首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparan sulfate glycosaminoglycan, isolated from the cell surface of nonadhering murine myeloma cells (P3X63-Ag8653), does not bind to plasma fibronectin, but binds partially to collagen type I, as assayed by affinity chromatography with proteins immobilized on cyanogen bromide-activated Sepharose 4B. Identical results were obtained when myeloma heparan sulfate was cochromatographed, on the same fibronectin and collagen columns, with cell surface heparan sulfates collagen columns, with cell surface heparan sulfates from adhering Swiss mouse 3T3 and SV3T3 cells. These latter heparan sulfates do, however, bind to both fibronectin and collagen, as reported earlier (Stamatoglou, S.C., and J.M. Keller, 1981, Biochim. Biophys. Acta., 719:90-97). Cell adhesion assays established that hydrated collagen substrata can support myeloma cell attachment, but fibronectin cannot. Saturation of the heparan sulfate binding sites on the collagen substrata with heparan sulfate or heparin, prior to cell inoculation, abolished the ability to support cell adhesion, whereas chondroitin 4 sulfate, chondroitin 6 sulfate, and hyaluronic acid had no effect.  相似文献   

2.
During organ differentiation, cell-extracellular matrix (ECM) interactions are required. The components of the ECM, such as glycosaminoglycans, fibronectin, laminin, and collagens, change in relation to cytokine and enzyme activity. Moreover, glycosaminoglycans (GAGs) are components of the ECM that play an important role in both cytokine regulation and cell activities. In this work we studied the accumulation of hyaluronic acid and chondroitin sulfate and heparan sulfate proteoglycans (PGs), beta-N-acetyl-D-glucosaminidase activity, the presence of transforming growth factor beta(2) (TGF beta(2)), and interleukin-1 (IL-1), and the localization of fibronectin, laminin, and collagen I and IV during the early stages of chick embryo lung development. We also determined the levels of hyaluronic acid, chondroitin sulfate, dermatan sulfate, and heparan sulfate GAGs and the activity of beta-N-acetyl-D-glucosaminidase with biochemical methods. Our data show that beta-N-acetyl-D-glucosaminidase activity increases in each cell, especially in the epithelial growth front at the emergence of each bronchial bud, where hyaluronic acid and IL-1 are located in the surrounding mesenchymal areas. Chondroitin sulfate and heparan sulfate PGs, fibronectin, laminin, and collagen I and IV are evident in the area near the basal membrane along the sides where the forming structures are stabilized. Biochemical data show that beta-N-acetyl-D-glucosaminidase activity increases in cells during lung development and is related to GAG decrease and to modifications of the nonsulfated/sulfated GAG ratio. These modifications could change cytokine activity and play an important role in bronchial branching development.  相似文献   

3.
Collagen-fibronectin complexes, formed by binding of fibronectin to gelatin or collagen insolubilized on Sepharose, were found to bind 20–40% of radioactivity in [35S]heparin. Fibronectin attached directly to Sepharose also bound [35S]heparin, while gelatin-Sepharose without fibronectin did not. Unlabeled heparin and highly sulfated heparan sulfate efficiently inhibited the binding of [35S]heparin, hyaluronic acid and dermatan sulfate were slightly inhibitory, while chondroitin sulfates and heparan sulfate with a low sulfate content did not inhibit.The interaction of heparin with fibronectin bound to gelatin resulted in complexes which required higher concentrations of urea to dissociate than complexes of fibronectin and gelatin alone. Heparin as well as highly sulfated heparan sulfate and hyaluronic acid brought about agglutination of plastic beads coated with gelatin when fibronectin was present. Neither fibronectin nor glycosaminoglycans alone agglutinated the beads.It is proposed that the multiple interactions of fibronectin, collagen and glycosaminoglycans revealed in these assays could play a role in the deposition of these substances as an insoluble extracellular matrix. Alterations of the quality or quantity of any one of these components could have important effects on cell surface interactions, including the lack of cell surface fibronectin in malignant cells.  相似文献   

