首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathogenesis of brain inflammation and damage by human immunodeficiency virus (HIV) infection is unclear. Because blood-brain barrier damage and impaired cerebral perfusion are common features of HIV-1 infection, we evaluated the role of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) in mediating disruption of the blood-brain barrier. Levels of TNF-alpha were more elevated in cerebrospinal fluid (CSF) than in serum of HIV-1 infected patients and were mainly detected in those patients who had neurologic involvement. Intrathecal TNF-alpha levels correlated with signs of blood-brain barrier damage, manifested by high CSF to serum albumin quotient, and with the degree of barrier impairment. In contrast, intrathecal IL-1beta levels did not correlate with blood-brain barrier damage in HIV-1 infected patients. TNF-alpha seems to be related to active neural inflammation and to blood-brain barrier damage. The proinflammatory effects of TNF-alpha in the nervous system are dissociated from those of IL-1beta.  相似文献   

2.
Leptin regulates body adiposity by decreasing feeding and increasing thermogenesis. Obese humans and some obese rodents are resistant to peripherally administered leptin, suggesting a defect in the transport of leptin across the blood-brain barrier (BBB). Defective transport of exogenous leptin occurs in some models of obesity, but in other models transport is normal. This shows that factors other than obesity are associated with impairment of leptin transport across the BBB. In order to further investigate these factors, we determined leptin transport in rats made obese by lesioning of the ventromedial hypothalamus (VMH), paraventricular nucleus (PVN), or posterodorsal amygdala (PDA). These regions all contain leptin receptors and lesions there induce obesity and hyperleptinemia and alter the levels of many feeding hormones which might participate in leptin transporter regulation. We measured the uptake of radioactively labeled leptin by the BBB by multiple-time regression analysis which divides uptake into a reversible phase (Vi, e.g., receptor/transporter binding to the brain endothelial cell) and an irreversible phase (Ki, complete transport across the BBB). Leptin uptake was not affected in rats with VMH lesions. No significant change occurred in the entry rate (Ki) for any group, although Ki declined by over 35% in rats with PVN lesions. Decreased uptake was observed in rats with PVN lesions and with PDA lesions. This was primarily due to a reduced Vi (about 21% for the PDA). This decreased uptake is most likely explained by decreased binding of leptin to the brain endothelial cell, which could be because of decreased binding by either receptors or transporters. This suggests that some of the feeding hormones controlled by the PVN and PDA may participate in regulating leptin uptake by the BBB.  相似文献   

3.
T(H)17 lymphocytes appear to be essential in the pathogenesis of numerous inflammatory diseases. We demonstrate here the expression of IL-17 and IL-22 receptors on blood-brain barrier endothelial cells (BBB-ECs) in multiple sclerosis lesions, and show that IL-17 and IL-22 disrupt BBB tight junctions in vitro and in vivo. Furthermore, T(H)17 lymphocytes transmigrate efficiently across BBB-ECs, highly express granzyme B, kill human neurons and promote central nervous system inflammation through CD4+ lymphocyte recruitment.  相似文献   

4.
Reactive oxygen species (ROS) play an important role in various events underlying multiple sclerosis (MS) pathology. In the initial phase of lesion formation, ROS are known to mediate the transendothelial migration of monocytes and induce a dysfunction of the blood-brain barrier (BBB). In this study, we describe the beneficial effect of the antioxidant alpha-lipoic acid (LA) on these phenomena. In vivo, LA dose-dependently prevented the development of clinical signs in a rat model for MS, acute experimental allergic encephalomyelitis (EAE). Clinical improvement was coupled to a decrease in leukocyte infiltration into the CNS, in particular monocytes. Monocytes isolated from the circulation of LA-treated rats revealed a reduced migratory capacity to cross a monolayer of rat brain endothelial cells in vitro compared with monocytes isolated from untreated EAE controls. Using live cell imaging techniques, we visualized and quantitatively assessed that ROS are produced within minutes upon the interaction of monocytes with brain endothelium. Monocyte adhesion to an in vitro model of the BBB subsequently induced enhanced permeability, which could be inhibited by LA. Moreover, administration of exogenous ROS to brain endothelial cells induced cytoskeletal rearrangements, which was inhibited by LA. In conclusion, we show that LA has a protective effect on EAE development not only by affecting the migratory capacity of monocytes, but also by stabilization of the BBB, making LA an attractive therapeutic agent for the treatment of MS.  相似文献   

