首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(U) with an average chain length of 40-70 nucleotides was modified at the 5'- or 3'-terminal residues with 2,4-dinitrophenyl derivatives. The modified poly(U) was used to form 30S.poly(U) or 70S.poly(U).Phe-tRNA complexes. Localization of the 5' and 3' ends of the template polynucleotide on the 30S subunit and the 70S ribosome was performed by immune electron microscopy using antibodies against dinitrophenyl haptens. The 5' and 3' ends of poly(U) (putative entry and exit sites of the message) were found in the same region both on the 30S subunit and the 70S ribosome. They were located on the dorsal side of the 30S subunit between the head and the body near the groove bordering the side ledge (platform). Comparison of the size of this region with the possible length of the polynucleotide chain covered by the ribosome allowed us to suggest that the message makes a 'U-turn" (or forms a 'loop') as it passes through the ribosome.  相似文献   

2.
30S subunits were isolated capable to bind simultaneously two molecules of Phe-tRNAPhe (or N-Acetyl-Phe-tRNAPhe), both poly(U) dependent. The site with higher affinity to tRNA was identified as P site. tRNA binding to this site was not inhibited by low concentrations of tetracycline (2 x 10(-5)M) and, on the other hand, N-Acetyl-Phe-tRNAPhe, initially prebound to the 30S.poly(U) complex in the presence of tetracycline, reacted with puromycin quantitatively after addition of 50S subunits. The site with lower affinity to tRNA revealed features of the A site: tetracycline fully inhibited the binding of both Phe-tRNAPhe and N-Acetyl-Phe-tRNAPhe. Binding of two molecules of Phe-tRNAPhe to the 30S.poly(U) complex followed by the addition of 50S subunits resulted in the formation of (Phe)2-tRNAPhe in 75-90% of the reassociated 70S ribosomes. These results prove that isolated 30S subunits contain two physically distinct centers for the binding of specific aminoacyl- (or peptidyl-) tRNA. Addition of 50S subunits results in the formation of whole 70S ribosomes with usual donor and acceptor sites.  相似文献   

3.
The effect of 30S ribosomal protein S1 on poly(U)-directed polyphenylalanine synthesis was studied using a highly purified cell-free system which was devoid of endogenous S1. The system consisted of homogeneous preparations of EF-Tu, EF-Ts, and EF-G, and 70S ribosomes from which protein S1 had been removed by poly(U)-cellulose column chromatography. It was found that protein S1 was indispensable for translation of poly(U) by an S1-depleted system at low concentrations of poly(U). On the other hand, at higher concentrations of poly(U), a considerable amount of polyphenylalanine was synthesized in the absence of added S1. The stimulatory effect of S1 was observed at all Mg2+ concentrations examined but was most pronounced at 10 mM Mg2+. Some physicochemical properties of the protein were also studied. It was demonstrated that the protein has an elongated shape with an axial ratio of approximately 8.5.  相似文献   

4.
Phe-tRNAPhe+Y and N-acetyl-Phe-tRNAPhe+Y from yeast interact with prokaryotic 30S subunits and 70S ribosomes with slightly lower affinity than respective tRNA's of E. coli (decrease of standard free energy change of interaction less than 10%). The removal of Y-base from Phe-tRNAPhe+Y results in two orders of magnitude decrease of association constant of Phe-tRNAPh-Ye with P site of the 30S X poly(U) complex and one ordef of magnitude or more of that with A site. The same modification decreases the association constants of Phe-tRNAPhe-Y and N-acetyl-Phe-tRNAPhe-Y 60 and 15 times respectively with P site of the 70S X poly(U) complex. In the absence of poly(U) the affinity of N-acetyl-Phe-tRNAPhe-Y to P-site of 70S ribosome was 20-fold lower than that of native N-acetyl-Phe-tRNAPhe+Y. The sign of interaction enthalpy of N-acetyl-Phe-tRNAPhe+/-Y and Phe-tRNAPhe-Y changes below 6-7 degrees C exposing the hydrophobic part of P-site interactions. Similar removal of Y-base does not change both the enthalpy of interaction with P-site and magnesium concentration dependence.  相似文献   

5.
6.
RNase catalyzed hydrolysis of ribosomes in several functional states   总被引:1,自引:0,他引:1  
The RNase A catalyzed hydrolysis of rRNA in ribosomes has been studied for nonwashed 50S and 70S ribosomes, for washed 50S and 70S ribosomes, for runoff 50S ribosomes and for 70S ribosomes in polysomes. The regions available to hydrolysis in the 50S ribosome remain available when the 50S ribosomes become a part of a 70S ribosome or a polysome. The regions available to hydrolysis in the 30S ribosome become unavailable when the 30S ribosome becomes part of a 70S ribosome or a polysome. Removal of tRNA, mRNA and factors from the 50S and 70S ribosome lowers the rate of hydrolysis of one site in the 23S rRNA. This shows that the conformation of one region of the 23S RNA changes for ribosomes in different functional states.  相似文献   

