首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zheng H  Lipscomb JD 《Biochemistry》2006,45(6):1685-1692
The hydroxylase component (MMOH) of the soluble form of methane monooxygenase (sMMO) isolated from Methylosinus trichosporium OB3b catalyzes both the O2 activation and the CH4 oxidation reactions at the oxygen-bridged dinuclear iron cluster present in its buried active site. During the reaction cycle, the diiron cluster forms a bis-mu-oxo-(Fe(IV))2 intermediate termed compound Q (Q) that reacts directly with methane. Many adventitious substrates also react with Q, most at a relatively slow rate. We have proposed that Q reacts preferentially with CH4 because the sMMO regulatory component MMOB induces a size selective pore into the MMOH active site as the two components form a complex. Support for this proposal has come through the observation of a nonlinear Arrhenius plot for the CH4 oxidation, presumably due to a shift in rate-limiting step from substrate binding at low temperature to C-H bond cleavage at high temperature. Reactions of all substrates other than CH4 fail to exhibit a break in the Arrhenius plot because binding is always rate limiting in the temperature range explored. Here we show that it is possible to induce a break in the Arrhenius plot for the ethane reaction with Q by using an MMOB mutant termed DBL2 (S109A/T111A) in which residues at the MMOH-MMOB interface are reduced in size. We hypothesize that this increases the ethane binding rate and shifts the Arrhenius breakpoint into the observable temperature range. As a result of this shift, the kinetic and activation parameters of the C-H bond breaking reaction for both methane and ethane can be observed using the DBL2 mutant. A 2H-KIE is observed for both substrate oxidation reactions when using DBL2, whereas only CH4 oxidation exhibits an effect when using wild type MMOB, consistent with the C-H bond cleaving reaction becoming at least partially rate limiting for ethane. Analysis of the temperature dependence of the 2H-KIE for ethane and methane for reactions using both mutant and wild type forms of MMOB suggests that quantum tunneling plays a significant role in methane oxidation but not ethane oxidation.  相似文献   

2.
Wallar BJ  Lipscomb JD 《Biochemistry》2001,40(7):2220-2233
Component interactions play important roles in the regulation of catalysis by methane monooxygenase (MMO). The binding of component B (MMOB) to the hydroxylase component (MMOH) has been shown in previous studies to cause structural changes in MMOH that result in altered thermodynamic and kinetic properties during the reduction and oxygen binding steps of the catalytic cycle. Here, specific amino acid residues of MMOB that play important roles in the interconversion of several intermediates of the MMO cycle have been identified. Both of the histidine residues in Methylosinus trichosporium OB3b MMOB (H5 and H33) were chemically modified by diethylpyrocarbonate (DEPC). Although the DEPC--MMOB species exhibited only minor changes relative to unmodified MMOB in steady-state MMO turnover, large decreases in the formation rate constants of the reaction cycle intermediates, compound P and compound Q, were observed. The site specific mutants H5A, H33A, and H5A/H33A were made and characterized. H5A and wild type MMOB elicited similar steady-state and transient kinetics, although the mutant caused a slightly lower rate constant for Q formation. Conversely, H33A exhibited a >50-fold decrease in the P formation rate constant, which resulted in slower formation of Q. The kinetics of the double mutant (H5A/H33A) were similar to those of H33A, suggesting that the highly conserved residue, H33, has the most significant effect on the efficient progress of the cycle. Ongoing NMR investigations of residues perturbed by formation of the MMOH-MMOB complex suggested construction of the MMOB N107G/S109A/S110A/T111A quadruple mutant. This mutant was found to elicit a nearly 2-fold increase in specific activity for steady-state MMO turnover of large substrates such as furan and nitrobenzene but caused no similar increase for the physiological substrate, methane. While the quadruple mutant did not have a significant effect on P and Q formation, it caused an almost 3-fold increase in the decay rate constant of Q for furan oxidation and a 2-fold faster product release rate constant for p-nitrophenol resulting from nitrobenzene oxidation. Conversely, this mutant caused the Q decay rate constant to decrease 7-fold for methane oxidation but left the product release step unaffected. These results show for the first time that MMOB exerts influence at late as well as early steps in the catalytic cycle. They also suggest that MMOB plays a critical role in determining the ability of MMO to distinguish between methane and larger substrates.  相似文献   