5.
Summary The anatomical basis of the vertebrate blood-brain barrier is a series of tight junctions between endothelial cells of capillaries in the central nervous system. Over two decades ago, tight junctions were also proposed as the basis of the blood-brain barrier in insects. Currently there is a growing understanding that septate junctions might possess barrier properties in various invertebrate epithelial cells. We now examine these two views by studying the blood-brain barrier properties of the early postembryonic larva of a dipteran fly (Delia platura) by transmission electron microscopy. Newly hatched larvae possess a functioning blood-brain barrier that excludes the extracellular tracer, ionic lanthanum. This barrier is intact throughout the second instar stage as well. The ultrastructural correlate of this barrier is a series of extensive septate junctions that pervade the intercellular space between adjacent perineurial cells. No tight junctions were located in either nerve, glial or perineurial cell layers. We suggest that the overall barrier might involve septate junctions within extensive, meandering intercellular clefts.  相似文献   

6.
Glutathione (GSH) plays a critical role in protecting cells from oxidative stress and xenobiotics, as well as maintaining the thiol redox state, most notably in the central nervous system (CNS). GSH concentration and synthesis are highly regulated within the CNS and are limited by availability of the sulfhydryl amino acid (AA) l-cys, which is mainly transported from the blood, through the blood-brain barrier (BBB), and into neurons. Several antiporter transport systems (e.g., x(c)(-), x(-)(AG), and L) with clearly different luminal and abluminal distribution, Na(+), and pH dependency have been described in brain endothelial cells (BEC) of the BBB, as well as in neurons, astrocytes, microglia and oligodendrocytes from different brain structures. The purpose of this review is to summarize information regarding the different AA transport systems for l-cys and its oxidized form l-cys(2) in the CNS, such as expression and activity in blood-brain barrier endothelial cells, astrocytes and neurons and environmental factors that modulate transport kinetics.  相似文献   

7.
The loss of blood-brain barrier (BBB) integrity in CNS inflammatory responses triggered by infection and autoimmunity has generally been associated with the development of neurological signs. In the present study, we demonstrate that the clearance of the attenuated rabies virus CVS-F3 from the CNS is an exception; increased BBB permeability and CNS inflammation occurs in the absence of neurological sequelae. We speculate that regionalization of the CNS inflammatory response contributes to its lack of pathogenicity. Despite virus replication and the expression of several chemokines and IL-6 in both regions being similar, the up-regulation of MIP-1beta, TNF-alpha, IFN-gamma, and ICAM-1 and the loss of BBB integrity was more extensive in the cerebellum than in the cerebral cortex. The accumulation of CD4- and CD19-positive cells was higher in the cerebellum than the cerebral cortex. Elevated CD19 levels were paralleled by kappa-L chain expression levels. The timing of BBB permeability changes, kappa-L chain expression in CNS tissues, and Ab production in the periphery suggest that the in situ production of virus-neutralizing Ab may be more important in virus clearance than the infiltration of circulating Ab. The data indicate that, with the possible exception of CD8 T cells, the effectors of rabies virus clearance are more commonly targeted to the cerebellum. This is likely the result of differences in the capacity of the tissues of the cerebellum and cerebral cortex to mediate the events required for BBB permeability changes and cell invasion during virus infection.  相似文献   