4.
H Munakata  K Takagaki  M Majima  M Endo 《Glycobiology》1999,9(10):1023-1027
The interactions of glycosaminoglycans with collagens and other glycoproteins in extracellular matrix play important roles in cell adhesion and extracellular matrix assembly. In order to clarify the chemical bases for these interactions, glycosaminoglycan solutions were injected onto sensor surfaces on which collagens, fibronectin, laminin, and vitronectin were immobilized. Heparin bound to type V collagen, type IX collagen, fibronectin, laminin, and vitronectin; and chondroitin sulfate E bound to type II, type V, and type VII collagen. Heparin showed a higher affinity for type IX collagen than for type V collagen. On the other hand, chondroitin sulfate E showed the highest affinity for type V collagen. The binding of chondroitin sulfate E to type V collagen showed higher affinity than that of heparin to type V collagen. These data suggest that a novel characteristic sequence included in chondroitin sulfate E is involved in binding to type V collagen.  相似文献   

5.
Candida albicans yeasts adhered avidly to extracellular matrix (ECM) proteins, type IV collagen, laminin, and fibronectin immobilized on plastic. Type IV collagen showed an increase of adherence of 400% above control values; laminin, 300%; and fibronectin, 150%. In addition, all three (in quantities of 0.02-200 micrograms/well of a culture tray) bound yeasts in a dose-response fashion. Adherence was inhibited when the proteins were preincubated with specific antibody, except with type IV collagen. Soluble laminin or fibronectin inhibited yeast adherence to the same proteins by 36 and 94%, respectively. Soluble fibronectin bound to the yeast surface and in so doing inhibited subsequent yeast adherence to fibronectin by 66%. By comparison, Candida albicans yeasts adhered in smaller numbers to glycosaminoglycans (GAGs). Keratan sulfate, hyaluronic acid, chondroitin sulfate, Type B, and heparin actually decreased yeast adherence compared to control from 10% to 25%.  相似文献   

6.
Previous studies have established that in response to wounding, the expression of amyloid precursor-like protein 2 (APLP2) in the basal cells of migrating corneal epithelium is greatly up-regulated. To further our understanding of the functional significance of APLP2 in wound healing, we have measured the migratory response of transfected Chinese hamster ovary (CHO) cells expressing APLP2 isoforms to a variety of extracellular matrix components including laminin, collagen types I, IV, and VII, fibronectin, and heparan sulfate proteoglycans (HSPGs). CHO cells overexpressing either of two APLP2 variants, differing in chondroitin sulfate (CS) attachment, exhibit a marked increase in chemotaxis toward type IV collagen and fibronectin but not to laminin, collagen types I and VII, and HSPGs. Cells overexpressing APLP2-751 (CS-modified) exhibited a greater migratory response to fibronectin and type IV collagen than their non-CS-attached counterparts (APLP2-763), suggesting that CS modification enhanced APLP2 effects on cell migration. Moreover, in the presence of chondroitin sulfate, transfectants overexpressing APLP2-751 failed to exhibit this enhanced migration toward fibronectin. The APLP2-ECM interactions were also explored by solid phase adhesion assays. While overexpression of APLP2 isoforms moderately enhanced CHO adhesion to laminin, collagen types I and VII, and HSPGs lines, especially those overexpressing APLP2-751, exhibited greatly increased adhesion to type IV collagen and fibronectin. These observations suggest that APLP2 contributes to re-epithelialization during wound healing by supporting epithelial cell adhesion to fibronectin and collagen IV, thus influencing their capacity to migrate over the wound bed. Furthermore, APLP2 interactions with fibronectin and collagen IV appear to be potentiated by the addition of a CS chain to the core proteins.  相似文献   