3.
The soluble methane monooxygenase (MMO) system isolated from Methylosinus trichosporium OB3b catalyzes the adventitious oxidation of alkyl substituted methylcyclopropanes. If the chemical mechanism of C-H activation by MMO involves formation of a radical or carbocation intermediate at the methyl C-H of these 'radical clock' substrates, then cyclopropyl ring opened alcohols may appear in the product mixture due to rearrangement of the intermediate. The lifetime of radical intermediates can be determined from known rearrangement rate constants, k(r). Rearrangement was observed during the oxidation of 1,1,2,2-tetramethylcyclopropane (k(r)=1.7-17. 5x10(8) s(-1), 30 degrees C) but not for cis- or trans-1, 2-dimethylcyclopropane (k(r)=1.2-6.4x10(8) s(-1), 30 degrees C) or the very fast radical clock, trans-2-phenylmethylcyclopropane (k(r)=3.4x10(11) s(-1), 30 degrees C). The results show that the occurrence of rearranged products fails to correlate with either the chemical nature of the C-H bond being broken, which is very similar for all of the methylcyclopropanes studied here, or the magnitude of the radical k(r) value. This study suggests that the steric properties of the substrate play an important role in determining the outcome of the reaction. Substrates with bulky substituents near the C-H bond that is attacked appear to yield intermediates with sufficient lifetimes to rearrange. In contrast, substrates with less steric bulk are postulated to be able to approach the reactive oxygen species in the MMO active site more closely so that intermediates are either rapidly quenched or undergo subsequent interaction with the dinuclear iron cluster of MMO that prevents rearrangement.  相似文献   

4.
Lee SK  Lipscomb JD 《Biochemistry》1999,38(14):4423-4432
The effects of solvent pH and deuteration on the transient kinetics of the key intermediates of the dioxygen activation process catalyzed by the soluble form of methane monooxygenase (MMO) isolated from Methylosinus trichosporium OB3b have been studied. MMO consists of hydroxylase (MMOH), reductase, and "B" (MMOB) components. MMOH contains a carboxylate- and oxygen-bridged binuclear iron cluster that catalyzes O2 activation and insertion chemistry. The diferrous MMOH-MMOB complex reacts with O2 to form a diferrous intermediate compound O (O) and subsequently a diferric intermediate compound P (P), presumed to be a peroxy adduct. The O decay reaction was found to be pH-independent within error at 4 degrees C (kobs = 22 +/- 2 s-1 at pH 7.7; kobs = 26 +/- 2 s-1 at pH 7.0). In contrast, the P formation rate was found to decrease sharply with increasing pH to near zero at pH 8.6; the observed rate constants fit to a single deprotonation event with a pKa = 7.6 and a maximal formation rate at 4 degrees C of kP = 9.1 +/- 0.9 s-1 achieved near pH 6.5. The formation of P was slower than the disappearance of O, indicating that at least one other undetected intermediate (P) must form in between. P decays spontaneously to the highly chromophoric intermediate, compound Q (Q). The decay rate of P matched the formation rate of Q, and both rates decreased sharply with increasing pH to near zero at pH 8.6; the observed rate constants fit to a single deprotonation event with a pKa = 7.6 and a maximal formation rate at 4 degrees C of kQ = 2.6 +/- 0.1 s-1 achieved near pH 6.5. No pH dependence was observed for the decay of Q. The formation and decay rates of P and the formation rate of Q decreased linearly with mole fraction of D2O in the reaction mixture. Kinetic solvent isotope effect values of kH/kD = 1.3 +/- 0.1 (P formation) and kH/kD = 1.4 +/- 0.1 (P decay and Q formation) were observed at 5 degrees C. The linearity of the proton inventory plots suggests that only a single proton is transferred in the transition state of the formation reaction for each intermediate. If these protons are transferred to the bound oxygen molecule, as formally required by the reaction stoichiometry, the data are consistent with a model in which water is formed concurrently with the formation of the reactive bis mu-oxo-binuclear Fe(IV) species, Q.  相似文献   