8.
Over the past few years there has been an exponential growth in the number of reports describing the effects of nutritional modulation on aging and age-related diseases. Specific attention has been directed toward the beneficial effects afforded by dietary antioxidants, in particular those from fruit and vegetables, in ameliorating age-related deficits in brain performance. The rationale for studying the effects of dietary intervention stems from evidence implicating free radicals in aspects related to the aging process. Age-dependent neuropathology is a cumulative response to alterations induced by reactive oxygen species. Therefore cognitive aging, according to this hypothesis, should be slowed, and possibly even reversed, by appropriately increasing levels of antioxidants or decreasing overproduction of free radicals in the body.  相似文献   

9.
To investigate a role for T lymphocytes in primary demyelination of central nervous system (CNS) tissue, antigen-specific T cell lines sensitized to myelin-associated and myelin-unrelated antigens were developed from SJL mice and tested on myelinated organotypic cultures of syngeneic spinal cord. Demyelination was assessed morphologically by electron microscopy. Antigen responsiveness and specificity, and the phenotypes of the cell lines, were determined by thymidine uptake (3H-TdR) assays and flow cytometry (FC), respectively. Although all T cell lines caused pathologic changes in myelin, the CNS-antigen-specific line induced the most pronounced effects. 3H-TdR uptake assays and FC showed that after three cycles of incubation in the presence of interleukin-2 (IL-2) or antigen, the T cell lines had increased specificity and responsiveness to the priming antigen and were enriched for the L3T4 (helper/inducer) phenotype. This represents the first direct demonstration of T-cell-mediated demyelination, supports a role for the helper/inducer subset in CNS lesion development, and may prove relevant to the human demyelinating disease multiple sclerosis.  相似文献   

10.
11.
12.
Allen DD  Geldenhuys WJ 《Life sciences》2006,78(10):1029-1033
For drugs that act in the brain, the blood-brain barrier (BBB) is a considerable physical barrier which influences the distribution of drugs to the brain. The BBB is essentially impermeable for hydrophilic and/or charged compounds. Nutrient membrane transporters have an important physiological role in the transport of essential substances across the BBB required for normal brain function. We and others have shown that these transporters may have utility as drug delivery vectors, thereby increasing brain distribution of these compounds via these systems. In this review, we evaluate molecular (in silico) models of BBB transport proteins. Few BBB membrane transporters have been crystallized, but their crystal structures have a possibility for use in homology modeling. Other techniques commonly used are 2D quantitative structure-activity relationships (QSAR), as well as 3D-QSAR techniques including comparative molecular field analysis (CoMFA) and comparative similarity index analysis (CoMSIA). Each of these models provides valuable information for ascertaining their potential basis for BBB transport and brain drug delivery.  相似文献   

13.
Optical monitoring of activity provides new kinds of information about brain function. Two examples are discussed in this article. First, the spike activity of many individual neurons in small ganglia can be determined. Second, the spatio-temporal characteristics of coherent activity in the brain can be directly measured. This article discusses both general characteristics of optical measurements (sources of noise) as well as more methodological aspects related to voltage-sensitive dye measurements from the nervous system. 1998 © Chapman & Hall  相似文献   

14.
In this work, we explore the responses of specific gene-deleted mice to infection with the paramyxovirus pneumonia virus of mice (PVM). We have shown previously that infection of wild type mice with PVM results in pulmonary neutrophilia and eosinophilia accompanied by local production of macrophage-inflammatory protein-1 alpha (MIP-1 alpha). Here we examine the role of MIP-1 alpha in the pathogenesis of this disease using mice deficient in MIP-1 alpha or its receptor, CCR1. The inflammatory response to PVM in MIP-1 alpha-deficient mice was minimal, with approximately 10-60 neutrophils/ml and no eosinophils detected in bronchoalveolar lavage fluid. Higher levels of infectious virus were recovered from lung tissue excised from MIP-1 alpha-deficient than from fully competent mice, suggesting that the inflammatory response limits the rate of virus replication in vivo. PVM infection of CCR1-deficient mice was also associated with attenuated inflammation, with enhanced recovery of infectious virus, and with accelerated mortality. These results suggest that the MIP-1 alpha/CCR1-mediated acute inflammatory response protects mice by delaying the lethal sequelae of infection.  相似文献   

