首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The performance of an immuno-analytical system can be assessed in terms of its analytical sensitivity,i.e., the detection limit of an analyte, which is determined by the amount of analyte molecules bound to the capture antibody that has been immobilized onto a solid surface. To increase the number of the binding complexes, we have investigated a site-directed immobilization of an antibody that has the ability to resolve a current problem associated with a random arrangement of the insolubilized immunoglobulin. The binding molecules were chemically reduced to produce thiol groups that were limited at the hinge region, and then, the reduced products were coupled to biotin. This biotinylated antibody was bound to a streptavidincoated surface via the streptavidin-biotin reaction. This method can control the orientation of the antibody molecules present on a solid surface and also can significantly reduce the possibility of steric hindrance in the antigen-antibody reactions. In a two-site immunoassay, the introduction of the site-directly immobilized antibody as the capture enhanced the sensitivity of analyte detection approximately 10 times compared to that of the antibody randomly coupled to biotin. Such a novel approach would offer a protocol of antibody immobilization in order for the possibility of constructing a high performance immunochip.  相似文献   

2.
Immunogold–silver staining (IGSS) was adopted in cross-flow chromatographic analysis in which immunological reactions and silver intensification were sequentially conducted in the vertical and horizontal directions, respectively. Factors controlling the performance, except the silver substrate solution, were optimized to increase the signal-to-background ratio in measurements of cardiac troponin I as a model analyte. In generating the signal, the size of colloidal gold catalyst was critical; the smallest size (5-nm diameter) in the selected range yielded the highest colorimetric signal. To maintain the low background, two processes, blocking the remaining surfaces of membrane after antibody immobilization and washing the residual tracer after immunological reaction, were necessary. Self-nucleation of silver ions also caused a background signal and was controlled to some degree by decreasing the hydrodynamic force that arose when the substrate solution was supplied in the horizontal direction. Finally, a new chip (IGSS-on-a-chip; IOC) that allowed for convenient, efficient IGSS was produced by injection molding of plastic. This method enhanced the detection capability by 51-fold compared to the conventional rapid test kit using 30 nm-sized colloidal gold as the tracer. The IOC biosensor results also showed that silver intensification yield via cross flow after immunological reaction was 19% higher than that by traditional incubation.  相似文献   

3.
The endoglycosidase (EndoS and its glycosynthase mutants D233A, D233Q) gene was fused with cellulose binding domain (CBD) using pET-35b vector and the fusion enzymes were successfully expressed in Escherichia coli. Then a simplified approach for one-step immobilization and purification of EndoS enzymes using cellulose as matrices were developed and excellent loading efficiency (81–90%) was achieved in optimal condition. The cellulose immobilized CBD-EndoS and the glycosynthase mutants presented high catalytic activity and were successfully applied in a two-step antibody Fc N-glycan remodeling, generating a therapeutic antibody with homogeneous glycoform in high efficiency. The cellulose immobilized CBD-EndoS and its mutants (D233A and D233Q) displayed excellent storage stability when stored at 4 degrees for one month. Reusability studies demonstrated that the cellulose immobilized CBD-EndoS and its mutants could be recycled for five times without obvious activity loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号