首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Class IIa histone deacetylases (HDACs) -4, -5, -7 and -9 undergo signal-dependent nuclear export upon phosphorylation of conserved serine residues that are targets for 14-3-3 binding. Little is known of other mechanisms for regulating the subcellular distribution of class IIa HDACs. Using a biochemical purification strategy, we identified protein kinase C-related kinase-2 (PRK2) as an HDAC5-interacting protein. PRK2 and the related kinase, PRK1, phosphorylate HDAC5 at a threonine residue (Thr-292) positioned within the nuclear localization signal (NLS) of the protein. HDAC7 and HDAC9 contain analogous sites that are phosphorylated by PRK, while HDAC4 harbors a non-phosphorylatable alanine residue at this position. We provide evidence to suggest that the unique phospho-acceptor cooperates with the 14-3-3 target sites to impair HDAC nuclear import.

Structured summary

MINT-7710106:HDAC5 (uniprotkb:Q9UQL6) physically interacts (MI:0915) with PRK2 (uniprotkb:Q16513) by pull down (MI:0096)  相似文献   

2.
The methylation status of CpG islands is highly correlated with gene expression. Current methods for computational prediction of DNA methylation only utilize DNA sequence features. In this study, besides 35 DNA sequence features, we added four histone methylation marks to predict the methylation status of CpG islands, and improved the accuracy to 89.94%. Also we applied our model to predict the methylation pattern of all the CpG islands in the human genome, and the results are consistent with the previous reports. Our results imply the important roles of histone methylation marks in affecting the methylation status of CpG islands. H3K4me enriched in the methylation-resistant CpG islands could disrupt the contacts between nucleosomes, unravel chromatin and make DNA sequences accessible. And the established open environment may be a prerequisite for or a consequence of the function implementation of zinc finger proteins that could protect CpG islands from DNA methylation.  相似文献   

3.
4.
Histone deacetylases 1 and 2 (HDAC1,2) belong to the class I HDAC family, which are targeted by the FDA-approved small molecule HDAC inhibitors currently used in cancer therapy. HDAC1,2 are recruited to DNA break sites during DNA repair and to chromatin around forks during DNA replication. Cancer cells use DNA repair and DNA replication as survival mechanisms and to evade chemotherapy-induced cytotoxicity. Hence, it is vital to understand how HDAC1,2 function during the genome maintenance processes (DNA replication and DNA repair) in order to gain insights into the mode-of-action of HDAC inhibitors in cancer therapeutics. The first-in-class HDAC1,2-selective inhibitors and Hdac1,2 conditional knockout systems greatly facilitated dissecting the precise mechanisms by which HDAC1,2 control genome stability in normal and cancer cells. In this perspective, I summarize the findings on the mechanistic functions of class I HDACs, specifically, HDAC1,2 in genome maintenance, unanswered questions for future investigations and views on how this knowledge could be harnessed for better-targeted cancer therapeutics for a subset of cancers.  相似文献   

5.
Histone deacetylases (HDACs) are negative regulators of gene expression and have been implicated in tumorigenesis and tumor progression. Therefore, HDACs are promising targets for anti-tumor drugs. However, the relevant isoforms of the 18 members encompassing HDAC family have not been identified. Studies utilizing either gene targeting or knockdown approaches reveal both specific and redundant functions of the closely related class I deacetylases HDAC1 and HDAC2 in the control of proliferation and differentiation. Combined ablation of HDAC1 and HDAC2 in different cell types led to a severe proliferation defects or enhanced apoptosis supporting the idea that both enzymes are relevant targets for tumor therapy. In a recent study on the role of HDAC1 in teratoma formation we have reported a novel and surprising function of HDAC1 in tumorigenesis. In this tumor model HDAC1 attenuates proliferation during teratoma formation. In the present work we discuss new findings on redundant and unique functions of HDAC1 and HDAC2 as regulators of proliferation and tumorigenesis and potential implications for applications of HDAC inhibitors as therapeutic drugs.  相似文献   