5.
A steady-state kinetic analysis was performed of the reaction of methylamine and phenazine ethosulphate (PES) with the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. Experiments with methylamine and PES as varied-concentration substrates produced a series of parallel reciprocal plots, and when the concentrations of these substrates were varied in a constant ratio a linear reciprocal plot of initial velocity against PES concentration was obtained. Nearly identical values of V/Km of PES were obtained with four different n-alkylamines. These data suggest that this reaction proceeds by a ping-pong type of mechanism. The enzyme reacted with a variety of n-alkylamines but not with secondary, tertiary or aromatic amines or amino acids. The substrate specificity was dictated primarily by the Km value exhibited by the particular amine. A deuterium kinetic isotope effect was observed with deuterated methylamine as a substrate. The enzyme exhibited a pH optimum for V at pH 7.5. The absorbance spectrum of the pyrroloquinoline quinone prosthetic group of this enzyme was also effected by pH at values greater than 7.5. The enzyme was relatively insensitive to changes in ionic strength, and exhibited a linear Arrhenius plot over a range of temperatures from 10 degrees C to 50 degrees C with an energy of activation 46 kJ/mol (11 kcal/mol).  相似文献   

6.
EPR spin-trapping experiments were carried out using the three-component soluble methane monooxygenase (MMO). Spin-traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), alpha-4-pyridyl-1-oxide N-tert-butylnitrone (POBN), and nitrosobenzene (NOB) were used to investigate the possible formation of substrate radical intermediates during catalysis. In contrast to a previous report, the NADH-coupled oxidations of various substrates did not produce any trapped radical species when DMPO or POBN was present. However, radicals were detected by these traps when only the MMO reductase component and NADH were present. DMPO and POBN were found to be weak inhibitors of the MMO reaction. In contrast, NOB is a strong inhibitor for the MMO-catalyzed nitrobenzene oxidation reaction. When NOB was used as a spin-trap in the complete MMO system with or without substrate, EPR signals from an NOB radical were detected. We propose that a molecule of NOB acts simultaneously as a substrate and a spin-trap for MMO, yielding the long-lived radical and supporting a stepwise mechanism for MMO.  相似文献   

7.
Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.  相似文献   

8.
Methane hydroxylation through methane monooxygenases (MMOs) is a key aspect due to their control of the carbon cycle in the ecology system and recent applications of methane gas in the field of bioenergy and bioremediation. Methanotropic bacteria perform a specific microbial conversion from methane, one of the most stable carbon compounds, to methanol through elaborate mechanisms. MMOs express particulate methane monooxygenase (pMMO) in most strains and soluble methane monooxygenase (sMMO) under copper-limited conditions. The mechanisms of MMO have been widely studied from sMMO belonging to the bacterial multicomponent monooxygenase (BMM) superfamily. This enzyme has diiron active sites where different types of hydrocarbons are oxidized through orchestrated hydroxylase, regulatory and reductase components for precise control of hydrocarbons, oxygen, protons, and electrons. Recent advances in biophysical studies, including structural and enzymatic achievements for sMMO, have explained component interactions, substrate pathways, and intermediates of sMMO. In this account, oxidation of methane in sMMO is discussed with recent progress that is critical for understanding the microbial applications of C-H activation in one-carbon substrates.  相似文献   

9.
Zhang J  Lipscomb JD 《Biochemistry》2006,45(5):1459-1469
The effects of the C-terminal region of the B component (MMOB) of soluble methane monooxygenase (sMMO) from Methylosinus trichosporium OB3b on steady-state turnover, the transient kinetics of the reaction cycle, and the properties of the sMMO hydroxylase (MMOH) active site diiron cluster have been explored. MMOB is known to have many profound effects on the rate and specificity of sMMO. Past studies have revealed specific roles for the well-folded core structure of MMOB as well as the disordered N-terminal region. Here, it is shown that the disordered C-terminal region of MMOB also performs critical roles in the regulation of catalysis. Deletion mutants of MMOB missing 5, 8, and 13 C-terminal residues cause progressive decreases in the maximum steady-state turnover number, as well as lower apparent rate constants for formation of the key reaction cycle intermediate, compound Q. It is shown that this latter effect is actually due to a decrease in the rate constant for formation of an earlier intermediate, probably the hydroperoxo species, compound P. Moreover, the deletions result in substantial uncoupling at or before the P intermediate. It is proposed that this is due to competition between slow H(2)O(2) release from one of the intermediates and the reaction that carries this intermediate on to the next step in the cycle, which is slowed by the mutation. Electron paramagnetic resonance (EPR) studies of the hydroxylase component (MMOH) in the mixed valent state suggest that complexation with the mutant MMOBs alters the electronic properties of the diiron cluster in a manner distinct from that observed when wild-type MMOB is used. Active site structural changes are also suggested by a substantial decrease in the deuterium kinetic isotope effect for the reaction of Q with methane thought to be associated with a decrease in quantum tunneling in the C-H bond breaking reaction. Thus, the surface interactions between MMOH and MMOB that affect substrate oxidation and its regulation appear to require the complete MMOB C-terminal region for proper function.  相似文献   

