首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association of L-type Ca(2+) channels to the secretory granules and its functional significance to secretion was investigated in mouse pancreatic B cells. Nonstationary fluctuation analysis showed that the B cell is equipped with <500 alpha1(C) L-type Ca(2+) channels, corresponding to a Ca(2+) channel density of 0.9 channels per microm(2). Analysis of the kinetics of exocytosis during voltage-clamp depolarizations revealed an early component that reached a peak rate of 1.1 pFs(-1) (approximately 650 granules/s) 25 ms after onset of the pulse and is completed within approximately 100 ms. This component represents a subset of approximately 60 granules situated in the immediate vicinity of the L-type Ca(2+) channels, corresponding to approximately 10% of the readily releasable pool of granules. Experiments involving photorelease of caged Ca(2+) revealed that the rate of exocytosis was half-maximal at a cytoplasmic Ca(2+) concentration of 17 microM, and concentrations >25 microM are required to attain the rate of exocytosis observed during voltage-clamp depolarizations. The rapid component of exocytosis was not affected by inclusion of millimolar concentrations of the Ca(2+) buffer EGTA but abolished by addition of exogenous L(C753-893), the 140 amino acids of the cytoplasmic loop connecting the 2(nd) and 3(rd) transmembrane region of the alpha1(C) L-type Ca(2+) channel, which has been proposed to tether the Ca(2+) channels to the secretory granules. In keeping with the idea that secretion is determined by Ca(2+) influx through individual Ca(2+) channels, exocytosis triggered by brief (15 ms) depolarizations was enhanced 2.5-fold by the Ca(2+) channel agonist BayK8644 and 3.5-fold by elevating extracellular Ca(2+) from 2.6 to 10 mM. Recordings of single Ca(2+) channel activity revealed that patches predominantly contained no channels or many active channels. We propose that several Ca(2+) channels associate with a single granule thus forming a functional unit. This arrangement is important in a cell with few Ca(2+) channels as it ensures maximum usage of the Ca(2+) entering the cell while minimizing the influence of stochastic variations of the Ca(2+) channel activity.  相似文献   

2.
Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2alpha) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic beta-cells. cPLA2alpha dose dependently (EC50 = 86 nM) stimulated depolarization-evoked exocytosis by 450% without affecting the whole cell Ca2+ current or cytoplasmic Ca2+ levels. The stimulatory effect involved priming of secretory granules as reflected by an increase in the size of the readily releasable pool of granules from 70-80 to 280-300. cPLA2alpha-stimulated exocytosis was antagonized by the specific cPLA2 inhibitor AACOCF3. Ca2+-evoked exocytosis was reduced by 40% in cells treated with AACOCF3 or an antisense oligonucleotide against cPLA2alpha. The action of cPLA2alpha was mimicked by a combination of arachidonic acid and lysophosphatidylcholine (470% stimulation) in which each compound alone doubled the exocytotic response. Priming of insulin-containing secretory granules has been reported to involve Cl- uptake through ClC-3 Cl- channels. Accordingly, the stimulatory action of cPLA2alpha was inhibited by the Cl- channel inhibitor DIDS and in cells pretreated with ClC-3 Cl- channel antisense oligonucleotides. We propose that cPLA2alpha has an important role in controlling the rate of exocytosis in beta-cells. This effect of cPLA2alpha reflects an enhanced transgranular Cl- flux, leading to an increase in the number of granules available for release, and requires the combined actions of arachidonic acid and lysophosphatidylcholine.  相似文献   

3.
Exocytosis of extrusomes, secretory granules found in protozoa, is involved in prey capture by the heliozoon Actinophrys sol. Here, we show that extracellular Ca(2+) is necessary for exocytosis and prey capture in A. sol. We found that A. sol could not capture prey cells in a Ca(2+)-free solution. L-type Ca(2+) channel blockers and a calmodulin antagonist also inhibited the capture of prey. These results suggest that Ca(2+) influx via L-type Ca(2+) channels plays a crucial role in exocytosis in A. sol. Concanavalin A (Con A) also inhibited prey capture, and the inhibition was relieved by the addition of its hapten sugar, alpha-mannoside, suggesting that Con A-binding glycoconjugates are implicated in exocytosis of extrusomes and the adhesion of prey cells.  相似文献   

