首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using histological and immunhistochemical techniques, nine endocrine cell types were observed in the mucosa of the gastrointestinal tract of the toad,Bufo regularis, viz. enterochromaffin, somatostatin, glucagon, pancreatic polypeptide (PP), secretin, gastric inhibitory peptide (GIP), gastrin-C-terminal pentapeptide (GTPP), neurotensin and bombesin cells. The enterochromaffin cells were distributed throughout the gastrointestinal tract except the rectum. Somatostatin, glucagon, PP, secretin, GIP and GTPP cells were observed both in the ileum and bombesin cells only in the pyloric and antral parts of the stomach. Immunostaining of consecutive sections did not reveal more than one polypeptide hormone in any of these cell types. It is concluded from the present results that the toad gastrointestinal mucosa contains endocrine cell types that are more or less homologous to those in the mammal alimentary tract, though some of them exhibit a different topographic distribution.  相似文献   

2.
Summary The coexistence of immunoreactivities to cholecystokinin, glucagon, glucagon-like peptide 1, salmon pancreatic polypeptide, neuropeptide tyrosine, and peptide tyrosine tyrosine was studied immunocytochemicaly, revealing for the first time in fish intestine the existence in the same cell of immunoreactivities to cholecystokinin-glucagon/glucagon-like peptide 1, cholecystokinin-salmon pancreatic polypeptide, glucagon/glucagon-like peptide 1-salmon pancreatic polypeptide, glucagon/glucagon-like peptide 1-neuropeptide tyrosine, salmon pancreatic polypeptide tyrosine tyrosine, and glucagon/glucagon-like peptide 1-peptide tyrosine tyrosine. Colocalization of cholecystokinin-salmon pancreatic polypeptide was observed only in the pyloric caeca of the rainbow trout Oncorhynchus mykiss, while the other colocalizations also occurred in proximal and middle intestinal segments. In all cases, endocrine cells immunoreactive to only one of the paired antisera were detected except for anti-glucagon and anti-glucagon-like peptide 1, which always immunostained the same cells.  相似文献   

3.
Using histological and immunhistochemical techniques, nine endocrine cell types were observed in the mucosa of the gastrointestinal tract of the toad, Bufo regularis, viz. enterochromaffin, somatostatin, glucagon, pancreatic polypeptide (PP), secretin, gastric inhibitory peptide (GIP), gastrin-C-terminal pentapeptide (GTPP), neurotensin and bombesin cells. The enterochromaffin cells were distributed throughout the gastrointestinal tract except the rectum. Somatostatin, glucagon, PP, secretin, GIP and GTPP cells were observed both in the stomach and in the small intestine. Neurotensin cells were seen only in the ileum and bombesin cells only in the pyloric and antral parts of the stomach. Immunostaining of consecutive sections did not reveal more than one polypeptide hormone in any of these cell types. It is concluded from the present results that the toad gastrointestinal mucosa contains endocrine cell types that are more or less homologous to those in the mammal alimentary tract, though some of them exhibit a different topographic distribution.  相似文献   

4.
Vervet monkeys (Cercopithecus aethiops) used for pancreatic endocrine cell distribution studies were found to have been maintained on different diets. Although the effect of dietary changes on the exocrine pancreas has been described in several animals, little, apart from the effect of malnutrition, has been reported for the endocrine pancreas. Reported here are pancreatic endocrine cell distributions in monkeys on a standard diet (n ? 3) compared with monkeys on an atherogenic diet (n = 3). Quantitation of immunolabelled pancreatic endocrine cell types revealed a significant 80% increase in A (glucagon) cell volume in monkeys on an atherogenic diet concomitant with a significant reduction in B (insulin) cell volume to approximately 60% of normal. This reflects a pattern of events that occurs in non-insulin dependent diabetes. An accompanying reduction in PP (pancreatic polypeptide) cell volumes supports our hypothesis that altering A and PP cell volumes could reflect differential gene expression in those cells in the adult in which glucagon and PP are co-localized.  相似文献   