10.
Dey M  Li X  Kunz RC  Ragsdale SW 《Biochemistry》2010,49(51):10902-10911
Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in methanogenesis using coenzyme B (CoBSH) as the two-electron donor to reduce methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide, CoBS-SCoM. The active site of MCR contains an essential redox-active nickel tetrapyrrole cofactor, coenzyme F(430), which is active in the Ni(I) state (MCR(red1)). Several catalytic mechanisms have been proposed for methane synthesis that mainly differ in whether an organometallic methyl-Ni(III) or a methyl radical is the first catalytic intermediate. A mechanism was recently proposed in which methyl-Ni(III) undergoes homolysis to generate a methyl radical (Li, X., Telser, J., Kunz, R. C., Hoffman, B. M., Gerfen, G., and Ragsdale, S. W. (2010) Biochemistry 49, 6866-6876). Discrimination among these mechanisms requires identification of the proposed intermediates, none of which have been observed with native substrates. Apparently, intermediates form and decay too rapidly to accumulate to detectible amounts during the reaction between methyl-SCoM and CoBSH. Here, we describe the reaction of methyl-SCoM with a substrate analogue (CoB(6)SH) in which the seven-carbon heptanoyl moiety of CoBSH has been replaced with a hexanoyl group. When MCR(red1) is reacted with methyl-SCoM and CoB(6)SH, methanogenesis occurs 1000-fold more slowly than with CoBSH. By transient kinetic methods, we observe decay of the active Ni(I) state coupled to formation and subsequent decay of alkyl-Ni(III) and organic radical intermediates at catalytically competent rates. The kinetic data also revealed substrate-triggered conformational changes in active Ni(I)-MCR(red1). Electron paramagnetic resonance (EPR) studies coupled with isotope labeling experiments demonstrate that the radical intermediate is not tyrosine-based. These observations provide support for a mechanism for MCR that involves methyl-Ni(III) and an organic radical as catalytic intermediates. Thus, the present study provides important mechanistic insights into the mechanism of this key enzyme that is central to biological methane formation.  相似文献   

11.
Brazeau BJ  Lipscomb JD 《Biochemistry》2003,42(19):5618-5631
The regulatory component MMOB of soluble methane monooxygenase (sMMO) has been hypothesized to control access of substrates into the active site of the hydroxylase component (MMOH) through formation of a size specific channel or region of increased structural flexibility tuned to methane and O(2). Accordingly, a decrease in the size of four MMOB residues (N107G/S109A/S110A/T111A, the Quad mutant) was shown to accelerate the reaction of substrates larger than methane with the reactive MMOH intermediate Q [Wallar, B. J., and Lipscomb, J. D. (2001) Biochemistry 40, 2220-2233]. Here, this hypothesis is tested by construction of single and double mutations involving the residues of the Quad mutant. It is shown that mutations of residues that extend into the core structure of MMOB alter many aspects of the MMOH catalyzed reaction but do not mimic the effects of the Quad mutant. In contrast, the MMOB residues that are thought to form part of the interface in the MMOH-MMOB complex increase active site accessibility as observed for the Quad mutant. In particular, the mutant T111A mimics most of the effects of the Quad mutant; thus, Thr111 is proposed to most directly control access. Unexpectedly, mutation of Thr111 to the larger Tyr greatly increases the rate constant for the reaction of larger substrates such as ethane, furan, and nitrobenzene with Q while decreasing the rate constant for the reaction with methane. Other steps in the cycle are dramatically slowed, the regiospecificity for nitrobenzene oxidation is altered, and 10-fold more T111Y than wild-type MMOB is required to maximize the rate of turnover. Thus, T111Y appears to make a more extensive change in local interface structure that allows hydrocarbons at least as large as ethane to bind and react with Q similarly. As a result, the bond cleavage rates for methane, ethane, and their deuterated analogues are shown for the first time to correlate with bond strength in accord with a mechanism in which C-H bond cleavage occurs during reaction of substrates with Q.  相似文献   