4.
The venoms of Latrodectus sp. have been reported to induce contraction probably mediated by adrenergic and cholinergic transmitters. We have demonstrated that the venom of Chilean Latrodectus mactans contains neurotoxins that induce a contraction partially independent of transmitters release. Transmembrane mobility of Na+ and Ca2+ ions and more specifically, the increase of cytoplasmic calcium concentration are responsible for tonic contraction in smooth muscle. Calcium may enter the cell by several ways, such as the voltage-dependent Ca2+ L-type channels and the Na+/Ca2+ exchanger. This study aimed to examine the participation of this exchanger in the tonic contraction of smooth muscle in vas deferent of rat induced by the venom of the Chilean spider L. mactans. Blockers of Na+ channels (amiloride) and Ca2+ L-type channels (nifedipine), and a stimulator of the exchanger (modified Tyrode, Na+ 80 mM) were used. Simultaneously, variations of the cytoplasmic concentration of Ca2+ were registered by microfluorimetry (Fura-2 indicator) in the presence of nifedipine. In presence of amiloride, dose-dependent inhibition of venom-induced contraction was observed, suggesting the participation of voltage-dependent Ca2+ L-type channels. The contraction was only partially inhibited by nifedipine and the Ca2+ cytoplasmic concentration increased, as assessed by the microfluorimetric registration. Finally, the venom-induced contraction increased in the presence of modified Tyrode, probably due to the action of the Na+/Ca2+ exchanger. Taken together, our results support the idea that the Na+/Ca2+ exchanger is active and may be, at least in part, responsible for the contraction induced by the venom of Chilean L. mactans.  相似文献   

5.
Expression, spatial distribution and specific roles of different Ca(2+) channels in stimulus-secretion coupling of chromaffin cells are intriguing issues still open to discussion. Most of the evidence supports a role of high-voltage activated (HVA) Ca(2+) channels (L-, N-, P/Q- and R-types) in the control of exocytosis: some suggesting a preferential coupling of specific Ca(2+) channel subunits with the secretory apparatus, others favoring the idea of a contribution to secretion proportional to the expression density and gating properties of Ca(2+) channels. In this work we review recent findings and bring new evidence in favor of the hypothesis that also the LVA (low-voltage-activated, T-type) Ca(2+) channels effectively control fast exocytosis near resting potential in adrenal chromaffin cells of adult rats. T-type channels recruited after long-term treatments with pCPT-cAMP (or chronic hypoxia) are shown to control exocytosis with the same efficacy of L-type channels, which are the dominant Ca(2+) channel types expressed in rodent chromaffin cells. A rigorous comparison of T- and L-type channel properties shows that, although operating at different potentials and with different voltage-sensitivity, the two channels possess otherwise similar Ca(2+)-dependence of exocytosis, size and kinetics of depletion of the immediately releasable pool and mobilize vesicles of the same quantal size. Thus, T- and L-type channels are coupled with the same Ca(2+)-efficiency to the secretory apparatus and deplete the same number of vesicles ready for release. The major difference of the secretory signals controlled by the two channels appear to be the voltage range of operation, suggesting the idea that stressful conditions (hypoxia and persistent beta-adrenergic stimulation) can lower the threshold of cell excitability by recruiting new Ca(2+) channels and activate an additional source of catecholamine secretion.  相似文献   

6.
Huh YH  Kim KD  Yoo SH 《Biochemistry》2007,46(49):14032-14043
The nucleus also contains the inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ channels in the nucleoplasm proper independent of the nuclear envelope or the cytoplasm. The nuclear IP3R/Ca2+ channels were shown to be present in small IP3-dependent nucleoplasmic Ca2+ store vesicles, yet no information is available regarding the IP3 sensitivity of nuclear IP3R/Ca2+ channels. Here, we show that nuclear IP3R/Ca2+ channels are 3-4-fold more sensitive to IP3 than cytoplasmic ones in both neuroendocrine PC12 cells and nonneuroendocrine NIH3T3 cells. Given the presence of phosphoinositides and phospholipase C and the importance of IP3-mediated Ca2+ signaling in the nucleus, the high IP3 sensitivity of nuclear IP3R/Ca2+ channels seemed to reflect the physiological needs of the nucleus to finely control the IP3-dependent Ca2+ concentrations. It was further shown that the IP3R/Ca2+ channels of secretory cells are 7-8-fold more sensitive to IP3 than those of nonsecretory cells. This difference appeared to result from the presence of secretory cell marker protein chromogranins (thus secretory granules) in secretory cells; expression of chromogranins in NIH3T3 cells increased the IP3 sensitivity of both nuclear and cytoplasmic IP3R/Ca2+ channels by approximately 4-6-fold. In contrast, suppression of chromogranin A expression in PC12 cells changed the EC50 of IP3 sensitivity for cytoplasmic IP3R/Ca2+ channels from 17 to 47 nM, whereas suppression of chromogranin B expression changed the EC50 of cytoplasmic IP3R/Ca2+ channels from 17 to 102 nM and the nuclear ones from 4.3 to 35 nM. Given that secretion is the major function of secretory cells and is under a tight control of intracellular Ca2+ concentrations, the high IP3 sensitivity appears to reflect the physiological roles of secretory cells.  相似文献   