7.
The proteoglycan (PG) on the surface of NMuMG mouse mammary epithelial cells consists of at least two functional domains, a membrane- intercalated domain which anchors the PG to the plasma membrane, and a trypsin-releasable ectodomain which bears both heparan and chondroitin sulfate chains. The ectodomain binds cells to collagen types I, III, and V, but not IV, and has been proposed to be a matrix receptor. Because heparin binds to the adhesive glycoproteins fibronectin, an interstitial matrix component, and laminin, a basal lamina component, we asked whether the cell surface PG also binds these molecules. Cells harvested with either trypsin or EDTA bound to fibronectin; binding of trypsin-released cells was inhibited by the peptide GRGDS but not by heparin, whereas binding of EDTA-released cells was inhibited only by a combination of GRDS and heparin, suggesting two distinct cell binding mechanisms. In the presence of GRGDS, the EDTA-released cells bound to fibronectin via the cell surface PG. Binding via the cell surface PG was to the COOH-terminal heparin binding domain of fibronectin. In contrast with the binding to fibronectin, EDTA-released cells did not bind to laminin under identical assay conditions. Liposomes containing the isolated intact cell surface PG mimic the binding of whole cells. These results indicate that the mammary epithelial cells have at least two distinct cell surface receptors for fibronectin: a trypsin- resistant molecule that binds cells to the sequence RGD and a trypsin- labile, heparan sulfate-rich PG that binds cells to the COOH-terminal heparin binding domain. Because the cell surface PG binds cells to the interstitial collagens (types I, III, and V) and to fibronectin, but not to basal lamina collagen (type IV) or laminin, we conclude that the cell surface PG is a receptor on epithelial cells specific for interstitial matrix components.  相似文献   

8.
We have recently characterized a chondroitin sulfate proteoglycan from the murine central nervous system which is expressed by astrocytes in vitro and carries the L2/HNK-1 and L5 carbohydrate structures. In the present study, we provide evidence that its three core proteins of different size are similar in their proteolytic peptide maps and thus designate this group of structurally related molecules astrochondrin. During development, astrochondrin and the L5 carbohydrate were hardly detectable in the brain of 14-d-old mouse embryos by Western blot analysis. Expression of astrochondrin and the L5 epitope was highest at postnatal day 8, the peak of cerebellar granule cell migration and Bergmann glial process formation, and decreased to weakly detectable levels in the adult. Immunocytochemical localization of astrochondrin in the cerebellar cortex of 6-d-old mice showed association of immunoreactivity with the cell surface of astrocytes, including Bergmann glial processes and astrocytes in the internal granular layer or prospective white matter. Endfeet of astrocytes contacting the basal lamina of endothelial and meningeal cells and contact sites between Bergmann glial processes and granule cells also showed detectable levels of astrochondrin. Furthermore, granule cell axons in the molecular layer were astrochondrin immunoreactive. In the adult, astrochondrin immunoreactivity was weakly present in the internal granular layer and white matter. Both Fab fragments of polyclonal antibodies to astrochondrin and monovalent fragments of the L5 monoclonal antibody reduced the formation of processes of mature GFAP- positive astrocytes on laminin and collagen type IV, but not on fibronectin as substrata. Interestingly, the initial attachment of astrocytic cell bodies was not disturbed by these antibodies. Antibodies to astrochondrin also reduced the migration of granule cells in the early postnatal mouse cerebellar cortex. In a solid phase radioligand binding assay, astrochondrin was shown to bind to the extracellular matrix components laminin and collagen type IV, being enhanced in the presence of Ca2+, but not to fibronectin, J1/tenascin or other neural recognition molecules. Furthermore, astrochondrin interacted with collagen types III and V, less strongly with collagen types I, II, and IX, but not with collagen type VI. The interaction of astrochondrin with collagen types III and V was saturable and susceptible to increasing ionic strength, and could be competed by chondroitin sulfate, heparin, and dextran sulfate, but not by hyaluronic acid, glucose-6-phosphate, or neuraminic acid.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The effects of added soluble glycosaminoglycans (GAGs) on adhesion and neurite formation by cultured PC12 pheochromocytoma cells on several substrates were tested. PC12 cells adhere more rapidly to Petri plastic coated with fibronectin, laminin, poly-L-lysine, or conA, than to either uncoated Petri plastic or tissue culture plastic. Adhesion to poly-L-lysine, fibronectin- and laminin-coated dishes was significantly inhibited by added dextran sulfate and to a lesser extent heparin--but not by chondroitin sulfate. PC12 adhesion to fibronectin could also be totally inhibited by the putative fibronectin cell binding tetrapeptide L-arginyl-glycyl-L-aspartyl-L-serine (Pierschbacher, MD & Ruoslahti, E, Nature 309 (1984) 30). The inhibitory effects of combinations of this tetrapeptide and heparin or dextran sulfate (but not chondroitin sulfate or hyaluronic acid) were additive. Nerve growth factor (NGF) pretreatment increased the percentage of PC12 cells adherent to all substrates and reduced the GAG inhibition of adhesion. PC12 cells previously treated with NGF to induce morphologic differentiation will rapidly re-extend neurites when plated on all four substrates. On fibronectin and poly-L-lysine-coated dishes this neurite growth is inhibited by added heparin and dextran sulfate, while on laminin it is not. Neurite formation on fibronectin-coated dishes was also inhibited by low concentrations of fibronectin tetrapeptide. In summary, PC12 adhesion and neurite formation can be inhibited by sulfated GAGs on some substrates, including fibronectin, but not other substrates, suggesting that these cells have at least two independent molecular adhesion mechanisms.  相似文献   