12.
甲烷单加氧酶的催化性能和活性中心结构   总被引:3,自引:0,他引:3  
甲烷单加氧酶是甲烷利用细菌代谢甲烷过程中的重要酶系,它能够催化烷烃羟基化和烯烃环氧化反应;还能催化降解氯代烃类,可用于环境中氯代烃类化合物污染的治理,是具有广泛应用前景的生物催化剂.甲烷单加氧酶是含有μ-氧桥双核铁催化活性中心的蛋白,它的研究对分子氧的活化、化学催化剂的设计具有重要意义.文章介绍了甲烷单加氧酶催化性能和机理的最新研究进展.  相似文献   

13.
S M Miller  J P Klinman 《Biochemistry》1985,24(9):2114-2127
The chemical mechanism of hydroxylation, catalyzed by dopamine beta-monooxygenase, has been explored with a combination of secondary kinetic isotope effects and structure-reactivity correlations. Measurement of primary and secondary isotope effects on Vmax/Km under conditions where the intrinsic primary hydrogen isotope effect is known allows calculation of the corresponding intrinsic secondary isotope effect. By this method we have obtained an alpha-deuterium isotope effect, Dk alpha = 1.19 +/- 0.06, with dopamine as substrate. The beta-deuterium isotope effect is indistinguishable from one. The large magnitude of Dk alpha, together with our previous determination of a near maximal primary deuterium isotope effect of 9.4-11, clearly indicates the occurrence of a stepwise process for C-H bond cleavage and C-O bond formation and hence the presence of a substrate-derived intermediate. To probe the nature of this intermediate, a structure-reactivity study was performed by using a series of para-substituted phenylethylamines. Deuterium isotope effects on Vmax and Vmax/Km parameters were determined for all of the substrates, allowing calculation of the rate constants for C-H bond cleavage and product dissociation and dissociation constants for amine and O2 loss from the enzyme-substrate ternary complex. Multiple regression analysis yielded an electronic effect of p = -1.5 for the C-H bond cleavage step, eliminating the possibility of a carbanion intermediate. A negative p value is consistent with formation of either a radical or a carbocation; however, a significantly better correlation is obtained with sigma p rather than sigma p+, implying formation of a radical intermediate via a polarized transition state. Additional effects determined from the regression analyses include steric effects on rate constants for substrate hydroxylation and product release and on KDamine, consistent with a sterically restricted binding site, and a positive electronic effect of p = 1.4 on product dissociation, ascribed to a loss of product from an enzyme-bound Cu(II)-alkoxide complex. These results lead us to propose a mechanism in which O-O homolysis [from a putative Cu(II)-OOH species] and C-H homolysis (from substrate) occur in a concerted fashion, circumventing the formation of a discrete, high energy oxygen species such as hydroxyl radical. The substrate and peroxide-derived radical intermediates thus formed undergo a recombination, kinetically limited by displacement of an intervening water molecule, to give the postulated Cu(II)-alkoxide product complex.  相似文献   

14.
 The diiron site of methane monooxygenase (MMO) has the unique ability to activate methane. Structural studies of the MMO diiron site have revealed a limited number of coordination sites for dioxygen and dioxygen derived species. Using quantum mechanical studies of the MMO reaction, several possible reaction paths have been investigated. Energetically feasible geometries have been obtained for the different reaction steps, where the substrate activation is best described by an almost pure hydrogen abstraction step, followed by the formation of a metal-carbon bond. Received: 14 October 1997 / Accepted: 20 January 1998  相似文献   