7.
O Nüsse  L Serrander  D P Lew    K H Krause 《The EMBO journal》1998,17(5):1279-1288
We have investigated Ca2+-induced exocytosis from human neutrophils using the whole cell patch-clamp capacitance technique. Microperfusion of Ca2+ buffer solutions (<30 nM to 5 mM free Ca2+) through the patch-clamp pipette revealed a biphasic activation of exocytosis by Ca2+. The first phase was characterized by high affinity (1.5-5 microM) and low apparent cooperativity (<=2) for Ca2+, and the second phase by low affinity (approximately 100 microM) and high cooperativity (>6). Only the second phase was accompanied by loss of myeloperoxidase, suggesting that the low-affinity exocytosis reflected release of peroxidase-positive (primary) granules, while the high-affinity exocytosis reflected release of peroxidase-negative (secondary and tertiary) granules. At submaximal Ca2+ concentrations, only a fraction of a given granule population was released. This submaximal release cannot simply be explained by Ca2+ modulation of the rate of exocytosis, and it suggests that the secretory response of individual cells is adjusted to the strength of the stimulus. The Ca2+ dependence of the high- and low-affinity phases of neutrophil exocytosis bears a resemblance to endocrine and neuronal exocytosis, respectively. The occurrence of such high- and low-affinity exocytosis in the same cell is novel, and suggests that the Ca2+ sensitivity of secretion is granule-, rather than cell-specific.  相似文献   

8.
The intracellular mechanisms regulating the process of evoked neurotransmitter release were studied in the cloned neurosecretory cell line PC12. Various agents were employed that were known, from previous studies in other systems, to stimulate release in a manner either strictly dependent or independent of the concentration of extracellular Ca2+, [Ca2+]o. Three parameters were investigated in cells suspended in either Ca2+-containing or Ca2+-free Krebs-Ringer media: release of previously accumulated [3H]dopamine; average free cytoplasmic Ca2+ concentration, [Ca2+]i (measured by the quin2 technique); and cell ultrastructure, with special reference to the number and structure of secretion granules. The release induced by the ionophores transporting monovalent cations, X537A and monensin, occurred concomitantly with profound alterations of secretory granule structure (swelling and dissolution of the dense core). These results suggest that the effect of these drugs is due primarily to leakage of dopamine from granules to the cytoplasm and extracellular space. In contrast, the changes induced by other stimulatory drugs used concerned not the structure but the number of secretory granules, indicating that with these drugs stimulation of exocytosis is the phenomenon underlying the increased transmitter release. The release response induced by the Ca2+-ionophore ionomycin was dependent on [Ca2+]o, occurred rapidly, was concomitant with a marked rise of [Ca2+]i, and ceased after 1-2 min even though [Ca2+]i remained elevated for many minutes. 12-O-tetradecanoylphorbol, 13-acetate and diacylglycerol (both of which are known as activators of protein kinase C) induced slow responses almost completely independent of [Ca2+]o and not accompanied by changes of [Ca2+]i. Combination of an activator of protein kinase C with a low concentration of ionomycin failed to modify the [Ca2+]i rise induced by the ionophore, but elicited a marked potentiation of the release response, which was two- to fourfold larger than the sum of the responses elicited separately by either drugs. Thus, activation of protein kinase C seems to play an important role in the regulation of exocytosis in neurosecretory cells, possibly by increasing and maintaining the sensitivity to Ca2+ of the intracellular apparatus regulating granule discharge by exocytosis.  相似文献   

