首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Batch cultures of tobacco cells induced from Nicotiana tabacum L. cv. Bright Yellow-2 were carried out under oxygen-limited conditions using sucrose as the sole carbon source. Maintenance coefficients for sugar, m, and for oxygen, mO, were 0.02 mmol glucose/g cell dry weight/h and 0.09 mmol O2/g cell dry weight/h, and true growth yields for sugar, YG, and for oxygen, YGO, were 107 g cell dry weight/mol glucose and 61 g cell dry weight/mol O2, respectively.Balance equations based on electrons available from the culture suggested that the carbon-substrate consumed by the cells might be metabolized mainly in biosynthetic processes without the excretion of extracellular products.  相似文献   

2.
Novel mono-O-acetylated GM3s, one containing 9-O-acetylN-glycolyl neuraminic acid and another containing 6-O-acetyl galactose, were isolated as a mixture from equine erythrocytes, and the structures were characterized by one- and two-dimensional proton nuclear magnetic resonance (NMR) and fast atom bombardment-mass spectrometry (FAB-MS). The position of theO-acetyl residue was identified by the downfield shift of the methylene protons at C-9 ofN-glycolyl neuraminic acid (9-O-Ac GM3) and C-6 of galactose (6-O-Ac GM3) in the NMR spectrum, in comparison to the respective non-acetylated counterparts. To confirm the presence of 6-O-Ac GM3, theO-acetylated GM3 mixture was desialylated withArthrobacter neuraminidase, giving 6-O-acetyl galactosyl glucosylceramide, the structure of which was estimated by NMR and FAB-MS, together with non-acetylated lactosylceramide with a ratio of 1:1. Abbreviations: Ac, acetyl; Gc, glycolyl; NeuGc,N-Gc neuraminic acid; GM3 (Gc), GM3 containing NeuGc (II3NeuGc-LacCer); 4-O-Ac GM3 (Gc), GM3 containing 4-O-Ac NeuGc; 9-O-Ac GM3 (Gc), GM3 containing 9-O-Ac NeuGc; 6-O-Ac GM3 (Gc), GM3 containing 6-O-Ac Gal; 1D-NMR, one-dimensional nuclear magnetic resonance spectrometry; 2D-COSY, two-dimensional chemical shift-correlated spectrometry; FAB-MS, fast atom bombardment-mass spectrometry; GLC, gas-layer chromatography; GC-MS, gas chromatography-mass spectrometry; TLC, thin-layer chromatography; Ggl, ganglioside; Cer, ceramide; CMH, monohexosylceramide; LacCer, lactosylceramide; 6-O-Ac LacCer, LacCer containing 6-O-Ac Gal; Me2SO-d6,2H6-dimethylsufloxide; CMW, chloroform-methanol-water; Nomenclature and abbreviations of glycosphingolipids follow the system of Svennerholm (J Neurochem [1963]10: 613–23) and those recommended by the IUPAC-IUB Nomenclature Commission (Lipids [1977]12: 455–68).  相似文献   

3.
In the cyanic flowers ofDahlia variabilis (Asteraceae), an enzyme was demonstrated which catalyzes a glucosyl group transfer from UDP-glucose to the 5 position of anthocyanidin 3-O-glucoside and 3-O-malonylglucoside. The anthocyanin 5-O-glucosyltransferase (5GT) was purified 88-fold at 8 percnt; yield by (NH4)2SO4 precipitation followed by successive chromatography on DEAE-cellulose, Sephacryl S-200 and Mono P. 5GT exhibited a pH optimum at 8.0 and a pI of 4. 2. Its apparent molecular weight calculated from Sephacryl S-200 was 53 kDa. Its activity was stimulated by 2-ME and DTE but strongly inhibited by PCMB and NEM. It was slightly activated by Mg2+ and Ca2+ but strongly inhibited by Hg2+, Zn2+, Cu2+, Mn2+, Fe3+ and Al3+. No effect of EDTA was observed. The apparent Km values for cyanidin 3-O-glucoside, cyanidin 3-O-(6′′-O-malonyl)glucoside and UDP-glucose were 120 μmol/L, 75 μmol/L and 250 μmol/L, respectively. Pelargonidin 3-O-glucoside and malonylglucoside were also considerable substrates, but low relative activity was observed for delphinidin 3-O-glucoside which has yet not been found inDahlia flowers.Dahlia 5GT showed substrate specificities different from those reported forSilene, Petunia, Matthiola andPerilla. Neither ADP-glucose nor UDP-galactose could serve as glycosyl donor.  相似文献   