5.
The regional distribution and relative frequency of endocrine cells in the gastrointestinal tract of the camel, Camelus bactrianus, were investigated using immunohistochemical methods. Ten types of immunoreactive (IR) endocrine cells were identified in this study. Among these cell types, only serotonin- and somatostatin-IR cells were detected in almost all regions of the gastrointestinal tract. Most of the cell types showed peak density in the pyloric gland region. The others showed restricted distribution: gastrin, cholecystokinin (CCK), motilin, bovine pancreatic polypeptide (BPP), and (gastric) substance P in the stomach; gastrin, CCK, BPP, gastric inhibitory polypeptide (GIP), glucagon, peptide tyrosine tyrosine (PYY) and substance P in the small intestine; and CCK, motilin, BPP, and PYY in the large intestine. Fundamentally the distribution pattern of endocrine cells in the gastrointestinal tract of the camel is similar to that of cattle. The distribution and frequency of endocrine cells in the glandular sac region are the same as those of the cardiac gland.  相似文献   

6.
Summary Endocrine-like cells containing glucagon, glicentin or pancreatic polypeptide immunoreactivity in human foetal and adult stomach, with or without disease, were studied with the indirect immunoperoxidase method and mirror sectioning technique. In foetal and neonatal oxyntic mucosae, there were endocrine-like cells with glucagon and glicentin immunoreactivities and argyrophilia. Cells containing glicentin immunoreactivity alone were detected earlier than glucagon cells during foetal development, and were also distributed throughout foetal to neonatal life. Bovine pancreatic polypeptide immunoreactivity coexisted in a subpopulation of the glucagon-glicentin cells. These cells were absent from normal oxyntic mucosa in the postneonatal period and from normal antral mucosa throughout life. Hamartomatous polyp in adult oxyntic mucosa, hyperplastic oxyntic mucosa in Menetrier's disease and atrophic oxyntic mucosa in a remnant stomach with cancer showed scattered glucagon-glicentin cells, but few or no cells containing bovine pancreatic polypeptide. Intestinalized mucosa showed plentiful glicentin cells with occasional glucagon and/or bovine pancreatic polypeptide immunoreactivity. Some gastric cancer cells of both diffuse and adenoplastic types contained immunoreactive glicentin and, less frequently, glucagon. Bovine pancreatic polypeptide immunoreactivity was detected in a few adenoplastic cancer cells, but not in diffuse type cells. Three different anti-pancreatic polypeptide sera against bovine, porcine or human pancreatic polypeptide detected basically the same cells mentioned above, but pancreatic polypeptide cells lacking human pancreatic polypeptide immunoreactivity were also present in foetal oxyntic mucosa. Immunoabsorption tests revealed that the bovine pancreatic polypeptide immunoreactivity was remote from peptide YY and neuropeptide Y.  相似文献   

7.
11 endocrine cell types immunoreactive for either 5-hydroxytryptamine (5-HT), somatostatin, gastrin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), motilin, secretin, neurotensin, pancreatic glucagon, enteroglucagon or bovine pancreatic polypeptide (BPP) were found in gastrointestinal tract of 2 species of insectivorous bats. 5 of these 11 types of endocrine cells were located in the stomach and all 11 types of endocrine cells were found in the intestine. However, the distribution and relative frequency of each immunoreactive endocrine cell varied among the cell types and between the 2 species of bats examined. In Brunner's glands, gastrin- and 5-HT-immunoreactive cells were detected very rarely in Pipistrellus and only occasionally in Plecotus. The present results obtained from the insectivorous bats were compared with those of the sanguivorous vampire bats.  相似文献   