10.
The lymphocyte-high endothelial venule (HEV) cell interaction is an essential element of the immune system, as it controls lymphocyte recirculation between blood and lymphoid organs in the body. This interaction involves an 85-95-kD class of lymphocyte surface glycoprotein(s), CD44. A subset of lymphocyte CD44 molecules is modified by covalent linkage to chondroitin sulfate (Jalkanen, S., M. Jalkanen, R. Bargatze, M. Tammi, and E. C. Butcher. 1988. J. Immunol. 141:1615-1623). In this work, we show that removal of chondroitin sulfate by chondroitinase treatment of lymphocytes or incubation of HEV with chondroitin sulfate does not significantly inhibit lymphocyte binding to HEV, suggesting that chondroitin sulfate is not involved in endothelial cell recognition of lymphocytes. Affinity-purified CD44 antigen was, on the other hand, observed to bind native Type I collagen fibrils, laminin, and fibronectin, but not gelatin. Binding to fibronectin was studied more closely, and it was found to be mediated through the chondroitin sulfate-containing form of the molecule. The binding site on fibronectin was the COOH-terminal heparin binding domain, because (a) the COOH-terminal heparin-binding fragment of fibronectin-bound isolated CD44 antigen; (b) chondroitin sulfate inhibited this binding; and (c) finally, the ectodomain of another cell surface proteoglycan, syndecan, which is known to bind the COOH-terminal heparin binding domain of fibronectin (Saunders, S., and M. Bernfield. 1988. J. Cell Biol. 106: 423-430), inhibited binding of CD44 both to intact fibronectin and to its heparin binding domain. Moreover, inhibition studies showed that binding of a lymphoblastoid cell line, KCA, to heparin binding peptides from COOH-terminal heparin binding fragment of fibronectin was mediated via CD44. These findings suggest that recirculating lymphocytes use the CD44 class of molecules not only for binding to HEV at the site of lymphocyte entry to lymphoid organs as reported earlier but also within the lymphatic tissue where CD44, especially the subset modified by chondroitin sulfate, is used for interaction with extracellular matrix molecules such as fibronectin.  相似文献   