4.
The cell walls of Actinomadura carminata INA 4281 were found to contain peptidoglycan, teichoic acid, and nonpeptidoglycan amino acids. The peptidoglycan was of the A1 type and contained a small amount of ll-DAP in addition to m-DAP. The teichoic acid was an 1,3-poly(glycerol phosphate) chain composed of about eight glycerophosphate units, two of which had a 2-acetamido-2-deoxy--d-galactopyranosyl substituent and one, a 3-O-methyl--d-galactopyranosyl-(1 3)-2-acetamido-2-deoxy--d-galactopyranosyl residue at C2 of glycerol. The structure of the polymer was identified by chemical analysis and 13C-NMR spectroscopy. The teichoic acid contained 3-O-methyl-d-galactose (madurose) — the first ever finding of this compound within a teichoic acid. The nonpeptidoglycan amino acids made up some 30% of the cell wall's dry weight, about a quarter of the amino acids being removable with sodium dodecyl sulfate. Further treatment of the cell walls with LiCl and guanidine hydrochloride caused only a small loss of the amino acids and slight changes in their molar ratio.Abbreviations Gro glycerol - GroP monophosphate glycerol - GroP2 diphosphate glycerol - Gro2P -monophosphate glycerol - PTA phosphorus of teichoic acids - PNA phosphorus of nucleic acids - TA teichoic acid  相似文献   

5.
After crude protein of the marine yeast strains maintained in this laboratory was estimated by the method of Kjehldahl, we found that the G7a strain which was identified to be a strain of Cryptococcus aureus according to the routine identification and molecular methods contained high level of protein and could grow on a wide range of carbon sources. The optimal medium for single-cell protein production was seawater containing 6.0 g of wet weight of Jerusalem artichoke extract per 100 ml of medium and 4.0 g of the hydrolysate of soybean meal per 100 ml of medium, while the optimal conditions for single-cell protein production were pH 5.0 and 28.0°C. After fermentation for 56 h, 10.1 g of cell dry weight per liter of medium and 53.0 g of crude protein per 100 g of cell dry weight (5.4 g/l of medium) were achieved, leaving 0.05 g of reducing sugar per 100 ml of medium and 0.072 g of total sugar per 100 ml of medium total sugar in the fermented medium. The yeast strain only contained 2.1 g of nucleic acid per 100 g of cell dry weight, but its cells contained a large amount of C16:0 (19.0%), C18:0 (46.3%), and C18:1 (33.3%) fatty acids and had a large amount of essential amino acids, especially lysine (12.6%) and leucine (9.1%), and vitamin C (2.2 mg per 100 g of cell dry weight). These results show that the new marine yeast strain was suitable for single-cell protein production.  相似文献   

6.
The cyclitol 1d-4-O-methyl-myo-inositol (d-ononitol) is accumulated in certain legumes in response to abiotic stresses. S-Adenosyl-l-methionine:myo-inositol 6-O-methyltransferase (m6OMT), the enzyme which catalyses the synthesis of d-ononitol, was extracted from stems of Vigna umbellata Ohwi et Ohashi and purified to apparent homogeneity by a combination of conventional chromatographic techniques and by affinity chromatography on immobilized S-adenosyl-l-homocysteine (SAH). The purified m6OMT was photoaffinity labelled with S-adenosyl-l-[14C-methyl]methionine. The native molecular weight was determined to be 106 kDa, with a subunit molecular weight of 40 kDa. Substrate-saturation kinetics of m6OMT for myo-inositol and S-adenosyl-l-methionine (SAM) were Michaelis-Menten type with K m values of 2.92 mM and 63 M, respectively. The SAH competitively inhibited the enzyme with respect to SAM (K i of 1.63 M). The enzyme did not require divalent cations for activity, but was strongly inhibited by Mn2+, Zn2+ and Cu2+ and sulfhydryl group inhibitors. The purified m6OMT was found to be highly specific for the 6-hydroxyl group of myo-inositol and showed no activity on other naturally occurring isomeric inositols and inositol O-methyl-ethers. Neither d-ononitol, nor d-3-O-methyl-chiro-inositol, d-1-O-methyl-muco-inositol or d-chiro-inositol (end products of the biosynthetic pathway in which m6OMT catalyses the first step), inhibited the activity of the enzyme.Abbreviations DTT dithiothreitol - m6OMT myo-inositol 6-O-methyltransferase - SAH S-adenosyl-l-homocysteine - SAM S-adenosyl-l-methionine We are greatful to Professor M. Popp (University of Vienna) for helpful discussion and comment. This work was supported by Grant P09595-BIO from the Austrian Science Foundation (FWF).  相似文献   