9.
The subcellular localization in anterior pituitary secretory cells of annexin II, one of the Ca2+-dependent phospholipid-binding proteins, was examined by immunohistochemistry and immunoelectron microscopy. Annexin II was associated with the plasma membrane, the membranes of secretory granules and cytoplasmic organelles, such as rough endoplasmic reticulum, mitochondria and vesicles, and with the nuclear envelope. Annexin II was frequently detected at the contact sites of secretory granules with other granules and with the plasma membrane. The anterior pituitary and adrenal medulla were treated with Clostridium perfringens enterotoxin, which induces Ca2+ influx, and examined under an electron microscope. The anterior pituitary cells showed multigranular exocytosis, i.e. multiple fusions of secretory granules with each other and with the plasma membrane, but adrenal chromaffin cells, which lack annexin II on the granule membranes, never showed granule--granule fusion and only single granule exocytosis. From these results, we conclude that, in anterior pituitary secretory cells, annexin II is involved in granule--granule fusion in addition to granule--plasma membrane fusion. © 1998 Chapman & Hall  相似文献   

10.
The spatiotemporal changes in intracellular free Ca(2+) concentration ([Ca(2+)](i)) as well as fluid secretion and exocytosis induced by acetylcholine (ACh) in intact acini of guinea pig nasal glands were investigated by two-photon excitation imaging. Cross-sectional images of acini loaded with the fluorescent Ca(2+) indicator fura-2 revealed that the ACh-evoked increase in [Ca(2+)](i) was immediate and spread from the apical region (the secretory pole) of acinar cells to the basal region. Immersion of acini in a solution containing a fluorescent polar tracer, sulforhodamine B (SRB), revealed that fluid secretion, detected as a rapid disappearance of SRB fluorescence from the extracellular space, occurred exclusively in the luminal region and was accompanied by a reduction in acinar cell volume. Individual exocytic events were also visualized with SRB as the formation of Omega-shaped profiles at the apical membrane. In contrast to the rapidity of fluid secretion, exocytosis of secretory granules occurred with a delay of approximately 70s relative to the increase in [Ca(2+)](i). Exocytic events also occurred deep within the cytoplasm in a sequential manner with the latency of secondary exocytosis being greatly reduced compared with that of primary exocytosis. The delay in sequential compound exocytosis relative to fluid secretion may be important for release of the viscous contents of secretory granules into the nasal cavity.  相似文献   

11.
Insulin is secreted from pancreatic beta cells in response to an elevation of cytoplasmic Ca(2+) resulting from enhanced Ca(2+) influx through voltage-gated Ca(2+) channels. Mouse beta cells express several types of Ca(2+) channel (L-, R- and possibly P/Q-type). beta cell-selective ablation of the gene encoding the L-type Ca(2+) channel subtype Ca(v)1.2 (betaCa(v)1.2(-/-) mouse) decreased the whole-cell Ca(2+) current by only approximately 45%, but almost abolished first-phase insulin secretion and resulted in systemic glucose intolerance. These effects did not correlate with any major effects on intracellular Ca(2+) handling and glucose-induced electrical activity. However, high-resolution capacitance measurements of exocytosis in single beta cells revealed that the loss of first-phase insulin secretion in the betaCa(v)1.2(-/-) mouse was associated with the disappearance of a rapid component of exocytosis reflecting fusion of secretory granules physically attached to the Ca(v)1.2 channel. Thus, the conduit of Ca(2+) entry determines the ability of the cation to elicit secretion.  相似文献   

12.
Microamperometry was used to monitor quantal catecholamine release from individual PC12 cells in response to raised extracellular K+ and caffeine. K+-evoked exocytosis was entirely dependent on Ca2+ influx through voltage-gated Ca2+ channels, and of the subtypes of such channels present in these cells, influx through N-type was primarily responsible for triggering exocytosis. L-type channels played a minor role in mediating K+-evoked secretion, whereas P/Q-type channels did not appear to be involved in secretion at all. Caffeine also evoked catecholamine release from PC12 cells, but only in the presence of extracellular Ca2+. Application of caffeine in Ca2+-free solutions evoked large, transient rises of [Ca2+]i, but did not trigger exocytosis. When Ca2+ was restored to the extracellular solution (in the absence of caffeine), store-operated Ca2+ influx was observed, which evoked exocytosis. The amount of secretion evoked by this influx pathway was far greater than release triggered by influx through L-type Ca2+ channels, but less than that caused by Ca2+ influx through N-type channels. Our results indicate that exocytosis may be regulated even in excitable cells by Ca2+ influx through pathways other than voltage-gated Ca2+ channels.  相似文献   