15.
Multiple sclerosis, a chronic inflammatory disease of the CNS, is characterized by immune-mediated demyelination. Many patients have a remitting-relapsing course of disease with exacerbations often following unrelated microbial illnesses. The relationship between the two events remains obscure. One possibility is that T cells specific for the inciting microbial pathogen are able to effect demyelination at a site of ongoing inflammation within the CNS. This possibility was examined in mice infected with mouse hepatitis virus, a well-described model of virus-induced demyelination. Using transgenic TCR/recombination activation gene 2(-/-) mice with only non-mouse hepatitis virus-specific T cells, we show that CD8 T cells are able to cause demyelination in the absence of cognate Ag in the CNS, but only if specifically activated. These findings demonstrate a novel mechanism for immune-mediated neuropathology and show that activated CD8 T cells may serve as important mediators of bystander demyelination during times of infection, including in patients with multiple sclerosis.  相似文献   

16.
Infection of BALB/c mice with the M variant of encephalomyocarditis virus resulted in the development of a paralytic syndrome in 7 to 10 days. The paralysis was maximal during the period of viral clearance; most of the animals recovered from the initial deficit and showed no delayed recurrences. Pathologically, the white matter of brain and spinal cord showed well-demarcated areas of perivascular cuffing, demyelination, and, during recovery, remyelination by oligodendrocytes--all suggestive of postinfectious encephalomyelitis. Depletion of either the CD4 or CD8 subset of T cells in vivo with the appropriate monoclonal antibody, GK1.5 or 2.43, respectively, administered one day (24 h) prior to infection was sufficient to limit the development of the paralytic syndrome by 79% (GK1.5) and 82% (2.43).  相似文献   

17.
18.
19.
Alpha chain disease, a lymphomatous disorder characterized by the synthesis and secretion of an abnormal IgA immunoglobulin devoid of light chains, involves mainly the gastrointestinal tract. This paper presents the cytologic and histologic findings in two cases of alpha chain disease involving the central nervous system and pleura. Most of the cell populations in the cerebrospinal fluid (CSF) and pleural fluid resembled immature plasma cells (immunoblasts); many of these cells were degenerated, with well-preserved plasma cells seen more rarely. While the definitive diagnosis of alpha chain disease depends on immunochemical analysis of serum proteins, cytology can play a role by the identification of malignant cells in CSF and pleural fluid specimens. A positive staining of such cells by the methyl green pyronin reaction may permit the correct diagnosis to be suggested.  相似文献   

20.
The ability of chemokines to bind to glycosaminoglycans (GAGs) on cell surfaces and in the extracellular matrix is thought to play a crucial role in chemokine function. We investigated the structural basis for chemokine binding to GAGs by using in vitro mutagenesis to identify amino acids of chemokine macrophage-inflammatory protein-1 beta (MIP-1 beta) that contribute to its interaction with the model GAG heparin. Among six basic residues that are organized into a single basic domain in the folded MIP-1 beta monomer, three (R18, K45, and R46) were found to contribute significantly to heparin binding. Of these, R46 was found to play a dominant role, and proved essential for the interaction of MIP-1 beta with both heparin and heparan sulfate in physiological salt. The results of this mutational analysis have implications for the structure of the MIP-1 beta-heparin complex, and a comparison of these results with those obtained by mutational analysis of the MIP-1 alpha-heparin interaction suggests a possible structural difference between the MIP-1 beta-heparin and MIP-1 alpha-heparin complexes. To determine whether GAG binding plays an important role in receptor binding and cellular activation by MIP-1 beta, the activities of wild-type MIP-1 beta and R46-substituted MIP-1 beta were compared in assays of T lymphocyte chemotaxis. The two proteins proved equipotent in this assay, arguing that interaction of MIP-1 beta with GAGs is not intrinsically required for functional interaction of MIP-1 beta with its receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号