首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H B Weems  S K Yang 《Chirality》1989,1(4):276-283
Enantiomers of diastereomeric benzo[a]pyrene (BP) diol-epoxides, r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydro-BP (BP 7,8-diol-anti-9,10-epoxide), r-7,t-8-dihydroxy-c-9,10-epoxy-7,8,9,10-tetrahydro-BP (BP 7,8-diol-syn-9,10-epoxide), r-9,t-10-dihydroxy-t-7,8-epoxy-7,8,9,10-tetrahydro-BP (BP 9,10-diol-anti-7,8-epoxide), and several 7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrenes (BP tetrols) were resolved by high-performance liquid chromatography (HPLC) using columns packed with either (R)-N-(3,5-dinitrobenzoyl)phenylglycine[(R)-DNBPG] or (S)-N-(3,5-dinitrobenzoyl)leucine [(S)-DNBL], which is either ionically or covalently bonded to gamma-aminopropylsilanized silica. Resolution of enantiomers was confirmed by ultraviolet-visible absorption and circular dichroism spectral analyses. Resolved enantiomers of BP diol-epoxides were each hydrolyzed in acidic solution to a pair of diastereomeric tetrols which were separated by reversed-phase HPLC. Absolute stereochemistries of enantiomeric diol-epoxides were deduced by the absolute configuration of their hydrolysis products.  相似文献   

2.
The structures and energies of the thioguanine-cytosine Watson-Crick (thioGC WC) base pair interacting with hydrated IIa (Mg2+, Ca2+, Ba2+) and IIb group (Zn2+, Cd2+, Hg2+) cations have been studied using ab initio techniques. Furthermore, complexes between guanine and thioguanine with hydrated cations have been characterized assuming various structures of the hydration shells. The complexes of the thioGC WC base pair with hydrated cations have similar properties as the previously studied GC WC base pair. There is substantial polarization stabilization of the base pairing due to cation binding which amounts to 7 - 11 kcal/mol. Soft Cd2+ and Hg2+ cations have a uniquely strong interaction with the thiogroup and induce substantial nonplanarity of the pairing. The thiogroup tends to reduce the number of water molecules in the first hydration shell of the cation. All complexes were optimized within the Hartree-Fock (HF) approximation while their energetics has been evaluated using the second-order Moller-Plesset perturbational method (MP2). All interaction energy evaluations and a substantial portion of the optimizations of the hydrated cation-(thio)guanine complexes have been repeated using Becke-3LYP Density Functional Theory method. All three approximations used (HF, Becke-3LYP, and MP2) give qualitatively the same results for the present cationic complexes. The results demonstrate specific differences among the cations and provide a set of reference structures and energies for verification and/or parametrization of empirical potentials and other theoretical methods.  相似文献   

3.
A general method for detailed study of enzymic reactions is presented. The method considers the complete enzyme-substrate complex together with the surrounding solvent and evaluates all the different quantum mechanical and classical energy factors that can affect the reaction pathway. These factors include the quantum mechanical energies associated with bond cleavage and charge redistribution of the substrate and the classical energies of steric and electrostatic interactions between the substrate and the enzyme. The electrostatic polarization of the enzyme atoms and the orientation of the dipoles of the surrounding water molecules is simulated by a microscopic dielectric model. The solvation energy resulting from this polarization is considerable and must be included in any realistic calculation of chemical reactions involving anything more than an isolated molecule in vacuo. Without it, acidic groups can never become ionized and the charge distribution on the substrate will not be reasonable. The same dielectric model can also be used to study the reaction of the substrate in solution. In this way the reaction in solution can be compared with the enzymic reaction.In this paper we study the stability of the carbonium ion intermediate formed in the cleavage of a glycosidic bond by lysozyme. It is found that electrostatic stabilization is an important factor in increasing the rate of the reaction step that leads to the formation of the carbonium ion intermediate. Steric factors, such as the strain of the substrate on binding to lysozyme, do not seem to contribute significantly.  相似文献   