13.
Cytosolic free calcium concentration, [Ca2+]i, and exocytosis of azurophil granules (beta-glucuronidase), specific granules (vitamin B12-binding protein), and secretory vesicles (gelatinase) were measured concomitantly in intact human neutrophils under steady state [Ca2+]i. The cells were loaded with the fluorescent calcium indicator quin2 in the presence or absence of extracellular Ca2+, and steady state [Ca2+]i levels ranging from 20 to greater than 2,000 nM were obtained by adding the Ca2+ ionophore ionomycin at various concentrations of extracellular calcium. The extent of exocytosis from the three granule populations was found to be a function of [Ca2+]i. The minimal [Ca2+]i that caused significant release (threshold [Ca2+]i) was approximately 200-300 nM and was similar for all three compartments. Marked differences, however, were found when the [Ca2+]i for half-maximal exocytosis (EC50) was determined. In the absence of cytochalasin B the EC50 was 1,100 +/- 220 nM and 1,600 +/- 510 nM for specific granules and secretory vesicles, respectively, and approximately 6,000 nM for azurophil granules. Cytochalasin B did not affect the threshold [Ca2+]i but decreased the EC50 and enhanced the rate of exocytosis. In the presence of cytochalasin B the EC50 was approximately 600 nM both for secretory vesicles and specific granules, and approximately 2,600 nM for azurophil granules. The addition of the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine dramatically changed the [Ca2+]i dependency of granule secretion: It decreased the threshold [Ca2+]i to less than 20 and less than 50 nM, and the EC50 to 50 and 200 nM for specific and azurophil granules, respectively, and it significantly increased the rate of exocytosis. Thus, the additional signal(s) provided by receptor activation markedly lower(s) the Ca2+ requirement of the exocytotic process. Furthermore, these results indicate that the secretion from three different granule populations within the same cell type are differently modulated by [Ca2+]i.  相似文献   

14.
Vesicle-associated membrane protein-2 (VAMP-2) and cellubrevin are associated with the membrane of insulin-containing secretory granules and of gamma-aminobutyric acid (GABA)-containing synaptic-like vesicles of pancreatic beta-cells. We found that a point mutation in VAMP-2 preventing targeting to synaptic vesicles also impairs the localization on insulin-containing secretory granules, suggesting a similar requirement for vesicular targeting. Tetanus toxin (TeTx) treatment of permeabilized HIT-T15 cells leads to the proteolytic cleavage of VAMP-2 and cellubrevin and causes the inhibition of Ca2+-triggered insulin exocytosis. Transient transfection of HIT-T15 cells with VAMP-1, VAMP-2 or cellubrevin made resistant to the proteolytic action of TeTx by amino acid replacements in the cleavage site restored Ca2+-stimulated secretion. Wild-type VAMP-2, wild-type cellubrevin or a mutant of VAMP-2 resistant to TeTx but not targeted to secretory granules were unable to rescue Ca2+-evoked insulin release. The transmembrane domain and the N-terminal region of VAMP-2 were not essential for the recovery of stimulated exocytosis, but deletions preventing the binding to SNAP-25 and/or to syntaxin I rendered the protein inactive in the reconstitution assay. Mutations of putative phosphorylation sites or of negatively charged amino acids in the SNARE motif recognized by clostridial toxins had no effect on the ability of VAMP-2 to mediate Ca2+-triggered secretion. We conclude that: (i) both VAMP-2 and cellubrevin can participate in the exocytosis of insulin; (ii) the interaction of VAMP-2 with syntaxin and SNAP-25 is required for docking and/or fusion of secretory granules with the plasma membrane; and (iii) the phosphorylation of VAMP-2 is not essential for Ca2+-stimulated insulin exocytosis.  相似文献   