7.
Glycosidation of sugar peracetates (d-gluco, d-galacto) with SnCl4 and CF3CO2Ag led to either 1,2-cis-, or 1,2-trans-glycosides, depending primarily on the alcohols used. In particular, 1,2-trans-glycosides, expected from acyl-protected glycosyl donors, were formed in high yields with alcohols sharing specific features such as bulkiness, presence of electron-withdrawing groups or polyethoxy motifs. In contrast, simple alcohols afforded 1:1 mixtures of 2,3,4,6-tetra-O-acetyl, and 3,4,6-tri-O-acetyl 1,2-cis-glycosides due to anomerization and/or acid-catalyzed fragmentation of 1,2-orthoester intermediates. After reacetylation or deacetylation, acetylated or fully deprotected 1,2-cis-glycosides (α-d-gluco, α-d-galacto) were obtained in 90% yields by a simple and direct method.  相似文献   

8.
Dong A  Ye M  Guo H  Zheng J  Guo D 《Biotechnology letters》2003,25(4):339-344
Of 49 microbial strains screened for their capabilities to transform ginsenoside Rb1, Rhizopus stolonifer and Curvularia lunata produced four key metabolites: 3-O-[-d-glucopyranosyl-(1,2)--d-glucopyranosyl]- 20-O-[-d-glucopyranosyl]-3,12, 20(S)-trihydroxydammar-24-ene (1), 3-O-[-d-glucopyranosyl-(1,2)--d- glucopyranosyl]-20-O-[-d-glucopyranosyl]-3,12, 20(S)-trihydroxydammar-24-ol (2), 3-O-[-d-gluco- pyranosyl-(1,2)--d-glucopyranosyl]-3, 12, 20(S)-trihydroxydammar-24-ene (3), and 3-O--d-glucopyranosyl-3, 12, 20(S)-trihydroxydammar-24-ene (4), identified by TOF-MS, 1H- and 13C-NMR spectral data. Metabolites 1, 3 and 4 were from the incubation with R. stolonifer, and 1 and 2 from the incubation with C. lunata. Compound 2 was identified as a new compound.  相似文献   

9.
Aureobasidium sp. ATCC 20524 produced a glucosyl-transferring enzyme which produced panose (O--D-glucopyranosyl-(1»6)-O--D-glucopyranosyl-(1»4)-d-glucose) from maltose. Optimum production for the enzyme was with maltose at 2% (w/v) and yeast extract at 1.5% (w/v). Enzymatic activity reached 0.7×103 U/g dry cells after 48 h.  相似文献   

10.
The 3-deoxy-3-fluoro-6-S-(2-S-pyridyl)-6-thio-β-d-glucopyranosyl nucleoside analogs 7 were prepared via two facile synthetic routes. Their precursors, 3-fluoro-6-thio-glucopyranosyl nucleosides 5a-e, were obtained by the sequence of deacetylation of 3-deoxy-3-fluoro-β-d-glucopyranosyl nucleosides 2a-e, selective tosylation of the primary OH of 3 and finally treatment with potassium thioacetate. The desired thiolpyridine protected analogs 7a-c,f,g were obtained by the sequence of deacetylation of 5a-c followed by thiopyridinylation and/or condensation of the corresponding heterocyclic bases with the newly synthesized peracetylated 6-S-(2-S-pyridyl) sugar precursor 13, which was obtained via a novel synthetic route from glycosyl donor 12. None of the compounds 6 and 7 showed antiviral activity, but the 5-fluorouracil derivative 7c and particularly the uracil derivative 7b were endowed with an interesting and selective cytostatic action against a variety of murine and human tumor cell cultures.  相似文献   