8.
Fetal antigen 1 (FA1) is a glycoprotein containing six epidermal growth factor (EGF)-like repeats. It is closely similar to the protein translated from the human delta-like (dlk) cDNA and probably constitutes a proteolytically processed form of dlk. dlk is homologous to theDrosophila homeotic proteinsdelta andnotch and to the murine preadipocyte differentiation factor Pref-1. These proteins participate in determining cell fate choices during differentiation. We now report that FA1 immunoreactivity is present in a number of neuroectodermally derived tumours as well as in pancreatic endocrine tumours. A negative correlation between FA1 and glucagon immunoreactants in these tumours prompted a reexamination of FA1 immunoreactants during fetal pancreatic development. At the earliest stages of development, FA1 was expressed by most of the non-endocrine parenchymal cells and, with ensuing development, gradually disappeared from these cells and became restricted to insulin-producing beta cells. Throughout development FA1 was not detected in endocrine glucagon, somatostatin or pancreatic polypeptide cells. Moreover, developing insulin cells that coexpressed glucagon were negative for FA1. Thus, there was a negative correlation between FA1 and glucagon both in tumours and during development. These results, together with FA1/dlk's similarity with homeotic proteins, point to a role of FA1 in islet cell differentiation.  相似文献   

9.
Summary Correlative immunohistochemical and electron microscopical studies on the pancreatic islet of the teleost fish Xiphophorus helleri using antibodies to pancreatic polypeptide (PP) and glucagon show that separate cell types are responsible for the production of these peptides. The PP-cells correspond to the previously described A2-cells with round granules, while the A2-cells with crystalline granules are the true glucagon cells. An earlier suggestion that there are two types of glucagon cells in teleost islets is therefore withdrawn.A portion of the results has been presented at Colloque annuel de la Société Française de Microscopie électronique, Lyon-Villeurbanne, 21–23 Mai 1979. Study supported in part by the Medical Research Council  相似文献   

10.
Summary Four immunoreactive endocrine cell types can be distinguished in the pancreatic islets of B. conchonius: insulin-producing B cells, somatostatin-producing A1 (= D) cells, glucagon-producing A2 cells and pancreatic poly-peptide-producing PP cells. The principal islet of this species contains only a few PP cells, while many PP cells are present in the smaller islets. Except for the B cell all pancreatic endocrine cell types are also present in the pancreatic duct.At least six enteroendocrine cell types are present in the gut of B. conchonius: 1. a cell type (I) with small secretory granules, present throughout the intestine, and possibly involved in the regulation of gut motility; 2. a C-terminal gastrin immunoreactive cell, probably producing a caerulein-like peptide; these cells are located at the upper parts of the folds, especially in the proximal part of the intestinal bulb; 3. a met-enkephalin-immunoreactive cell, present throughout the first segment; 4. a glucagon-immunoreactive cell, which is rare in the first segment; 5. a PP-immunoreactive cell, mainly present in the first half of the first segment; 6. an immunoreactive cell, which cannot at present be specified, located in the intestinal bulb. The latter four cell types are mostly located in the basal parts of the folds, although some PP-immunoreactive cells can also be found in the upper parts.Most if not all enteroendocrine cells are of the open type. The possible functions of all enteroendocrine cell types are discussed.Abbreviations BPP bovine pancreatic polypeptide - CCK cholecystokinin - GEP gastro-entero-pancreatic - GIP gastric inhibitory peptide or glucose-dependent insulin releasing peptide - PPP pig pancreatic polypeptide - VIP vasoactive intestinal polypeptide  相似文献   

11.
Synthetic human pancreatic growth hormone-releasing factor containing 40 amino acids ([hpGRF (1-40)]-OH) significantly stimulated plasma growth hormone (GH) levels in both sodium pentobarbital and urethane anesthetized rats. Synthetic secretin, gastric inhibitory polypeptide (GIP), and glucagon significantly decreased plasma GH levels while synthetic vasoactive intestinal peptide (VIP) had no effect. Secretin and GIP also altered the in vivo plasma GH response to [hpGRF(1-40)]-OH. Whether this effect is the result of an interaction at the pituitary level or is due to an extra-pituitary effect of secretin and GIP awaits further study.  相似文献   