15.
Deuterium kinetic isotope effects (KIE) were measured, and proton inventory plots were constructed, for the rates of reactions in the photocycles of wild-type bacteriorhodopsin and several site-specific mutants. Consistent with earlier reports from many groups, very large KIEs were observed for the third (and largest) rise component for the M state and for the decay of the O state, processes both linked to proton transfers in the extracellular region. The proton inventory plots (ratio of reaction rates in mixtures of H(2)O and D(2)O to that in H(2)O vs mole fraction of D(2)O) were approximately linear for the first and second M rise components and for M decay, as well as for O decay, indicating that the rates of these reactions are limited by simple proton transfer. Uniquely, the third rise component of M (and in the D96N mutant also a fourth rise component) exhibited a strongly curved proton inventory plot, suggesting that its rate, which largely accounts for the rate of deprotonation of the retinal Schiff base, depends on a complex multiproton process. This curvature is observed also in the E194Q, E204Q, and Y57F mutants but not in the R82A mutant. From these findings, and from the locations of bound water in the extracellular region in the crystal structure of the protein [Luecke, Schobert, Richter, Cartailler, and Lanyi (1999) J. Mol. Biol. 291, 899-911], we suspect that the effects of deuterium substitution on the formation of the M state originate from cooperative rearrangements of the extensively hydrogen-bonded water molecules 401, 402, and 406 near Asp-85 and Arg-82.  相似文献   

16.
The hinge-bending mechanism proposed as part of the catalytic mechanism for phosphoglycerate kinase (PGK) has been investigated using yeast PGK and the site-directed mutant [H388Q]PGK, where His388 is replaced by Gln. The emission and quenching of fluorescence, supported by the aromatic CD band, show that the mutation in the waist region affects the tryptophan environment in the C-terminal domain. The mutant is also less stable to guanidine denaturation and less cooperative in its unfolding. The effect of substrates on the conformation of PGK was studied using 8-anilino-1-naphthalenesulphonic acid (ANS), a competitive inhibitor of ATP binding to the C-terminal domain, and 8-(2-[(iodoacetyl)ethyl]amino)naphthalene (I-AEDANS), attached to Cys197 on the N-terminal domain. Under the influence of substrates the novel anisotropy decay curves for ANS indicate a 1-5 degrees change in the orientation of the probe, interpreted as a small reorientation of the domains about the waist region. The experimental data are interpreted as a small swivelling of the domains about the waist region under the influence of substrate. The results with AEDANS anisotropy decay are consistent with those for ANS. The enzyme activity of PGK shows a break in the Arrhenius plot at 20 degrees C mirrored by a break in the temperature dependence of tryptophan ellipticity. This is interpreted as a change in protein dynamics associated with destabilisation of the waist region. This destabilisation is shown to have already taken place in the mutant enzyme and in the wild type at pH 5.6, both of which exhibit linear Arrhenius plots. NMR titration curves show that the pH effect must be due to a group other than histidine. The results give further support to the permissive model of hinge bending previously proposed by one of the authors, in which binding of substrate destabilises the waist region. This loosens the hinge which can then swing slightly to bring the domains closer together to make favourable interactions between the domains and the substrates, with the exclusion of water.  相似文献   

17.
Summary Cell-free extracts of Methylosinus trichosporium 0B3b (MT 0B3b) containing the soluble, broad specificity methane mono-oxygenase (MMO) have been shown to catalyse yet another type of reaction : O-dealkylation. Several 4-substituted anisoles were investigated as substrates, all showed O-demethylation to varying extents by cell-free extracts of the bacterium. This catalytic ability is common to organisms grown on either methane or methanol as sole carbon source, although the rates of biotransformation are lower for the latter. O-demethylation of anisole itself was inhibited (> 99%) by ethyne, a known MMO inhibitor, strongly indicating that the MMO is the enzyme responsible for this catalysis.  相似文献   

18.
The formation of an initial enzyme-substrate complex of D-amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3) and its substrate, D-alpha-aminobutyric acid, was studied kinetically at lower temperature and pH than their optima. The time course of the absorbance change at 516 nm in an anaerobic reaction was not exponential, but biphasic. The ratio of the rapidly reacting component to the slowly reacting one was decreased upon lowering of the temperature. The reaction rate of the rapidly reacting component depended on substrate concentration and gave a linear Arrhenius plot in the temperature range from -10 to +15 degrees C. The reaction rate of the slowly reacting component also depended on both substrate concentration and temperature. The rapidly reacting and slowly reacting components could be assigned to the substrate binding of the dimer and monomer, respectively, of this enzyme.  相似文献   