11.
A polysaccharide fraction from Lampteromyces japonicus contained a sugar (4%), which was identified as 3-O-methyl galactose by demethylation with boron trichloride, periodate oxidation of the methyl glycoside derivative and gas chromatography-mass spectrometry of the alditol acetate derivative.  相似文献   

12.
The plasma membrane-associated proteoglycans of a malignant human breast cell line (MDA-MB-231) were compared with the corresponding proteoglycans from a normal cell line (HBL-100). The labeled proteoglycans were isolated from the plasma membranes of cells grown in the presence of [3H]glucosamine and [35S]Na2SO4 by extraction with guanidine hydrochloride and subsequently purified by DEAE-ion exchange chromatography. Their structural properties were established by treatment with nitrous acid, heparitinase and chondroitinase ABC, and by gel filtration before and after alkaline -elimination. About 18% of the proteoglycans synthesized by these cell lines were associated with the plasma membranes. The HBL plasma membranes contained 80% heparan sulfate and 20% chondroitin sulfate proteoglycans whereas MDA plasma membranes had 50% heparan sulfate and 50% chondroitin sulfate proteoglycans. The MDA plasma membrane contained two heparan sulfate proteoglycans, both having nearly the same molecular size as the two species secreted into the medium by these cells. The HBL plasma membrane also contained two hydrodynamic size heparan sulfate proteoglycans. The larger hydrodynamic size species has a slightly lower molecular size than that secreted into the medium, and the smaller hydrodynamic size species was not detectable in the medium. Even though the major chondroitin sulfate proteoglycans from MDA plasma membranes were smaller in size than those from HBL plasma membrane, a larger proportion of the glycosaminoglycan chains of the former were bigger than those from the latter.Abbreviations CHAPS 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate - Di-OS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-ene-pyranosyluronic acid)-d-galactose - Di-4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-ene-pyranosyluronic acid)-4-O-sulfo-d-galactose - Di-6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-ene-pyranosyluronic acid)-6-O-sulfo-d-galactose - Gdn-HCl guanidine hydrochloride - WGA wheat germ agglutinin  相似文献   

13.
From the commercial extract of the leaves of Stevia rebaudiana, three new diterpenoid glycosides were isolated besides eight known steviol glycosides including stevioside, rebaudiosides A–F and dulcoside A. The structures of the three compounds were identified as 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-kaur-16-en-18-oic acid-(6-O-β-d-xylopyranosyl-β-d-glucopyranosyl) ester (1), 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-17-hydroxy-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (2), and 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-17-oxo-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (3) on the basis of extensive NMR and MS spectral studies. Another known diterpenoid glycoside, 13-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl) oxy]-kaur-15-en-18-oic acid β-d-glucopyranosyl ester (4) was also isolated and its complete NMR spectral assignments were made on the basis of COSY, HSQC and HMBC spectral data.  相似文献   

14.
Mannosylerythritol lipids (MELs), which are glycolipid biosurfactants produced by Pseudozyma yeasts, show not only excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from glucose as the sole carbon source, P. antarctica was found to produce unknown glycolipids more hydrophilic than conventional “di-acylated MELs,” which have two fatty acyl esters on the mannose moiety. Based on a detailed characterization, the most hydrophilic one was identified as 4-O-(3′-O-alka(e)noyl-β-d-mannopyranosyl)-d-erythritol namely, “mono-acylated MEL.” The mono-acylated MEL reduced the surface tension of water to 33.8 mN/m at a critical micelle concentration (CMC) of 3.6 × 10−4 M, and its hydrophilic–lipophilic balance was tentatively calculated to be 12.15. The observed CMC was 100-fold higher than that of the MELs hitherto reported. Interestingly, of the yeast strains of the genus Pseudozyma, only P. antarctica and P. parantarctica gave the mono-acylated MEL from glucose, despite a great diversity of di-acylated MEL producers in the genus. These strains produced MELs including the mono-acylated one at a rate of 20–25%. From these results, the new MEL is likely to have great potential for use in oil-in-water-type emulsifiers and washing detergents because of its higher water solubility compared to conventional MELs and will thus contribute to facilitating a broad range of applications for the environmentally advanced surfactants.  相似文献   