11.
Preparations of cellular fibronectin from chick embryonic fibroblasts have previously been shown to have hyaluronate-binding activity. However, gel filtration and CsCl isopycnic centrifugation of fibronectin preparations showed that the binding activity was associated with molecules with a density and a molecular weight higher than those of fibronectin. An immunoprecipitation assay using antibodies to the chondroitin sulfate proteoglycan (PG-M) from the mesenchyme of chick embryo limb bud showed that the hyaluronate-binding activity of fibronectin preparations was precipitable with this antibody. The immunoprecipitation analyses also showed that fibronectin preparations as well as conditioned culture medium and extracts of chick embryonic fibroblasts contained a chondroitin sulfate proteoglycan, the protein-enriched core molecules from which were identical to those from PG-M with respect to electrophoretic mobility and immunological reactivity. This proteoglycan was purified from conditioned culture medium and extracts of fibroblasts by dissociative CsCl isopycnic centrifugation. The proteoglycans from medium or extracts gave core derivatives with electrophoretic mobility identical to those from PG-M, and they had equal hyaluronate-binding activities. These results, taken together, suggest that most, if not all, of the hyaluronate-binding activity in preparations of chick cellular fibronectin is due to a proteoglycan identical to PG-M. This proteoglycan was also found to bind directly to fibronectin and to type I collagen, but not to laminin or type IV collagen. It is possible that the fibroblast proteoglycan mediates interactions between hyaluronate, fibronectin, and type I collagen, thereby participating in formation of the pericellular matrix of fibroblasts.  相似文献   

12.
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.  相似文献   

13.
We used antibodies raised against both a heparan sulfate proteoglycan purified from a mouse sarcoma and a chondroitin sulfate proteoglycan purified from a rat yolk sac carcinoma to study the appearance and distribution of proteoglycans in cultured cells. Normal rat kidney cells displayed a fibrillar network of immunoreactive material at the cell surface when stained with antibodies to heparan sulfate proteoglycan, while virally transformed rat kidney cells lacked such a surface network. Antibodies to chondroitin sulfate proteoglycan revealed a punctate pattern on the surface of both cell types. The distribution of these two proteoglycans was compared to that of fibronectin by double-labeling immunofluorescent staining. The heparan sulfate proteoglycan was found to codistribute with fibronectin, and fibronectin and laminin gave coincidental stainings. The distribution of chondroitin sulfate proteoglycan was not coincidental with that of fibronectin. Distinct fibers containing fibronectin but lacking chondroitin sulfate proteoglycan were observed. When the transformed cells were cultured in the presence of sodium butyrate, their morphology changed, and fibronectin, laminin, and heparan sulfate proteoglycan appeared at the cell surface in a pattern resembling that of normal cells. These results suggest that fibronectin, laminin, and heparan sulfate proteoglycan may be complexed at the cell surface. The proteoglycan may play a central role in assembly of such complexes since heparan sulfate has been shown to interact with both fibronectin and laminin.  相似文献   

14.
Aggregation of cultured mouse cells was measured by the rate of disappearance of particles from a suspension of single cells. Treatment with several enzymes which degrade hyaluronic acid (testicular hyaluronidase, streptomyces hyaluronidase, streptococcal hyaluronidase and chondroitinase ABC) inhibited the aggregation of SV-3T3 and several other cell types. Since streptomyces and streptococcal hyaluronidases are specific for hyaluronic acid, it is suggested that hyaluronic acid is involved in the observed aggregation. Hyaluronidase-induced inhibition of aggregation was complete in the absence of divalent cations, but only partial in their presence. This finding is consistent with the hypothesis that two separate mechanisms are responsible for aggregation; one dependent upon and the other independent of calcium and magnesium. Aggregation was also inhibited by high levels of hyaluronic acid. A similar effect was obtained with fragments of hyaluronic acid consisting of six sugar residues or more. Chondroitin (desulfated chondroitin 6-sulfate) and to a lesser extent desulfated dermatan sulfate also inhibited aggregation. Other glycosaminoglycans (chondroitin 4-sulfate, chondroitin 6-sulfate, heparin and heparan sulfate) had little or no effect on aggregation. It is suggested that the hyaluronic acid inhibits aggregation by competing with endogenous hyaluronic acid for cell surface binding sites.  相似文献   