4.
Using a series of exogenous fluorescent molecules as potential energy acceptors, the hypothesis on the activity of the upper electron-excited states in bioluminescence was tested. The results in bacterial and firefly bioluminescent enzyme systems were compared. Similar activity to the energetic precursor in bacterial bioluminescence was not proven in the case of the firefly system, the result of a very efficient intramolecular energy transfer in the emitter of the firefly bioluminescence. The influence of a number of metallic salts on a bacterial bioluminescent enzyme system was studied. Bioluminescence inhibition coefficients were compared to the free energies of electron withdrawing of cations. The correlation shows that inhibition and activation of luminescence intensity result from the effects of cations on electron transfer in the bioluminescent system.  相似文献   

5.
Chinese hamster V79 cells were treated with the anti- and syn-diastereomers of the bay- or fjord-region diol-epoxides of four polycyclic aromatic hydrocarbons, namely benzo[a]pyrene (BP), benzo[c]chrysene (BcC), benzo[g]chrysene (BgC) and benzo[c]phenanthrene (BcPh). The frequency of induction of 6-thioguanine-resistant mutations was determined, and the extent of formation of DNA adducts was measured by 32P-postlabelling. When expressed as mutation frequency per nanomoles compound per millilitre incubation medium, this group of chemicals expressed a 160-fold range in potency. In agreement with previous experimental studies, the anti-diol-epoxide of BcC was highly mutagenic, inducing in excess of 3 x 10(4) mutations/10(6) cells per nmol compound/ml. The mutagenic activities of the anti- and syn-diol-epoxides of BP were 10- and 100-fold lower, respectively. Both diol-epoxides of BgC, the syn-BcC and the anti-BcPh derivatives were also highly mutagenic, and only the syn-BcPh diol-epoxide was less mutagenic than the anti-diol-epoxide of BP. Determination of the levels of DNA adducts formed by the diol-epoxides indicated that the most mutagenic compounds were the most DNA reactive, although the fjord-region diol-epoxides gave rise to more complex patterns of adducts than those of the BP diol-epoxides. When the mutagenicity results were expressed as mutations per femtomoles total adducts formed, all compounds showed similar activities. Thus the potent mutagenicity of the fjord region diol-epoxides appears to be due to the high frequency with which they form DNA adducts in V79 cells, rather than to formation of adducts with greater mutagenic potential.  相似文献   

6.
Interactions of hydrated cisplatin complexes with sulphur-containing amino acids cysteine and methionine were explored. The square-planar cis-[Pt(NH3)2(H2O)X]+ complexes (where X=Cl- and OH-) were chosen as mono- and dihydrated reactants. Calculations using density functional theory (DFT) techniques with B3LYP functional were performed. The isolated molecules and the supermolecular approaches were employed for the determination of the reaction energies. Bond dissociation energies (BDE) were estimated in the model of isolated molecules and supermolecules were used for the determination of the association energies between the two interacting parts. Formation of monodentate complexes by replacing the aqua-ligand with the S, N, and O-sites of both amino acids represents an exothermic process. The highest BDE was found in cysteine structures for the Pt-S coordination. The bonding energy is about 114 kcal/mol, which is comparable with cisplatin-guanine adducts. Analogous BDE for methionine complexes is smaller by about 40 kcal/mol. This correlates well with the known fact that cysteine forms irreversible cisplatin adducts while similar adducts in the methionine case are reversible. The formation of chelate structures is an exothermic reaction only for the hydroxo-form of reactants in the supermolecular approach where additional association interactions between the released water and chelate molecules sufficiently stabilize the final product.  相似文献   