6.
Postnatal development of adrenergic responsiveness in the rabbit heart   总被引:1,自引:0,他引:1  
It is uncertain how changes in the beta-adrenoceptor population influence the contractility of developing heart. To resolve this we have examined postnatal developmental changes in the adrenergic responsiveness of the rabbit heart. The inotropic effect of isoproterenol on isolated left ventricular papillary muscles from rabbits aged 3, 21, and 90 days was compared with the relative number of beta-adrenoceptors at each age measured using [3H]dihydroalprenolol ([3H]DHA) as the specific ligand. The maximum tension developed in response to isoproterenol increases from 37 +/- 7 to 175 +/- 33% above control twitch tension between 3 and 21 days of age; this is followed by a decrease to 68 +/- 12% in the young adult. During this period of development, there is a decline in EC50 towards increased sensitivity. These differences are partially accounted for by an increase in the numbers of specific [3H]DHA binding sites from 17.3 +/- 2.3 to 56.6 +/- 9.9 fmol/mg wet tissue weight from 3 to 21 days, and a subsequent decrease to 32 +/- 4.5 fmol/mg tissue in the young adult. The proportionally larger increase in contractility compared with the number of beta-adrenoceptor binding sites during the first 3 weeks of life is discussed in terms of the developmental changes in the efficacy of coupling between receptor occupancy and contraction.  相似文献   

7.
In human cells, the mRNA export factor NXF1 resides in the nucleoplasm and at nuclear pore complexes. Karyopherin β2 or transportin recognizes a proline-tyrosine nuclear localization signal (PY-NLS) in the N-terminal tail of NXF1 and imports it into the nucleus. Here biochemical and cellular studies to understand the energetic organization of the NXF1 PY-NLS reveal unexpected redundancy in the nuclear import pathways used by NXF1. Human NXF1 can be imported via importin β, karyopherin β2, importin 4, importin 11, and importin α. Two NLS epitopes within the N-terminal tail, an N-terminal basic segment and a C-terminal R-X(2-5)-P-Y motif, provide the majority of binding energy for all five karyopherins. Mutation of both NLS epitopes abolishes binding to the karyopherins, mislocalized NXF1 to the cytoplasm, and significantly compromised its mRNA export function. The understanding of how different karyopherins recognize human NXF1, the examination of NXF1 sequences from divergent eukaryotes, and the interactions of NXF1 homologues with various karyopherins reveals the evolutionary development of redundant NLSs in NXF1 of higher eukaryotes. Redundancy of nuclear import pathways for NXF1 increases progressively from fungi to nematodes and insects to chordates, potentially paralleling the increasing complexity in mRNA export regulation and the evolution of new nuclear functions for NXF1.  相似文献   

8.
In rodents, the nasal cavity contains two separate chemosensory epithelia, the main olfactory epithelium, located in the posterior dorsal aspect of the nasal cavity, and the vomeronasal/accessory olfactory epithelium, located in a capsule in the anterior aspect of the ventral floor of the nasal cavity. Both the main and accessory olfactory systems play a role in detection of biologically relevant odors. The accessory olfactory system has been implicated in response to pheromones, while the main olfactory system is thought to be a general molecular analyzer capable of detecting subtle differences in molecular structure of volatile odorants. However, the role of the two systems in detection of biologically relevant chemical signals appears to be partially overlapping. Thus, while it is clear that the accessory olfactory system is responsive to putative pheromones, the main olfactory system can also respond to some pheromones. Conversely, while the main olfactory system can mediate recognition of differences in genetic makeup by smell, the vomeronasal organ (VNO) also appears to participate in recognition of chemosensory differences between genetically distinct individuals. The most salient feature of our review of the literature is that there are no general rules that allow classification of the accessory olfactory system as a pheromone detector and the main olfactory system as a detector of general odorants. Instead, each behavior must be considered within a specific behavioral context to determine the role of these two chemosensory systems. In each case, one system or the other (or both) participates in a specific behavioral or hormonal response.  相似文献   

9.
10.
Auxin polar transport is crucial in regulating plant growth and patterning. As auxin efflux carriers, the PIN FORMED (PIN) proteins are responsible for transportation of auxin out of the cell. There are eight and ten PIN members in Arabidopsis (AtPIN) and Medicago truncatula (MtPIN), respectively. Compared with MtPIN10/SMOOTH LEAF MARGIN1 (SLM1), MtPIN4 exhibits a closer relationship with AtPIN1 based phylogenetic analysis. In addition, the gene structure and distribution of transmembrane segments of MtPIN4, MtPIN5 and MtPIN10/SLM1 are similar, implying possible redundant roles among them. However, analysis using Gene Expression Atlas revealed different expression patterns among MtPIN4, MtPIN5 and MtPIN10/SLM1. Loss of function of MtPIN10/SLM1 in M. truncatula resulted in pleiotropic phenotypes in different organs, which are similar with the defects in the pin1 mutant of Arabidopsis, suggesting that the MtPIN10/SLM1 is a putative ortholog of AtPIN1. MtPIN4, MtPIN5 and MtPIN10/SLM1 may have limited redundant functions in the development of M. truncatula. The creation of double and triple mutants will help to elucidate their potential roles in auxin transport and plant development.  相似文献   