15.
Interaction of exogenous fibronectin with the basement membrane-like PYS-2 cell matrix, lacking fibronectin and hyaluronic acid but containing heparan sulfate proteoglycan, was studied in vitro. Both human plasma fibronectin and fibronectin in fetal calf serum bound to PYS-2 matrix; also, fragments of fibronectin containing heparin-binding domains but lacking the collagen-binding domain bound to the matrix. In immunoelectron microscopy the bound fibronectin was found as 20-40 nm globules or patches. Distribution of fibronectin differed from that of laminin and correlated best with that of heparan sulfate proteoglycan. The results suggest that the binding of fibronectin to basement membrane matrices is not due to random adherence but involves specific interactions with other components.  相似文献   

16.
Binding interactions of immobilized E. coli O157:H7 with collagen I, fibronectin, laminin and glucoaminoglycans were studied utilizing a surface plasmon resonance biosensor. A model system was developed to evaluate the inhibition of collagen-laminin binding on the E. coli sensor surface with polysulfated polysaccharides such as heparan sulfate and carrageenans. Results showed that carrageenans inhibited 71–99% while heparan sulfate inhibited 39–41% of collagen/laminin binding to E. coli sensor surface. These studies allowed a rapid assessment of compounds for carcass treatment to inhibit or detach pathogens from meat and poultry.  相似文献   

17.
Hyaluronic acid binding protein (HABP) has been purified to homogeneity from normal adult rat kidney by hyaluronate Sepharose affinity chromatography, and its apparent molecular mass was found to be 68 kDa. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of HABP under reducing as well as nonreducing conditions revealed a single protein band of 34 kDa, thus indicating that kidney HABP is a homodimer and lacks interchain disulfide bond. Its glycoprotein nature was demonstrated by Con-A binding analysis. The pI value of kidney HABP was 6, indicating its acidic nature. Polyclonal antibodies were raised against it, and the monospecificity of the antibodies towards HABP was confirmed by Western blot analysis of tissue extracts. Immunoblot analysis has elucidated the occurrence of this glycoprotein in various tissues. Moreover, HABP present in these tissues are shown to be structurally and immunologically identical. However, this glycoprotein is antigenically distinct from other well characterized extracellular proteins, e.g., fibronectin, laminin and collagen type IV. With the help of enzyme-linked immunosorbent assay (ELISA) and iodinated [125I]HABP, it has been shown that kidney HABP binds specifically to hyaluronic acid (HA) amongst all the glycosaminoglycans (GAGs), however, HABP can interact with other matrix proteins, e.g., laminin, fibronectin, and collagen type IV. The apparent dissociation constants of HABP for HA, laminin, fibronectin, and collagen type IV were approximately in the range of 10(-9) M, and kinetic analysis showed that these binding interactions were complex and of positive cooperative nature. Indirect immunofluorescence staining demonstrated its localization on human fetus lung fibroblast cell surface. Detection of 34 kDa HABP in the serum-free supernatant culture medium of fibroblasts was further evident by immunoblot analysis, thus confirming the secretory nature of HABP and its occurrence in the extracellular matrix.  相似文献   

18.
We wished to determine whether hyaluronan would affect the attachment of epithelial cells to extracellular matrix proteins. Multiwell tissue culture plates were coated with human plasma fibronectin, laminin, or collagen type IV (0.01–10.0 μg/ml). Single-cell suspensions of rabbit corneal epithelial cells were placed in the wells, and after 45 minutes incubation the cells adhering to the matrix proteins were stained and counted. Cells attached to all three types of proteins. Preincubation of the matrix proteins with hyaluronan (0.1–1.0 mg/ml) significantly increased the number of cells attached to the fibronectin matrix, but it did not increase the numbers of cells attached to laminin or collagen type IV. Hyaluronidase inhibited this stimulatory effect. Glycosaminoglcyans other than hyaluronan (chondroitin sulfate, keratan sulfate, or heparan sulfate) failed to increase the numbers of attached cells. Treatment of the fibronectin matrix with monoclonal antibodies against the cell-binding domain of fibronectin (FN12–8 or FN30–8, 0.03–0.3 mg/ml, for 1 hour), before or after hyaluronan treatment, significantly decreased the numbers of attached cells. Monoclonal antibody against the fibrin- and heparin-binding domain at the N-terminal (FN9–1), however, significantly decreased the number of attached cells only when this antibody treatment preceded the hyaluronan treatment. Preincubation of the cells with hyaluronan had no effect; preincubation with GRGDSP (1 mg/ml), a synthetic peptide that blocks the cell surface receptor for fibronectin, significantly decreased cell attachment whether the fibronectin matrix was treated with hyaluronan or not. Further studies demonstrated that monoclonal antibody against the fibrin- and heparin-binding domain at the N-terminal of plasma fibronectin prevented radiolabeled hyaluronan from binding to fibronectin; likewise, the isolated N-terminal fragment, coupled with Sepharose 4B, bound to hyaluronan in columns. We conclude that hyaluronan binds to a fibrin- and heparin-binding domain at the N-terminal of plasma fibronectin and facilitates the attachment of epithelial cells. © 1994 wiley-Liss, Inc.  相似文献   