15.
This study investigates the reverse mode of the Na+/glucose cotransporter (SGLT1). In giant excised inside-out membrane patches from Xenopus laevis oocytes expressing rabbit SGLT1, application of α-methyl-D-glucopyranoside (αMDG) to the cytoplasmic solution induced an outward current from cytosolic to external membrane surface. The outward current was Na+- and sugar-dependent, and was blocked by phlorizin, a specific inhibitor of SGLT1. The current-voltage relationship saturated at positive membrane voltages (30–50 mV), and approached zero at −150 mV. The half-maximal concentration for αMDG-evoked outward current (K0.5αMDG) was 35 mM (at 0 mV). In comparison, K0.5αMDG for forward sugar transport was 0.15 mM (at 0 mV). K0.5Na was similar for forward and reverse transport (≈35 mM at 0 mV). Specificity of SGLT1 for reverse transport was: αMDG (1.0) > D-galactose (0.84) > 3-O-methyl-glucose (0.55) > D-glucose (0.38), whereas for forward transport, specificity was: αMDG ≈ D-glucose ≈ D-galactose > 3-O-methyl-glucose. Thus there is an asymmetry in sugar kinetics and specificity between forward and reverse modes. Computer simulations showed that a 6-state kinetic model for SGLT1 can account for Na+/sugar cotransport and its voltage dependence in both the forward and reverse modes at saturating sodium concentrations. Our data indicate that under physiological conditions, the transporter is poised to accumulate sugar efficiently in the enterocyte.  相似文献   

16.
The induction of astaxanthin formation by reactive oxygen species in mixotrophic culture of Chlorococcum sp. was investigated. H2O2 (0.1 mM) enhanced the total astaxanthin formation from 5.8 to 6.5 mg g–1 cell dry wt. Fe2+ (0.5 mM) added to the medium with H2O2 (0.1 mM) further promoted astaxanthin formation to 7.1 mg g–1 cell dry wt. Similarly, Fe2+ (0.5 mM) together with methyl viologen (0.01 mM) promoted astaxanthin formation to 6.3 mg g–1 cell dry wt. In contrast, an addition of KI (1 mM), a specific scavenger for hydroxyl radicals (OH), together with H2O2 (0.1 mM) and Fe2+ (0.5 mM), to the medium decreased astaxanthin formation to 1.8 mg g–1 cell dry wt. KI (1 mM) also inhibited the enhancement of carotenogenesis by superoxide anion radicals (O2 ), with a decrease of astaxanthin formation to 1.7 mg g–1 cell dry wt. This suggested that O2 might be transformed to OH before promoting carotenogenesis in Chlorococcum sp.  相似文献   

17.
Three phenolic glycosides 5-O-{[5′′-O-E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-β-apiofuranosyl-(1→2)-β-xylopyranosyl} gentisic acid, 5-O-[(5′′-O-vanilloyl)-β-apiofuranosyl-(1→2)-β-xylopyranosyl] gentisic acid and 1-O-[E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-3-O-β-galacturonopyranosyl glycerol were isolated and identified from the roots of Medicago truncatula together with four known 5-O-β-xylopyranosyl gentisic acid, vicenin-2, hovetrichoside C and pterosupin identified for the first time in this species. Structural elucidation was carried out on the basis of UV, mass, 1H and 13C NMR spectral data.  相似文献   