11.
Callose, a β-1,3-glucan that is widespread in plants, is synthesized by callose synthase. Arabidopsis thaliana contains a family of 12 putative callose synthase genes (GSL1–12). The role of callose and of the individual genes in plant development is still largely uncertain. We have now used TILLING and T-DNA insertion mutants (gsl1-1, gsl5-2 and gsl5-3) to study the role of two closely related and linked genes, GSL1 and GSL5, in sporophytic development and in reproduction. Both genes are expressed in all parts of the plant. Sporophytic development was nearly normal in gsl1-1 homozygotes and only moderately defective in homozygotes for either of the two gsl5 alleles. On the other hand, plants that were gsl1-1/+ gsl5/gsl5 were severely defective, with smaller leaves, shorter roots and bolts and smaller flowers. Plants were fertile when the sporophytes had either two wild-type GSL1 alleles, or one GSL5 allele in a gsl1-1 background, but gsl1-1/+ gsl5/gsl5 plants produced an extremely reduced number of viable seeds. A chromosome with mutations in both GSL1 and GSL5 rendered pollen infertile, although such a chromosome could be transmitted via the egg. As a result, it was not possible to obtain plants that were homozygous for mutations in both the GSL genes. Pollen grain development was severely affected in double mutant plants. Many pollen grains were collapsed and inviable in the gsl1-1/gsl1-1 gsl5/+ and gsl1-1/+ gsl5/gsl5 plants. In addition, gsl1-1/+ gsl5/gsl5 plants produced abnormally large pollen with unusual pore structures, and had problems with tetrad dissociation. In this particular genotype, while the callose wall formed around the pollen mother cells, no callose wall separated the resulting tetrads. We conclude that GSL1 and GSL5 play important, but at least partially redundant roles in both sporophytic development and in the development of pollen. They are responsible for the formation of the callose wall that separates the microspores of the tetrad, and also play a gametophytic role later in pollen grain maturation. Other GSL genes may control callose formation at different steps during pollen development.  相似文献   

12.
Environmental time cues, such as photocycles (light/dark) and thermocycles (warm/cold), synchronize (entrain) endogenous biological clocks to local time. Although much is known about entrainment of the Arabidopsis thaliana clock to photocycles, the determinants of thermoperception and entrainment to thermocycles are not known. The Arabidopsis PSEUDO-RESPONSE REGULATOR (PRR) genes, including the clock component TIMING OF CAB EXPRESSION 1/PRR1, are related to bacterial, fungal, and plant response regulators but lack the conserved Asp that is normally phosphorylated by an upstream sensory kinase. Here, we show that two PRR family members, PRR7 and PRR9, are partially redundant; single prr7-3 or prr9-1 mutants exhibit modest period lengthening, but the prr7-3 prr9-1 double mutant shows dramatic and more than additive period lengthening in the light and becomes arrhythmic in constant darkness. The prr7-3 prr9-1 mutant fails both to maintain an oscillation after entrainment to thermocycles and to reset its clock in response to cold pulses and thus represents an important mutant strongly affected in temperature entrainment in higher plants. We conclude that PRR7 and PRR9 are critical components of a temperature-sensitive circadian system. PRR7 and PRR9 could function in temperature and light input pathways or they could represent elements of an oscillator necessary for the clock to respond to temperature signals.  相似文献   

13.
Multiple roles of proline in plant stress tolerance and development   总被引:3,自引:0,他引:3  
The recent progresses in the research on proline will be described, focusing on plants and covering proline metabolism and signal transduction as well as the role of this imino acid in stress response. Furthermore, the recently described developmental role of proline in flowering and reproduction will be illustrated and discussed.   相似文献   

14.
The size and morphology of organs are largely determined by a genetic program. However in some cases, an epigenetic mechanism influences the process of organ development. Particularly, epigenetic factors such as hemodynamic stress and blood pressure affect the morphogenesis of cardiac chambers and valves. Here, we report that the epigenetic influences affect the cardiomyocyte production. Taking advantage of longer developmental period of medaka fish, we could examine the later emerging tissue responses to the defect of ventricular beating, which occurred in the hozuki (hoz) mutant that harbors the mutated ventricular myosin heavy chain (vmhc) gene. The mutant showed a remarkable ventricular enlargement, and we showed that this enlargement was due to an excess production of ventricular cardiomyocytes in addition to the lack of concentric chamber growth. By experimental blockade of blood flow, we demonstrated that an elevated cardiac pressure was responsible for the aberrant cardiomyocyte production. From these data, we propose that the epigenetic tissue response to a stressed situation controls the production of cardiomyocytes to attain a fine tuning of heart formation.  相似文献   