19.
The effect of temperature on the rate constants of hydrolysis of various substrates by penicillopepsin is dependent on the length of the substrate. For the series Ac-(Ala)m-Lys-Nph-(Ala)n-amide (where Ac- is acetyl- and Nph- is p-nitrophenylalanyl-), where m and n = 0-2, substrates lacking both P'2 and P3 residues give linear Arrhenius plots with an energy of activation of about 55 kJ.mol-1. The Arrhenius plots of substrates in which an alanine residue occupies P'2 show a sharp break at an average transition temperature of 10.5 degrees C. The activation energies are approximately 90 kJ.mol-1 below and approximately 54 kJ.mol-1 above the transition temperature, respectively. For substrates in which P3 is occupied, the average transition temperature is 14.2 degrees C. In this case, the activation energies are 66 kJ.mol-1 below and from 26 to 39 kJ.mol-1 above the transition point. The most probable explanation of these phenomena is that substrate interaction at subsites S3 and/or S'2 of the enzyme induces a temperature-dependent conformational change. Physical evidence for this comes from the observation that the temperature dependence of a CD absorption band at 242 nm of a penicillopepsin-pepstatin complex shows a sharp break that corresponds to those observed in the Arrhenius plots of substrates with alanine at P'2 and P3, whereas the same CD band in the free enzyme is linearly dependent on temperature.  相似文献   

20.
Methane gas is produced from many natural and anthropogenic sources. As such, methane gas plays a significant role in the Earth's climate, being 25 times more effective as a greenhouse gas than carbon dioxide. As with nearly all other naturally produced organic molecules on Earth, there are also micro-organisms capable of using methane as their sole source of carbon and energy. The microbes responsible (methanotrophs) are ubiquitous and, for the most part, aerobic. Although anaerobic methanotrophs are believed to exist, so far, none have been isolated in pure culture. Methanotrophs have been known to exist for over 100 years; however, it is only in the last 30 years that we have begun to understand their physiology and biochemistry. Their unique ability to use methane for growth is attributed to the presence of a multicomponent enzyme system-methane monooxygenase (MMO)-which has two distinct forms: soluble (sMMO) and membrane-associated (pMMO); however, both convert methane into the readily assimilable product, methanol. Our understanding of how bacteria are capable of effecting one of the most difficult reactions in chemistry-namely, the controlled oxidation of methane to methanol-has been made possible by the isolation, in pure form, of the enzyme components.The mechanism by which methane is activated by sMMO involves abstraction of a hydrogen atom from methane by a high-valence iron species (FeIV or possibly FeV) in the hydroxylase component of the MMO complex to form a methyl radical. The radical combines with a captive oxygen atom from dioxygen to form the reaction product, methanol, which is further metabolized by the cell to produce multicarbon intermediates. Regulation of the sMMO system relies on the remarkable properties of an effector protein, protein B. This protein is capable of facilitating component interactions in the presence of substrate, modifying the redox potential of the diiron species at the active site. These interactions permit access of substrates to the hydroxylase, coupling electron transfer by the reductase with substrate oxidation and affecting the rate and regioselectivity of the overall reaction. The membrane-associated form is less well researched than the soluble enzyme, but is known to contain copper at the active site and probably iron.From an applied perspective, methanotrophs have enjoyed variable successes. Whole cells have been used as a source of single-cell protein (SCP) since the 1970s, and although most plants have been mothballed, there is still one currently in production. Our earlier observations that sMMO was capable of inserting an oxygen atom from dioxygen into a wide variety of hydrocarbon (and some non-hydrocarbon) substrates has been exploited to either produce value added products (e.g. epoxypropane from propene), or in the bioremediation of pollutants such as chlorinated hydrocarbons. Because we have shown that it is now possible to drive the reaction using electricity instead of expensive chemicals, there is promise that the system could be exploited as a sensor for any of the substrates of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号