15.
Endocrine cells, such as H295R have been widely used to study secretion of steroid and other hormones. Exocytosis-dependent hormone release is accompanied by an increase in plasma membrane surface area and a decrease in vesicle content. Recovery of vesicles and decrease in plasma membrane area is achieved by endocytotic processes. These changes in the extent of the surface area lead to morphological changes which can be determined by label-free real-time impedance measurements. Exo- and endocytosis have been described to be triggered by activation of L-type Ca(2+) channels. The present study demonstrates that activation of L-type calcium channels induces prolonged oscillating changes in cellular impedance. The data support the hypothesis that a tight regulation of the intracellular Ca(2+) concentration is a prerequisite for the observed cellular impedance oscillations. Furthermore evidence is presented for a mechanism in which the oscillations depend on a Ca(2+)-triggered calmodulin-dependent cascade involving myosin light chain kinase, nonmuscle myosin II and ultimately actin polymerization, a known determinant for cell shape changes and exocytosis in secretory cells. The described assay provides a method to determine continuously prolonged changes in cellular morphology such as exo/endocytosis cycles. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

16.
1alpha,25(OH)(2)-vitamin D(3) (1,25D) is considered a bone anabolic hormone. 1,25D actions leading to bone formation involve gene transactivation, on one hand, and modulation of cytoplasmic signaling, on the other. In both cases, a functional vitamin D receptor (VDR) appears to be required. Here we study 1,25D-stimulated calcium signaling that initiates at the cell membrane and leads to exocytosis of bone materials and increased osteoblast survival. We found that rapid 1,25D-induction of exocytosis couples to cytoplasmic calcium increase in osteoblastic ROS 17/2.8 cells. In addition, we found that elevation of cytoplasmic calcium concentration is involved in 1,25D anti-apoptotic effects via Akt activation in ROS 17/2.8 cells and non-osteoblastic CV-1 cells. In both cases, 1,25D-stimulated elevation of intracellular calcium is due in part to activation of L-type Ca(2+) channels. We conclude that 1,25D bone anabolic effects that involve increased intracellular Ca(2+) concentration in osteoblasts can be explained at two levels. At the single-cell level, 1,25D promotes Ca(2+)-dependent exocytotic activities. At the tissue level, 1,25D protects osteoblasts from apoptosis via a Ca(2+)-dependent Akt pathway. Our studies contribute to the understanding of the molecular basis of bone diseases characterized by decreased bone formation and mineralization.  相似文献   

17.
Yoo SH 《Cell calcium》2011,50(2):175-183
The majority of secretory cell calcium is stored in secretory granules that serve as the major IP3-dependent intracellular Ca2+ store. Even in unicellular phytoplankton secretory granules are responsible for the IP3-induced Ca2+ release that triggers exocytosis. The number of secretory granules in the cell is directly related not only to the magnitude of IP3-induced Ca2+ release, which accounts for the majority of the IP3-induced cytoplasmic Ca2+ release in neuroendocrine cells, but also to the IP3 sensitivity of the cytoplasmic IP3 receptor (IP3R)/Ca2+ channels. Moreover, secretory granules contain the highest IP3R concentrations and the largest amounts of IP3Rs in any subcellular organelles in neuroendocrine cells. Secretory granules from phytoplankton to mammals contain large amounts of polyanionic molecules, chromogranins being the major molecules in mammals, in addition to acidic intragranular pH and high Ca2+ concentrations. The polyanionic molecules undergo pH- and Ca2+-dependent conformational changes that serve as a molecular basis for condensation-decondensation phase transitions of the intragranular matrix. Likewise, chromogranins undergo pH- and Ca2+-dependent conformational changes with increased exposure of the structure and increased interactions with Ca2+ and other granule components at acidic pH. The unique physico-chemical properties of polyanionic molecules appear to be at the center of biogenesis, and physiological functions of secretory granules in living organisms from primitive to advanced species.  相似文献   

18.
Dietl P  Haller T  Frick M 《Cell calcium》2012,52(3-4):296-302
The type II cell of the pulmonary alveolus is a polarized epithelial cell that secretes surfactant into the alveolar space by regulated exocytosis of lamellar bodies (LBs). This process consists of multiple sequential steps and is correlated to elevations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) required for extended periods of secretory activity. Both chemical (purinergic) and mechanical (cell stretch or exposure to an air-liquid interface) stimuli give rise to complex Ca(2+) signals (such as Ca(2+) peaks, spikes and plateaus) that differ in shape, origin and spatio-temporal behavior. This review summarizes current knowledge about Ca(2+) channels, including vesicular P2X4 purinoceptors, in type II cells and associated signaling cascades within the alveolar microenvironment, and relates stimulus-dependent activation of these pathways with distinct stages of surfactant secretion, including pre- and postfusion stages of LB exocytosis.  相似文献   