15.
The Capn5 gene was inactivated by homologous recombination in ES cells that subsequently colonized the germ line of mice. The targeted mutation integrated a lacZ expression cassette into the Capn5 gene, allowing the expression of Capn5 mRNA to be examined in detail in heterozygous animals. Expression was observed in embryonic and newborn thymuses, in various epithelial tissues, and in tissues of the central nervous system. In the thymus, Capn5 was expressed mainly in relatively immature CD25(+) embryonic thymocytes. Despite the numerous expression sites of Capn5, the majority of Capn5-null mice were viable and fertile and appeared healthy. Histopathological analysis did not reveal any differences between Capn5-null and wild-type mice. There were no defects in the major T- or B-cell populations in the thymus, spleen, bone marrow, or peritoneum, nor did apoptosis appear abnormal in Capn5-null T cells. There was no evidence for the development of autoimmune disease in Capn5-null animals. However, a small proportion of homozygous null offspring from heterozygous matings were runted and most often did not survive to adulthood.  相似文献   

16.
Previous work has shown ICOS can function independently of CD28, but whether either molecule can compensate for the other in vivo is not known. Since ICOS is a potent inducer of Th2 cytokines and linked to allergy and elevated serum IgE in humans, we hypothesized that augmenting ICOS costimulation in murine allergic airway disease may overcome CD28 deficiency. While ICOS was expressed on T cells from CD28−/− mice, Th2-mediated airway inflammation was not induced in CD28−/− mice by increased ICOS costimulation. Further, we determined if augmenting CD28 costimulation could compensate for ICOS deficiency. ICOS−/− mice had a defect in airway eosinophilia that was not overcome by augmenting CD28 costimulation. CD28 costimulation also did not fully compensate for ICOS for antibody responses, germinal center formation or the development of follicular B helper T cells. CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo.  相似文献   

17.
Heart failure (HF) occurs when the adaptation mechanisms of the heart fail to compensate for stress factors, such as pressure overload, myocardial infarction, inflammation, diabetes, and cardiotoxic drugs, with subsequent ventricular hypertrophy, fibrosis, myocardial dysfunction, and chamber dilatation. Oxidative stress, defined as an imbalance between reactive oxygen species (ROS) generation and the capacity of antioxidant defense systems, has been authenticated as a pivotal player in the cardiopathogenesis of the various HF subtypes. The family of NADPH oxidases has been investigated as a key enzymatic source of ROS in the pathogenesis of HF. In this review, we discuss the importance of NADPH oxidase-dependent ROS generation in the various subtypes of HF and its implications. A better understanding of the pathogenic roles of NADPH oxidases in the failing heart is likely to provide novel therapeutic strategies for the prevention and treatment of HF.  相似文献   

18.
19.
20.
We show that two Arabidopsis thaliana genes for histone deacetylases (HDACs), HDT1/HD2A and HDT2/HD2B, are required to establish leaf polarity in the presence of mutant ASYMMETRIC LEAVES2 (AS2) or AS1. Treatment of as1 or as2 plants with inhibitors of HDACs resulted in abaxialized filamentous leaves and aberrant distribution of microRNA165 and/or microRNA166 (miR165/166) in leaves. Knockdown mutations of these two HDACs by RNA interference resulted in phenotypes like those observed in the as2 background. Nuclear localization of overproduced AS2 resulted in decreased levels of mature miR165/166 in leaves. This abnormality was abolished by HDAC inhibitors, suggesting that HDACs are required for AS2 action. A loss-of-function mutation in HASTY, encoding a positive regulator of miRNA levels, and a gain-of-function mutation in PHABULOSA, encoding a determinant of adaxialization, suppressed the generation of abaxialized filamentous leaves by inhibition of HDACs in the as1 or as2 background. AS2 and AS1 were colocalized in subnuclear bodies adjacent to the nucleolus where HDT1/HD2A and HDT2/HD2B were also found. Our results suggest that these HDACs and both AS2 and AS1 act independently to control levels and/or patterns of miR165/166 distribution and the development of adaxial-abaxial leaf polarity and that there may be interactions between HDACs and AS2 (AS1) in the generation of those miRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号