7.
In the present work, several computational methodologies were combined to develop a model for the prediction of PDE4B inhibitors' activity. The adequacy of applying the ligand docking approach, keeping the enzyme rigid, to the study of a series of PDE4 inhibitors was confirmed by a previous molecular dynamics analysis of the complete enzyme. An exhaustive docking procedure was performed to identify the most probable binding modes of the ligands to the enzyme, including the active site metal ions and the surrounding structural water molecules. The enzyme-inhibitor interaction enthalpies, refined by using the semiempirical molecular orbital approach, were combined with calculated solvation free energies and entropy considerations in an empirical free energy model that enabled the calculation of binding free energies that correlated very well with experimentally derived binding free energies. Our results indicate that both the inclusion of the structural water molecules close to the ions in the binding site and the use of a free energy model with a quadratic dependency on the ligand free energy of solvation are important aspects to be considered for molecular docking investigations involving the PDE4 enzyme family.  相似文献   

8.
Potential energy curves and inner-shell ionization energies of carbon monoxide, oxygen and nitrogen molecules were calculated using several forms of the inner-shell multiconfigurational self-consistent field (IS-MCSCF) method—a recently proposed protocol to obtain specifically converged inner-shell states at this level. The particular forms of the IS-MCSCF method designated IS-GVB-PP, IS-FVBL and IS-CASSCF stand for perfect pairing generalized valence bond, full valence bond-like MCSCF and complete active space self consistent field, respectively. A comparison of these different versions of the IS-MCSCF method was carried out for the first time. The results indicate that inner-shell states are described accurately even for the simplest version of the method (IS-GVB-PP). Dynamic correlation was recovered by multireference configuration interaction or multireference perturbation theory. For molecules not having equivalent atoms, all methods led to comparable and accurate transition energies. For molecules with equivalent atoms, the most accurate results were obtained by multireference perturbation theory. Scalar relativistic effects were accounted for using the Douglas-Kroll-Hess Hamiltonian.  相似文献   

9.
Equilibrium geometries and binding energies of model "salt" or "ion" bridge systems have been computed by ab initio quantum chemistry techniques (GAUSSIAN82) and by empirical force field techniques (AMBER2.0). Formate and dimethyl phosphate served as anions in the model compounds while interacting with several organic cations, including methyl ammonium, methyl guanidinium, and divalent metal ion (either Mg2+ or Ca2+) without and with an additional chloride; and a divalent metal ion (either Mg2+ or Ca2+), chloride, and four water molecules of hydration about the metal ion. The majority of the quantum chemical computations were performed using a split-valence basis set. For the model compounds studied we find that the ab initio optimized geometries are in remarkably good agreement with the molecular mechanics geometries. Several calculations were also performed using diffuse fractions. The formate anion binds these model cations more strongly than does dimethyl phosphate, while the organic cation methyl ammonium binds model anions more strongly than does methyl guanidinium. Finally, in model compounds including organic anions, Mg2+ or Ca2+ and four molecules of water, and a chloride anion, we find that the equilibrium structure of the magnesium complex involves a solvent separated ion pair (the magnesium ion is six coordinate), whereas the calcium ion complex remains seven coordinate. Molecular mechanics overestimates binding energies, but the estimates may be close enough to actual binding energies to give useful insight into the details of salt bridges in biological systems.  相似文献   

10.
Chitosan membranes were prepared by solvent casting and cross-linked with glutaraldehyde at several ratios under homogeneous conditions. The cross-linking degree, varying from 0 to 20%, is defined as the ratio between the total aldehyde groups and the amine groups of chitosan. Permeability experiments were conducted using a side-by-side diffusion cell to determine the flux of small molecules of similar size but with different chemical moieties, either ionized (benzoic acid, salicylic acid, and phthalic acid) or neutral (2-phenylethanol) at physiological pH. The permeability of the different model molecules revealed to be dependent on the affinity of those structurally similar molecules to chitosan. The permeability of the salicylate anion was significantly enhanced by the presence of metal cations commonly present in biological fluids, such as calcium and magnesium, but remained unchanged for the neutral 2-phenylethanol. This effect could be explained by the chelation of metal cations on the amine groups of chitosan, which increased the partition coefficient. The cross-linking degree was also correlated with the permeability and partition coefficient. The change in the permeation properties of chitosan to anionic solutes in the presence of these metallic cations is an important result and should be taken into consideration when trying to make in vitro predictions of the drug release from chitosan-based controlled release systems.  相似文献   