7.
The influence of amino acid starvation on polysome content was examined in relaxed and stringent strains of Escherichia coli which were isogenic for the RC locus. No difference was observed between the polysome profiles obtained from two different sets of stringent and relaxed strains starved for the same amino acid. In both relaxed and stringent strains, starvation for amino acids other than methionine resulted in only a slight breakdown of polysomes with a concomitant increase of 70S ribosomes. However, starvation for methionine in both RC stringent and relaxed strains of E. coli resulted in a more extensive degradation of polysomes and accumulation of 70S ribosomes. The 70S ribosomes obtained as a result of methionine starvation were more sensitive to degradation to 50 and 30S subunits in 10(-3)m Mg(2+) than 70S monomers obtained either by degradation of polysomes with ribonuclease or by starvation of cells for amino acids other than methionine. The 70S ribosomes from methionine starvation were similar (sensitivity to 10(-3)m Mg(2+)) to 70S ribosomes obtained from cells in which initiation of protein synthesis had been prevented by trimethoprim, an inhibitor of formylation. Since N-formyl-methionyl-transfer ribonucleic acid is required for initiation, the 70S ribosomes obtained in both methionine-starved and trimethoprim-treated cells must result from association of 50 and 30S subunits for reasons other than reinitiation. These results suggest that the level of ribonucleic acid synthesis does not influence the distribution of ribosomes in the polysome profile and vice versa.  相似文献   

8.
A method is described for the preparation of active "run-off" 80S ribosomes and 40S and 60S subunits of mouse liver. A polysome preparation was incubated at 37 degrees C for 10 min under the condition for protein synthesis (4 mM Mg2+, 100 mM KCL). Puromycin (10 mM)and 2 M KCL were added to a final concentration of 0.1 mM and 500 mM, respectively, and the reaction mixture was further incubated at 37 degrees C for 10 min. This latter treatment destabilized small polysomes and "stuck" 80S particles, which were remaining after the first incubation, leading to complete release of 40S and 60S particles. Thus, the present method minimized variations in yield of subunits due to polysome preparations and preincubation conditions. The subunits were separated by sucrose density-gradient centrifugation or recovered by precipitation following reassociation into 80S particles (run-off 80S). The reformation of 80S particles from the subunits occurred spontaneously at 5 mM Mg2+ and 100mM KCL. The isolated 40S and 60S subunits, separately, showed low phenylalanine-incorporating activity in the presence of poly(U), but when recombined, polymerized up to 10 phenylalanine residues per couple.  相似文献   

9.
The interaction of N--Acetyl--Phe--tRNA Phe with 70 S ribosomes is a reversible process in the absence as well as in the presence of messenger. The equilibrium binding constants of these interactions were measured at different magnesium concentrations and temperatures and thermodynamical quantities computed. The enthalpy of the formation of complexes with the P site of ribosomes is larger by 6,000 cal/mol in the presence of poly (U) than in the presence of poly (C) or in total absence of messenger. Free energy differences are rather small, the association constants differ less than one order of magnitude. The association constant of N--Acetyl--Phe--tRNA Phe with the A site of ribosomes is 30--50 times lower than with the P site even in the presence of poly (U).  相似文献   

10.
Well-ordered three-dimensional crystals of 70 S ribosomes and 30 S ribosomal subunits from extremely thermophilic bacteria Thermus thermophilus have been obtained. Positively stained thin sections of the crystals have been analyzed by electron microscopy. Redissolved crystalline ribosomes and small ribosomal subunits reveal sedimentation constants of 70 S and 30 S, respectively, and are functionally active in the poly(U)-system.  相似文献   

11.
The functionally important 3' domain of the ribosomal 16S RNA was altered by in vitro DNA manipulations of a plasmid-encoded 16S RNA gene. By in vitro DNA manipulations two double mutants were constructed in which C1399 was converted to A and G1401 was changed to either U or C and a single point mutant was made wherein G1416 was changed to U. Only one of the mutated rRNA genes could be cloned in a plasmid under the control of the natural rrnB promoters (U1416) whereas all three mutations were cloned in a plasmid under the control of the lambda PL promoter. In a strain coding for the temperature-sensitive lambda repressor cI857 the mutant RNAs could be expressed conditionally. We could show that all three mutant rRNAs were efficiently incorporated into 30S ribosomes. However, all three mutants inhibited the formation of stable 70S particles to various degrees. The amounts of mutated rRNAs were quantified by primer extension analysis which enabled us to assess the proportion of the mutated ribosomes which are actively engaged in in vivo protein biosynthesis. While ribosomes carrying the U1416 mutation in the 16S RNA were active in vivo a strong selection against ribosomes with the A1399/U1401 mutation in the 16S RNA from the polysome fraction is apparent. Ribosomes with 16S RNA bearing the A1399/C1401 mutation did not show a measurable protein biosynthesis activity in vivo. The growth rate of cells harbouring the different mutations reflected the in vivo translation capacities of the mutant ribosomes. The results underline the importance of the highly conserved nucleotides in the 3' domain of the 16S RNA for ribosomal function.  相似文献   