12.
《Genomics》1995,29(3)
Gastric inhibitory polypeptide (GIP), which is released from the gastrointestinal tract, stimulates insulin secretion from pancreatic β cells and plays a crucial role in the regulation of insulin secretion during the postprandial phase. We have isolated the human gene (GIPR) and cDNA encoding the GIP receptor by a combination of the conventional screening and polymerase chain reaction procedures. Human GIP receptor cDNA encodes a protein of 466 amino acids that is 81.5 and 81.2% identical to the previously cloned hamster and rat GIP receptor, respectively. Hydropathic analysis shows the presence of a signal peptide and seven potential transmembrane domains, a feature characteristic of the VIP/glucagon/secretin receptor family of G protein-coupled receptors. The human GIPR gene is about 13.8 kb long, consists of 14 exons, and carries 17Alurepeats.  相似文献   

13.
W B Rhoten 《Acta anatomica》1987,129(4):257-261
Light-microscopic immunocytochemistry was used to localize 4 major pancreatic hormones in the pancreas of the spectacled caiman, Caiman fuscus. Somatostatin, insulin, glucagon and pancreatic polypeptide were localized by the peroxidase-antiperoxidase complex technique. A relatively large population of somatostatin-containing D cells was present. The D cells were nearly as numerous as the insulin-containing B cells and glucagon-containing A cells which were the most common cell types. All three cell types were commonly intermingled with one another in endocrine cell areas. Pancreatic polypeptide-reactive F cells were absent from some regions of the pancreas, but where present were related to other endocrine cell types. Functional properties of the pancreatic endocrine cells in this anatomical variant remain to be determined.  相似文献   

14.
Summary The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish,Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scatterd islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin-, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, -endorphin, -endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P-immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

15.
The effect of jejunoileal bypass (JIB) on the enteroinsular axis was studied in vivo and in vitro in the rat. Glucose, insulin and GIP responses to oral glucose were compared in JIB and control rats. The effect of glucose and GIP on insulin release from the isolated perfused pancreas of the same animals was investigated to determine if JIB altered the sensitivity of the beta cell. Immunocytochemical studies of gut and pancreas were also carried out. Glucose, insulin and GIP responses to a glucose load were blunted after JIB, although basal GIP levels were elevated in these animals. The insulin response of the perfused JIB pancreas to GIP was 70% reduced from controls although the insulin response to glucose appeared normal. The size and area of JIB islets were unchanged from controls as was the distribution of insulin, glucagon, somatostatin and pancreatic polypeptide. GIP immunoreactive cells were present in all regions of the intestine including the JIB blind loop. This study confirms the findings of others that a relationship exists between reduced GIP and insulin response to oral glucose after JIB, and indicates that a decrease in sensitivity of the beta cell to GIP occurs following JIB that is not rapidly reversible. GIP secreted from blind loop mucosa may contribute to the high basal GIP found in JIB rats and may be causally connected to the fall in beta cell sensitivity.  相似文献   

16.
Summary Immunocytochemical methods for light and electron microscopy were used to demonstrate the regulatory peptides present in the endocrine pancreas of thealligator, Alligator mississippiensis.The peptides studied included insulin, glucagon (pancreatic and enteric), somatostatin, pancreatic polypeptide (avian, bovine and human), vasoactive intestinal polypeptide, substance P, metenkephalin, -endorphin, C-terminal gastrin/CCK and gastric inhibitory polypeptide. Endocrine cells were detected using antisera to insulin, pancreatic glucagon, somatostatin and avian pancreatic polypeptide, whereas peptidergic nerves were stained with antisera to vasoactive intestinal polypeptide. All other antisera were unreactive in the alligator pancreas. The peptide-containing structures were identified ultrastructurally by both the semithin/thin and immuno-gold methods. The results showed that five of the regulatory peptides commonly detected in the mammalian pancreas were immunologically recognisable in the alligator. In addition, the ultrastructural appearance of the peptide-containing cells was clearly distinct from that reported in mammals.  相似文献   