11.
Protein docking and complementarity   总被引:22,自引:0,他引:22  
Predicting the structures of protein-protein complexes is a difficult problem owing to the topographical and thermodynamic complexity of these structures. Past efforts in this area have focussed on fitting the interacting proteins together using rigid body searches, usually with the conformations of the proteins as they occur in crystal structure complexes. Here we present work which uses a rigid body docking method to generate the structures of three known protein complexes, using both the bound and unbound conformations of the interacting molecules. In all cases we can regenerate the geometry of the crystal complexes to high accuracy. We also are able to find geometries that do not resemble the crystal structure but nevertheless are surprisingly reasonable both mechanistically and by some simple physical criteria. In contrast to previous work in this area, we find that simple methods for evaluating the complementarity at the protein-protein interface cannot distinguish between the configurations that resemble the crystal structure complex and those that do not. Methods that could not distinguish between such similar and dissimilar configurations include surface area burial, solvation free energy, packing and mechanism-based filtering. Evaluations of the total interaction energy and the electrostatic interaction energy of the complexes were somewhat better. Of the techniques that we tried, energy minimization distinguished most clearly between the "true" and "false" positives, though even here the energy differences were surprisingly small. We found the lowest total interaction energy from amongst all of the putative complexes generated by docking was always within 5 A root-mean-square of the crystallographic structure. There were, however, several putative complexes that were very dissimilar to the crystallographic structure but had energies that were close to that of the low energy structure. The magnitude of the error in energy calculations has not been established in macromolecular systems, and thus the reliability of the small differences in energy remains to be determined. The ability of this docking method to regenerate the crystallographic configurations of the interacting proteins using their unbound conformations suggests that it will be a useful tool in predicting the structures of unsolved complexes.  相似文献   

12.
For a model system consisting of a special pair of bacteriochlorophyll molecules (P) and a primary quinone with the nearest environment (QA) (which are acceptor and donor in the recombination reaction in Rhodobacter sphaeroides reaction center, respectively), energies of P+QA(-) and PQA states were calculated. Calculations were performed using several stable QA conformations differing by the positions of hydrogen bond protons. Essential influence of proton positions on the energy of vertical transition P+QA(-) --> PQA was shown.  相似文献   

13.
The energetics of the mechanism of proton transfer from a hydronium ion to one of the water molecules in its first solvation shell are studied using density functional theory and the Møller–Plesset perturbation (MP2) method. The potential energy surface of the proton transfer mechanism is obtained at the B3LYP and MP2 levels with the 6-311++G** basis set. Many-body analysis is applied to the proton transfer mechanism to obtain the change in relaxation energy, two-body, three-body and four-body energies when proton transfer occurs from the hydronium ion to one of the water molecules in its first solvation shell. It is observed that the binding energy (BE) of the complex decreases during the proton transfer process at both levels of theory. During the proton transfer process, the % contribution of the total two-body energy to the binding energy of the complex increases from 62.9 to 68.09% (39.9 to 45.95%), and that of the total three-body increases from 25.9 to 27.09% (24.16 to 26.17%) at the B3LYP/6-311++G** (MP2/ 6-311++G**) level. There is almost no change in the water–water–water three-body interaction energy during the proton transfer process at both levels of theory. The contribution of the relaxation energy and the total four-body energy to the binding energy of the complex is greater at the MP2 level than at the B3LYP level. Significant differences are found between the relaxation energies, the hydronium–water interaction energies and the four-body interaction energies at the B3LYP and MP2 levels.  相似文献   