12.
Various subclasses of messenger ribonucleoprotein particles were prepared from free cytoplasmic and polysome fractions of rat liver on the basis of the homopolymeric content of the constituent RNA's. Two major proteins were evident in the free cytoplasmic preparations: the poly(A)-binding protein was the major constituent of polyadenylated components and a 60 kilodalton protein was the major protein in oligouridylated components. In addition to the poly(A)-binding protein, the polysome fractions contained a 74 kilodalton protein that was present in all subclasses of particles. With both free cytoplasmic and polysome preparations, chromatography on columns of poly(U)-sepharose separated poly-adenylated mRNP's largely on the basis of the length of the poly(A) tract; mRNP's containing short poly(A) tracts (fragment distribution centered on 34 residues) were not retained by the columns, presumably because of the interaction of the poly(A) with poly(A)-binding protein.  相似文献   

13.
Functional heterogeneity of the 30S ribosomal subunit of E. coli   总被引:4,自引:0,他引:4  
Summary When 30S ribosomal subunits from E. coli are incubated with poly U, two separable components are recovered by zonal centrifugation of the incubation mixture. The faster sedimenting component is an aggregate of 30S subunits and poly U, while the slower one corresponds to the 30S ribosomal subunit. One ribosomal protein, protein 30S-1 is predominantly present in the faster sedimenting aggregate. The amount of poly U-30S subunit complex formed in the incubation mixture is limited by the amount of protein 30S-1 present. Consequently the number of ribosomal binding sites available for Phe-tRNA is limited in a similar fashion by the presence of protein 30S-1. When 30S ribosomal subunits are reconstituted in the absence of protein 30S-1, very little poly U or Phe-tRNA binding capacity is manifest under our assay conditions. We conclude that protein 30S-1 is required for maximum capacity of ribosomes to bind mRNA. Since this protein is present only on a fraction of the ribosome at any one time, it must exchange from one ribosome to another during protein synthesis.Abbreviations Poly U (polyuridylic acid) - t-RNA (transfer ribonucleic acid) - mRNA (messenger ribonucleic acid) - Phe (phenylanine) - A260 unit (unit of material which gives an optical density of 1.0 at 260 nm in a one centimeter optical path)  相似文献   

14.
The effects of P/P- and P/E-site tRNA(Phe) binding on the 16S rRNA structure in the Escherichia coli 70S ribosome were investigated using UV cross-linking. The identity and frequency of 16S rRNA intramolecular cross-links were determined in the presence of deacyl-tRNA(Phe) or N-acetyl-Phe-tRNA(Phe) using poly(U) or an mRNA analogue containing a single Phe codon. For N-acetyl-Phe-tRNA(Phe) with either poly(U) or the mRNA analogue, the frequency of an intramolecular cross-link C967 x C1400 in the 16S rRNA was decreased in proportion to the binding stoichiometry of the tRNA. A proportional effect was true also for deacyl-tRNA(Phe) with poly(U), but the decrease in the C967 x C1400 frequency was less than the tRNA binding stoichiometry with the mRNA analogue. The inhibition of the C967 x C1400 cross-link was similar in buffers with, or without, polyamines. The exclusive participation of C967 with C1400 in the cross-link was confirmed by RNA sequencing. One intermolecular cross-link, 16S rRNA (C1400) to tRNA(Phe)(U33), was made with either poly(U) or the mRNA analogue. These results indicate a limited structural change in the small subunit around C967 and C1400 during tRNA P-site binding sensitive to the type of mRNA that is used. The absence of the C967 x C1400 cross-link in 70S ribosome complexes with tRNA is consistent with the 30S and 70S crystal structures, which contain tRNA or tRNA analogues; the occurrence of the cross-link indicates an alternative arrangement in this region in empty ribosomes.  相似文献   

