NK cells, similar to T and B lymphocytes, whereas CARD9-deficient dendritic cells (DCs) exhibited normal P/I-induced IKK activation. Surprisingly, CARMA1 deficiency also abrogated P/I-induced IKK activation in DCs, indicating that CARMA1 is essential for PKC-mediated NF-kappaB activation in all cell types, although the PKC-CARMA1 axis is not used downstream of myeloid ITAM receptors. Consistently, PKC inhibition abrogated ITAM receptor-mediated activation only in NK cells but not in DCs, suggesting PKC-CARMA1-independent, CARD9-dependent ITAM receptor signaling in myeloid cells. Conversely, the overexpression of CARD9 in CARMA1-deficient cells failed to restore the PKC-mediated NF-kappaB activation. Thus, NF-kappaB activation signaling through ITAM receptors is regulated by a cell type-specific mechanism depending on the usage of adaptors CARMA1 and CARD9, which determines the PKC dependence of the signaling.  相似文献   

16.
17.
18.
19.
Recent investigations have elucidated the cytokine-induced NF-kappaB activation pathway. IkappaB kinase (IKK) phosphorylates inhibitors of NF-kappaB (IkappaBs). The phosphorylation targets them for rapid degradation through a ubiquitin-proteasome pathway, allowing the nuclear translocation of NF-kappaB. We have examined the possibility that IKK can phosphorylate the p65 NF-kappaB subunit as well as IkappaB in the cytokine-induced NF-kappaB activation. In the cytoplasm of HeLa cells, the p65 subunit was rapidly phosphorylated in response to TNF-alpha in a time dependent manner similar to IkappaB phosphorylation. In vitro phosphorylation with GST-fused p65 showed that a p65 phosphorylating activity was present in the cytoplasmic fraction and the target residue was Ser-536 in the carboxyl-terminal transactivation domain. The endogenous IKK complex, overexpressed IKKs, and recombinant IKKbeta efficiently phosphorylated the same Ser residue of p65 in vitro. The major phosphorylation site in vivo was also Ser-536. Furthermore, activation of IKKs by NF-kappaB-inducing kinase induced phosphorylation of p65 in vivo. Our finding, together with previous observations, suggests dual roles for IKK complex in the regulation of NF-kappaB.IkappaB complex.  相似文献   

20.
Full and productive activation of T lymphocytes relies on the simultaneous delivery of T cell receptor (TCR)- and coreceptor-derived signals. In na?ve T cells engagement of the TCR alone causes anergy, while TCR triggering of preactivated T cells results in activation-induced cell death. Costimulatory signals are prominently mirrored by the activation of NF-kappaB, which needs input from the TCR as well as from coreceptors in order to be fully activated and to fulfil its crucial function in the immune response. Coreceptor-generated signals tightly control the duration and amplitude of the NF-kappaB response. The activation of IkappaB kinase (IKK) complex at the contact zone between a T cell and an antigen-presenting cell offers the unique opportunity to study the spatial organization of IKK activation. Recent studies indicate that coreceptor pathways influence the threshold activities of many signalling mediators and thus act on multiple layers of the NF-kappaB pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号