14.
M K Gilson  B Honig 《Proteins》1988,4(1):7-18
In this report we describe an accurate numerical method for calculating the total electrostatic energy of molecules of arbitrary shape and charge distribution, accounting for both Coulombic and solvent polarization terms. In addition to the solvation energies of individual molecules, the method can be used to calculate the electrostatic energy associated with conformational changes in proteins as well as changes in solvation energy that accompany the binding of charged substrates. The validity of the method is examined by calculating the hydration energies of acetate, methyl ammonium, ammonium, and methanol. The method is then used to study the relationship between the depth of a charge within a protein and its interaction with the solvent. Calculations of the relative electrostatic energies of crystal and misfolded conformations of Themiste dyscritum hemerythrin and the VL domain of an antibody are also presented. The results indicate that electrostatic charge-solvent interactions strongly favor the crystal structures. More generally, it is found that charge-solvent interactions, which are frequently neglected in protein structure analysis, can make large contributions to the total energy of a macromolecular system.  相似文献   

15.
The trans Watson-Crick/Watson-Crick family of base pairs represent a geometric class that play important structural and possible functional roles in the ribosome, tRNA, and other functional RNA molecules. They nucleate base triplets and quartets, participate as loop closing terminal base pairs in hair pin motifs and are also responsible for several tertiary interactions that enable sequentially distant regions to interact with each other in RNA molecules. Eleven representative examples spanning nine systems belonging to this geometric family of RNA base pairs, having widely different occurrence statistics in the PDB database, were studied at the HF/6-31G (d, p) level using Morokuma decomposition, Atoms in Molecules as well as Natural Bond Orbital methods in the optimized gas phase geometries and in their crystal structure geometries, respectively. The BSSE and deformation energy corrected interaction energy values for the optimized geometries are compared with the corresponding values in the crystal geometries of the base pairs. For non protonated base pairs in their optimized geometry, these values ranged from -8.19 kcal/mol to -21.84 kcal/mol and compared favorably with those of canonical base pairs. The interaction energies of these base pairs, in their respective crystal geometries, were, however, lesser to varying extents and in one case, that of A:A W:W trans, it was actually found to be positive. The variation in RMSD between the two geometries was also large and ranged from 0.32-2.19 A. Our analysis shows that the hydrogen bonding characteristics and interaction energies obtained, correlated with the nature and type of hydrogen bonds between base pairs; but the occurrence frequencies, interaction energies, and geometric variabilities were conspicuous by the absence of any apparent correlation. Instead, the nature of local interaction energy hyperspace of different base pairs as inferred from the degree of their respective geometric variability could be correlated with the identities of free and bound hydrogen bond donor/acceptor groups present in interacting bases in conjunction with their tertiary and neighboring group interaction potentials in the global context. It also suggests that the concept of isostericity alone may not always determine covariation potentials for base pairs, particularly for those which may be important for RNA dynamics. These considerations are more important than the absolute values of the interaction energies in their respective optimized geometries in rationalizing their occurrences in functional RNAs. They highlight the importance of revising some of the existing DNA based structure analysis approaches and may have significant implications for RNA structure and dynamics, especially in the context of structure prediction algorithms.  相似文献   

16.
The complexation of (1→4) linked α-L-guluronate (G) and β-D-mannuronate (M) disaccharides with Mg(2+), Ca(2+), Sr(2+), Mn(2+), Co(2+), Cu(2+), and Zn(2+) cations have been studied with quantum chemical density functional theory (DFT)-based method. A large number of possible cation-diuronate complexes, with one and two GG or MM disaccharide units and with or without water molecules in the inner coordination shells have been considered. The computed bond distances, cation interaction energies, and molecular orbital composition analysis revealed that the complexation of the transition metal (TM) ions to the disaccharides occurs via the formation of strong coordination-covalent bonds. On the contrary, the alkaline earth cations form ionic bonds with the uronates. The unidentate binding is found to be the most favored one in the TM hydrated and water-free complexes. By removing water molecules, the bidentate chelating binding also occurs, although it is found to be energetically less favored by 1 to 1.5 eV than the unidentate one. A good correlation is obtained between the alginate affinity trend toward TM cations and the interaction energies of the TM cations in all studied complexes, which suggests that the alginate affinities are strongly related to the chemical interaction strength of TM cations-uronate complexes. The trend of the interaction energies of the alkaline earth cations in the ionic complexes is opposite to the alginate affinity order. The binding strength is thus not a limiting factor in the alginate gelation in the presence of alkaline earth cations at variance with the TM cations.  相似文献   