19.
Mb1 bipolar cells (ON-type cells) of the goldfish retina have exceptionally large (approximately 10 microns in diameter) presynaptic terminals, and thus, are suitable for investigating presynaptic mechanisms for transmitter release. Using enzymatically dissociated Mb1 bipolar cells under whole-cell voltage clamp, we measured the Ca2+ current (ICa), the intracellular free Ca2+ concentration ([Ca2+]i), and membrane capacitance changes associated with exocytosis and endocytosis. Release of transmitter (glutamate) was monitored electrophysiologically by a glutamate receptor-rich neuron as a probe. L-type Ca2+ channels were localized at the presynaptic terminals. The presynaptic [Ca2+]i was strongly regulated by cytoplasmic Ca2+ buffers, the Na(+)-Ca2+ exchanger and the Ca2+ pump in the plasma membrane. Once ICa was activated, a steep Ca2+ gradient was created around Ca2+ channels; [Ca2+]i increased to approximately 100 microM at the fusion sites of synaptic vesicles whereas up to approximately 1 microM at the cytoplasm. The short delay (approximately 1 ms) of exocytosis and the lack of prominent asynchronous release after the termination of ICa suggested a low-affinity Ca2+ fusion sensor for exocytosis. Depending on the rate of Ca2+ influx, glutamate was released in a rapid phasic mode as well as a tonic mode. Multiple pools of synaptic vesicles as well as vesicle cycling seemed to support continuous glutamate release. Activation of protein kinase C increased the size of synaptic vesicle pool, resulting in the potentiation of glutamate release. Goldfish Mb1 bipolar cells may still be an important model system for understanding the molecular mechanisms of transmitter release.  相似文献   

20.
The oxyntic mucosa is rich in ECL cells. They secrete histamine and chromogranin A-derived peptides, such as pancreastatin, in response to gastrin and pituitary adenylate cyclase-activating peptide (PACAP). Secretion is initiated by Ca2+ entry. While gastrin stimulates secretion by opening L-type and N-type Ca2+ channels, PACAP stimulates secretion by activating L-type and receptor-operated Ca2+ channels. Somatostatin, galanin and prostaglandin E2 (PGE2) inhibit gastrin- and PACAP-stimulated secretion from the ECL cells. In the present study, somatostatin and the PGE2 congener misoprostol inhibited gastrin- and PACAP-stimulated secretion 100%, while galanin inhibited at most 60-65%. Bay K 8644, a specific activator of L-type Ca2+ channels, stimulated ECL-cell secretion, an effect that was inhibited equally effectively by somatostatin, misoprostol and galanin (75-80% inhibition). Pretreatment with pertussis toxin, that inactivates inhibitory G-proteins, prevented all three agents from inhibiting stimulated secretion (regardless of the stimulus). Pretreatment with nifedipine (10 microM), an L-type Ca2+ channel blocker, reduced PACAP-evoked pancreastatin secretion by 50-60%, gastrin-evoked secretion by approximately 80% and abolished the response to Bay K 8644. The nifedipine-resistant response to PACAP was abolished by somatostatin and misoprostol but not by galanin. Gastrin and PACAP raised the intracellular Ca2+ concentration in a biphasic manner, believed to reflect mobilization of internal Ca2+ followed by Ca2+ entry. Somatostatin and misoprostol blocked Ca2+ entry (and histamine and pancreastatin secretion) but not mobilization of internal Ca2+. The present observations on isolated ECL cells suggest that Ca2+ entry rather than mobilization of internal Ca2+ triggers exocytosis, that gastrin and PACAP activate different (but over-lapping) Ca2+ channels, that somatostatin, misoprostol and galanin interact with inhibitory G-proteins to block Ca2+ entry via L-type Ca2+ channels, and that somatostatin and misoprostol (but not galanin) in addition block N-type and/or receptor-operated Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号