18.
Sialate-O-acetylesterase was purified almost 900-fold from particle-free supernatants of horse liver by gel filtration, ion-exchange chromatography and isoelectric focussing. The native enzyme on gel filtration exhibits a molecular weight of 54,000 Da. It was separated by isoelectric focussing into two forms with pI values of 4.8 and 5.7, respectively. The esterase with a lower pI hydrolyses only 9-O-acetyl groups from sialic acids (KM 1.1 mM), while that with the higher pI esterifies both 4- and 9-O-acetylated monosaccharides at similar rates (KM 0.3 M and 1.3 mM, respectively). Both forms are inactive with 7-O-acetylated N-acetylneuraminic acid. Enzyme assays were carried out at the pH optimum (pH 8.4–8.6) using free O-acetylated sialic acids followed by direct analysis of the reaction products by isocratic anion-exchange HPLC. Glycosidically bound sialic acids can also be de-O-acetylated. Horse liver esterase seems to be an essential enzyme for the catabolism of 4-O-acetylated sialoglycoconjugates, since sialidase from this tissue cannot act on 4-O-acetylated sialic acids.  相似文献   

19.
A platform for screening drugs for their ability to protect neuronal cells against cytotoxicity was developed. Nerve growth factor (NGF) differentiates PC12 cells into nerves, and these differentiated PC12 cells enter apoptosis when challenged with 6-hydroxydopamine (6-OHDA). A screening spectrophotometer was used to assay cytotoxicity in these cells; pretreatment with test samples allowed identification of compounds that protected against this neuronal cytotoxicity. The 95% ethanol extract of Phoenix hanceana Naudin var. formosana Beccari. (PH) showed potential neuroprotective activity in these assays. The PH ethanol extract was further fractionated by sequential partitioning with n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and water. Subsequent rounds of assaying resulted in the isolation of ten constituents, and their structures were characterized by various spectroscopic techniques and identified by comparison with previous data as: isoorientin (1), isovitexin (2), veronicastroside (3), luteolin-7-O-β-d-glucopyranoside (4), isoquercitrin (5), tricin-7-neohesperidoside (6), tricin-7-O-β-d-gluco-pyranoside (7), (+)-catechin (8), (−)-epicatechin (9), and orientin 7-O-β-d-glucopyranoside (10). Among these compounds, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4) and (+)-catechin (8) showed significant neuroprotective activity in cell viability (WST-8 reduction), anti-apoptosis (Annexin V-FITC/propidium iodide double-labeled flow cytometry), and cellular ROS scavenging assays (besides isovitexin (2)), as well as a decreased caspase-8 activity in 6-OHDA-induced PC12 cells. Hence, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4), and (+)-catechin (8) protected PC12 cells from 6-OHDA-induced apoptotic neurotoxicity.  相似文献   

20.
An acidic exopolysaccharide (EPS) produced by the diazotrophic bacterium Burkholderia tropica, strain Ppe8, was isolated from the culture supernatant of bacteria grown in a synthetic liquid medium containing mannitol and glutamate. Monosaccharide composition showed Rha, Glc and GlcA in a 2.0:2.0:1.0 molar ratio, respectively. Further structural characterization was performed by a combination of NMR, mass spectrometry and chemical methods. Partial acid hydrolysis of EPS provided a mixture of acidic oligosaccharides that were characterized by ESI-MS, giving rise to ions with m/z 193 (GlcA-H), 339 (GlcA,Rha-H), 501 (GlcA,Rha,Glc-H), 647 (GlcA,Rha2,Glc,-H), 809 (GlcA,Rha2,Glc2,-H) and 851 (GlcA,Rha2,Glc2,OAc-H). Carboxyreduced EPS (EPS-CR) had Glc and Rha in a 3:2 ratio, present as d- and l-enantiomers, respectively. Methylation and NMR analysis of EPS and EPS-CR showed a main chain containing 2,4-di-O-Rhap, 3-O-Rhap and 4-O-Glcp. A GlcA side chain unit was found in the acidic EPS, substituting O-4 of α-l-Rhap units. This was observed as a non-reducing end unit of glucopyranose in the EPS-CR. Acetyl esters occured at O-2 of β-l-Rhap units. From the combined results herein, we determined the structure of the exocellular polysaccharide produced by B. tropica, Ppe8, as being a pentasaccharide repeating unit as shown:

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号