17.
Secretin, glucagon, gastric inhibitory polypeptide (GIP), and parathyroid hormone (PTH) belong, together with vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase (AC)-activating polypeptide, to a family of peptides (the VIP-secretin-glucagon family), which also includes growth hormone-releasing hormone and exendins. All the members of this peptide family possess a remarkable amino-acid sequence homology, and bind to G-protein-coupled receptors, whose signaling mechanism primarily involves AC/protein kinase A and phospholipase C/protein kinase C cascades. VIP and pituitary AC-activating polypeptide play a role in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and in this review we survey findings that also other members of the VIP-secretin-glucagon family may have the same function. Secretin and secretin receptors are expressed in the hypothalamus and pituitary gland, and secretin inhibits adrenocorticotropic hormone (ACTH) release. No evidence is available for the presence of secretin receptors in adrenal glands, but secretin selectively depresses the glucocorticoid response to ACTH of dispersed zona fasciculata-reticularis (ZF/R) cells. Glucagon and glucagon-like peptide-1 are contained in the hypothalamus, and all the components of the HPA axis are provided with glucagon and glucagons-like-1 receptors. These peptides exert a short-term inhibitory effect on stress-induced pituitary ACTH release and depress the ZF/R cell response to ACTH by inhibiting the AC/protein kinase A cascade; they also stimulate hypothalamic arginine-vasopressin release. GIP receptors are present in the ZF/R of the normal adrenals, and are particularly abundant in some types of adrenocortical adenomas and hyperplasias. GIP, through the activation of the AC/protein kinase A cascade, evokes a sizeable glucocorticoid secretagogue effect, leading to the identification of a food/GIP-dependent Cushing's syndrome. PTH and PTH-related protein are expressed in the hypothalamus and pituitary gland, and PTH and PTH-related protein receptors in all the components of the HPA axis. Both peptides enhance ACTH and arginine-vasopressin release, as well as stimulate aldosterone and glucocorticoid secretion of dispersed zona glomerulosa and ZF/R cells, respectively. The involvement of growth hormone-releasing hormone and exendins in the functional regulation of the HPA axis has not yet been extensively investigated.  相似文献   

18.
Summary Rats rendered diabetic by streptozotocin were subjected to pancreas transplantation. After twenty weeks, the duct-ligated pancreas transplant was studied morphometrically to determine the effect of duct occlusion on the various cell populations of the islets. Concomitantly, the streptozotocin-treated host pancreas was examined for a possible influence of the graft on the diabetic pattern of islet cell population. Twenty weeks after pancreas transplantation, the volume fractions of insulin, glucagon, somatostatin and pancreatic polypeptide cells in the graft islets did not differ from those of the normal control pancreas. In the pancreas of nontransplanted diabetic rats, insulin-positive B cells were reduced from 60–65% to less than 10% of the islet volume, whereas non-B cells were significantly increased in volume density. The changes in fractional volume of the various islet cells correlated fairly well with changes in plasma concentration of the corresponding pancreas hormones. In the recipient's own pancreas, the relative volumes of glucagon and somatostatin cells were unaffected by the pancreas transplant. However, the insulin cell mass was significantly increased, and comprised about 20% of the islet volume, while cells containing pancreatic polypeptide were found only sporadically.Supported by Nordic Insulin Fund, The Swedish Diabetes Association, and MFR, proj. no. 4499. The technical assistance by M. Maxe and M. Carlesson is gratefully acknowledged  相似文献   

19.
A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7) M native GIP, with an IC(50) value of 2.6 microM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P < 0.05 to P < 0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P < 0.001) and lower the glycemic excursion (1.5-fold decrease; P < 0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes.  相似文献   

20.
Antibodies to insulin, glucagon, pancreatic polypeptide hormone and somatostatin were utilized to demonstrate the cellular localization of the hormones in pancreatic tissue of fetal guinea pig of advanced gestation by immunofluorescence histochemistry. The topographical distribution of the 4 endocrine cell types was compared with those of the adult pancreas and was found to be significantly different particularly for cells immunostaining for insulin, glucagon and somatostatin. These observations suggest changes in histogenesis of pancreatic endocrine cells during transition from fetal to postnatal and adult life. The presence of the 4 islet hormones in the fetal pancreas of this species implies that they may be important in fetal metabolism and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号