19.
Extending our previous observation that tissue transglutaminase (TGase) binds to extracellular matrix (ECM) fibronectin, we report here that endogenous tissue TGase is localized on the adjacent ECM after puncture wounding embryonic human lung fibroblasts (WI-38). The bound TGase persisted at the wound site for many hours, demonstrated by immunofluorescence and by catalytic activity using an overlay assay. The binding characteristics of TGase with ECM were studied further by the addition of exogenous TGase to cell monolayers and monitoring by immunofluorescence or overlay catalytic activity assays. Binding occurred equally well at 4 degrees C or 37 degrees C. Prior incubation of exogenous TGase with guanosine 5'-triphosphate (GTP), guanosine 5'-diphosphate (GDP), or adenosine triphosphate (ATP) had little effect on the amount bound to matrix, but prior treatment with calcium, magnesium, strontium, or manganese ions enhanced binding 2- to 3-fold. The Ca(++)-dependent change was a concentration-dependent effect on soluble exogenous TGase, rather than an effect on ECM. Immunofluorescent techniques showed that binding of exogenous TGase to ECM was prevented by prior mixing with fibronectin or collagen, but not with several other ECM components, including laminin, elastin, chondroitin sulfate, heparan sulfate, and hyaluronic acid. ECM-bound TGase was released by 2 M potassium thiocyanate (KSCN) treatment but was not released by treatment with a variety of amino acids, salts, reducing agents, glycerol, or other chaotropic agents.  相似文献   

20.
Mouse primordial germ cells (PGCs) isolated from the dorsal mesentery and gonadal ridges of 10.5–12.5 days post coitum (dpc) embryos showed a progressively increasing adhesiveness to laminin and fibronectin coated substrates, whereas type I collagen and various glycosaminoglycans (hyaluronic acid, heparin and chondroitinsulphates) were poor adhesive substrates. At later stages germ cells appeared to lose their adhesiveness to fibronectin and laminin substrates; the ability to adhere to laminin decreased very rapidly in male and slowly in female germ cells. Oocytes and prospermatogonia from 15.5 dpc fetal gonads showed poor adhesiveness to all substrates tested. PGC adhesion to laminin and fibronectin substrates did not require calcium but was markedly trypsin sensitive. Antibodies against the fibronectin receptor of CHO fibroblasts and short peptides containing the Arg-Gly-Asp sequence greatly reduced PGC adhesion to fibronectin. Following adhesion to laminin or fibronectin, most PGCs did not exhibit a morphology typical of motile cells, but remained spherical. A significant proportion (about 30%) of oocytes from 13.5–14.5 dpc embryos appeared, however, able to spread and elongate following attachment to laminin. The results support the hypothesis that mouse PGCs may utilize laminin and/or fibronectin as adhesive substrates during migration and gonad colonization, but indicate that additional factors are probably required to promote PGC motility. In addition, our data provide indirect evidence that binding sites for specific components of extracellular matrix are present in PGCs, and that their expression may be developmentally regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号