17.
The formation and stability of four-stranded DNA in solution is specifically dependent on the type of cations present. The interaction potential of a model quadruplex structure with different mono- and divalent ions was determined by force field calculations. Though the electrostatic contribution to the total energy is mainly responsible for the stabilisation of the cations within the quadruplex channel, it is the van der Waals interaction at short distances that determines the specific characteristics of the different cations. An explicit consideration of the solvent indicates that the position of water molecules in close proximity to the DNA channel have a strong influence on the form of the potential, and hence on the capability of the cations for leaving and re-entering the cavity. The effect of cation size, as expressed through their Lennard-Jones parameters, is discussed.  相似文献   

18.
This paper develops a deterministic model of frequency distributions for energy imparted (total energy deposition) in small volumes similar to DNA molecules from high-energy ions of interest for space radiation protection and cancer therapy. Frequency distributions for energy imparted are useful for considering radiation quality and for modeling biological damage produced by ionizing radiation. For high-energy ions, secondary electron (delta-ray) tracks originating from a primary ion track make dominant contributions to energy deposition events in small volumes. Our method uses the distribution of electrons produced about an ion's path and incorporates results from Monte Carlo simulation of electron tracks to predict frequency distributions for ions, including their dependence on radial distance. The contribution from primary ion events is treated using an impact parameter formalism of spatially restricted linear energy transfer (LET) and energy-transfer straggling. We validate our model by comparing it directly to results from Monte Carlo simulations for proton and alpha-particle tracks. We show for the first time frequency distributions of energy imparted in DNA structures by several high-energy ions such as cosmic-ray iron ions. Our comparison with results from Monte Carlo simulations at low energies indicates the accuracy of the method.  相似文献   

19.
The binding of water to the dimethylphosphate anion (DMP?) was calculated using the PCILO method. We found binding energies of 25.95 kcal·mol?1 in the O1-P-O3 plane bridging the anionic oxygen atoms and 19.3 kcal·mol?1 for the one-site association of a water molecule to an anionic oxygen atom of DMP?. In this range one water molecule added to DMP? in the O1 … O3 bridged configuration has a significantly higher binding energy to DMP? than water molecules added to other binding sites. The total binding energy of 5 water molecules to DMP? is 92 kcal·mol?1, a quantity which is about 10% less than the sum of the binding energies of the corresponding monohydrates.  相似文献   

20.
Ozyurt AS  Selby TL 《Proteins》2008,72(1):184-196
This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with nine small molecules to derive a function score (FS) for each enzyme-model combination. While energy values varied for a single molecule-enzyme combination due to differences in the active sites, we observe that the binding energies for the entire pathway were proportional for each set of small molecules investigated. This proportionality of energies for a reaction pathway appears to be dependent on the amino acids in the active site and their direct interactions with the small molecules, which allows a function score (FS) to be calculated to assess the specificity of each enzyme. Potential of mean force (PMF) calculations were used to obtain the energies, and the resulting FS values demonstrate that a measurement of function may be obtained using differences between these PMF values. Additionally, limitations of this method are discussed based on: (a) larger substrates with significant conformational flexibility; (b) low homology enzymes; and (c) open active sites. This method should be useful in accurately predicting specificity for single enzymes that have multiple steps in their reactions and in high throughput computational methods to accurately annotate uncharacterized proteins based on active site interaction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号