15.
Edeine inhibits poly(U)-dependent binding of tRNAPhe to the P and A sites simultaneously, both on 30S subunits and 70S ribosomes. Hence, edeine cannot be considered as antibiotic, "complementary" to tetracycline for selective adsorption of tRNA only to the P or to the A site. Further, edeine decreases the affinity constant of tRNAPhe for the P-site by more than two orders of magnitude, no matter poly(U) is present or not. Neither edeine nor tetracycline affect interaction of deacylated tRNAPhe with the E-site of E. coli 70S ribosomes.  相似文献   

16.
17.
The effect of Escherichia coli ribosomal protein S1 on translation has been studied in S1-depleted systems programmed with poly(U), poly(A) and MS2 RNA3. The translation of the phage RNA depends strictly on the presence of S1. Optimum poly(U)-directed polyphenylalanine synthesis and poly(A)-programmed polylysine synthesis also require S1. Excess S1 relative to ribosomes and messenger RNA results in inhibition of translation of MS2 RNA and poly(U), but not of poly (A). In the case of phage RNA translation, this inhibition can be counteracted by increasing the amount of messenger RNA. Three other 30 S ribosomal proteins (S3, S14 and S21) are also shown to inhibit MS2 RNA translation. The effects of S1 on poly(U) translation were studied in detail and shown to be very complex. The concentration of Mg2+ in the assay mixtures and the ratio of S1 relative to ribosomes and poly(U) are crucial factors determining the response of this translational system towards the addition of S1. The results of this study are discussed in relation to recent developments concerning the function of this protein.  相似文献   

18.
J Weller  W E Hill 《Biochimie》1991,73(7-8):971-981
Interactions between Escherichia coli 16S rRNA sequences (as components of 30S ribosomal subunits or tight-couple 70S ribosomes) with the ligands poly(U), poly(AGU), tRNAPhe, tRNAfMet, and the initiation factors have been studied. The ligands were employed as competitors for selected sites on 16S rRNA known to be accessible for hybridization to cDNA oligomers, regions 517-528, 1397-1404, and 1534-1542. The binding of cDNAs 1534-1541 and 1398-1403 decreased in the presence of the ligand pair poly(U)/tRNAPhe. Only the binding of cDNA 1534-1541 was affected by poly(AGU), while none of the complementary DNA oligomer binding was affected by tRNAPhe or tRNAfMet alone. The poly(AGU)/tRNAfMet ligand pair caused an additional decline in the binding of cDNA 1534-1541, relative to that caused by poly(AGU) alone, but the ligand pair did not affect the binding of the cDNA oligomers 517-528 or 1398-1403. The inclusion of the initiation factors did not significantly alter the binding level decreases observed for cDNA 1534-1541 in the presence of mRNAs or tRNA. At the 517-528 and 1398-1403 regions, the inclusion of the initiation factors, in either the presence or absence of the other ligands, caused a large decrease in the binding of the cDNA oligomers. The oligomers complementary to 16S bases 517-528 and 1398-1403 did not bind to tight-couple or reassociated 70S ribosomes. The data are discussed in terms of the decoding site hypothesis, and in terms of the mRNA alignment mechanism proposed by Trifonov [1].  相似文献   

19.
[35S]--70S ribosomes (150 Ci/mmol) were isolated from E. coli MRE-600 cells grown on glucose-mineral media in the presence of [35S] ammonium sulfate. The labeled 30S and 50S subunits were obtained from [35S] ribosomes by centrifugation in a sucrose density gradient of 10--30% under dissociating conditions (0.5 mM Mg2+). The activity of [35S]--70S ribosomes obtained by reassociation of the labeled subunits during poly(U)-dependent diphenylalanine synthesis was not less than 70%. The activity of [35S]--70S ribosomes during poly(U)-directed polyphenylalanine synthesis was nearly the same as that of the standard preparation of unlabeled ribosomes. The 23S, 16S and 5S RNAs isolated from labeled ribosomes as total rRNA contained no detectable amounts of their fragments as revealed by polyacrylamide gel electrophoresis. The [35S] ribosomal proteins isolated from labeled ribosomes were analyzed by two-dimensional gel electrophoresis. The [35S] label was found in all proteins, with the exception of L20, L24 and L33 which did not contain methionine or cysteine residues.  相似文献   

20.
Initiation factor IF-3 is required for the binding of fMet-tRNA to 70S ribosomes directed by AUG, poly (U,G), f2RNA and T4 late RNA as well as for the binding of acPhe-tRNA directed by poly (U). In contrast, IF-3 is not required for the binding of the initiator aminoacyl-tRNAs to isolated 30S subunits directed by the synthetic messengers, but is required for maximal formation of initiation complexes with natural messengers. These data indicate that with synthetic messengers the sole function of IF-3 is to dissociate the 70S ribosomes into subunits, whereas with natural messengers IF-3 is required not only for dissociation of the ribosomes but also for the binding of the messenger to the 30S subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号