首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A p-fluorophenylalanine-resistant mutant (acc phe ) which grows on minimal medium has an altered prephenate dehydrogenase and maps at the try-1 locus. Two other tyr-1 mutants which require tyrosine for normal growth can eventually grow on minimal or minimal plus p-fluorophenylalanine (FPA). The three different tyr-1 mutants all accumulate phenylalanine when incubated in minimal medium. FPA is incorporated into protein at only 10–15% the wild-type rate when mutant conidia are incubated in a minimal salts-glucose system. Under the same conditions, phenylalanine incorporation in the mutants is initially the same as in wild type. When tyrosine is included in the medium, resistance to FPA is lost, phenylalanine accumulation is prevented, and FPA is incorporated into protein at the wild-type rate. Tyrosine apparently prevents the overproduction of phenylalanine by preventing the overproduction of chorismate and prephenate.This work was supported, in part, by an Atomic Energy Commission grant to the Institute of Molecular Biophysics, the Florida State University, and by the Genetics Training Grant, funded by the National Institute of Health. It contains, in part, data from the doctoral thesis of the senior author, who was supported by a Florida State University Nuclear Fellowship and by a Public Health Service Fellowship.  相似文献   

2.
Two mutants which require phenylalanine for normal growth and which show no prephenate dehydratase activity in vitro have been found to accumulate and excrete phenylalanine when incubated on minimal medium or grown on low concentrations of phenylalanine. The high levels of phenylalanine accumulated in these mutants apparently cannot be used for protein synthesis or for the regulation of the biosynthetic enzymes in the aromatic pathway. Mutant mycelia grown in high phenylalanine maintain a much lower level of free phenylalanine in the cells than do those grown on low phenylalanine or those which eventually grow on minimal. If all the phenylalanine required for the protein in a 3-day mycelial pad is supplied, little or no phenylalanine can be found in the medium after 3 days: if only a fraction of the total protein phenylalanine is supplied, the concentration of phenylalanine in the medium after 3 days is actually higher than the initial concentration. It is proposed that the mutation in these organisms has resulted in abnormal compartmentation of the phenylalanine produced so it cannot be utilized by the cells until it has been excreted and transported back into the normal pool channels. In this case, the transport (exogenous) and protein synthesis pools would be involved. The abnormal mislocation of the phenylalanine in the cell might be a result of the diffusion of free prephenate to low pH regions in the cell where it is nonenzymatically converted to phenylpyruvate. If, however, the mutant prephenate dehydratase is active in vivo, the mutation must somehow affect the activity or stability of the enzyme in vitro and also cause the release of the end product in the wrong place in the cell. This might be expected if the normal wild-type prephenate dehydratase is directionally oriented, e.g., as a result of membrane association, to release the product into normal cell channels (protein synthesis pool) while such oriented release might not occur in the mutants.This work was supported, in part, by an Atomic Energy Commission grant to the Institute of Molecular Biophysics, The Florida State University, and by the Genetics Training Grant, funded by the National Institutes of Health. It contains, in part, data from the doctoral thesis of the senior author, who was supported by a Florida State University Nuclear Fellowship and by a Public Health Service Fellowship.  相似文献   

3.
A new iso-accepting tRNAphe from extracts of chemoheterotrophic and photoheterotrophic cells of Rhodopseudomonas sphaeroides has been identified by both BDEAE cellulose and RPC-5 chromatography. Rechromatography of each of the tRNAphe species in either the acylated or deacylated state shows that they migrate as single homogeneous peaks.In steady-state chemoheterotrophic cultures of R. sphaeroides tRNA I–II phe account for 25–30% of the total phenylalanine accepting activity while in steadystate photoheterotrophic cultures tRNA I–II phe account for no more than 10% of the total phenylalanine accepting activity.During the transition from chemoheterotrophic to photoheterotrophic growth conditions the levels of tRNA I–II phe fall in an exponential manner during the first half of the intracytoplasmic membrane induction period. tRNA I phe then remains at a level 10% that of its steady-state chemoheterotrophic level as long as photoheterotrophic growth conditions remain. tRNA II phe , after dropping to 10% of its former chemoheterotrophic level then returns to a level 50% that of its chemoheterotrophic level as long as photoheterotrophic growth conditions remain.Abbreviations BDEAE benzoylated diethyl amino ethyl - RPC reversed phase chromatography - TCA tricholroacetic acid - ICM intracytoplasmic membrane Submitted by WDS in partial fullfilment of requirements for the M.S. degree  相似文献   

4.
The kinetics of the incorporation into protein of [3H]phenylalanine, [3H]tyrosine and [3H]tryptophan were studied with homogenates prepared from whole brain of 1-, 7-, 21- and 60-day-old rats. The maximal velocities (Vmax)of incorporation of phenylalanine and tyrosine decreased and the apparent Michaelis-constants (Km) for all three amino acids increased with increasing age of the rats. Tyrosine had the smallest and tryptophan the largest Km values in all age groups. Phenylalanine competitively inhibited the incorporation of tyrosine, but tyrosine inhibited non-competitively the incorporation of phenylalanine. Tryptophan inhibited competitively the incorporation of phenylalanine, but at least partially non-competitively the incorporation of tyrosine. Phenylalanine and tyrosine did not significantly affect the incorporation of tryptophan in homogenates from 60-day-old rats. In 1-day-old rats only a very large excess of phenylalanine or tyrosine inhibited detectably. The Ki for phenylalanine in the incorporation of tyrosine was significantly smaller in 1- than in 60-day-old rats. In every case the inhibition presumably occurred at a single rate-limiting step in the complicated process of incorporation of amino acids into protein.  相似文献   

5.
Summary We have isolated and characterized a new class of p-fluorophenylalanine (FPA)-resistant mutant in Aspergillus nidulans using a phenA strain as the wild type, by optimizing the conditions of growth. All four spontaneous mutants selected on a medium containing FPA were found to be recessive to their wild-type alleles in heterozygous diploids. Complementation analyses and linkage data showed that they were allelic and mapped at a single locus (fpaU) in the facA-riboD interval on the right arm of linkage group V. Partial purification and characterization of Phe-tRNA synthetase from wild-type and mutant strains revealed that the mutant enzyme had a greatly reduced ability to activate the analogue. It is suggested that mutation in the fpaU gene brings about a structural alteration in Phe-tRNA synthetase.Abbreviations FPA DL-p-fluorophenylalanine - phenA auxotroph of phenylalanine - Phe-tRNA synthetase phenylalanyl-transfer ribonucleic acid synthetase Current address: Department of Biological Sciences (M/C 066) The University of Illinois at Chicago, Box 4348, Chicago, IL 60680, USA  相似文献   

6.
Molybdenum is required for induction of nitrate reductase and of NAD-linked formate dehydrogenase activities in suspensions of wild type Paracoccus denitrificans; tungsten prevents the development of these enzyme activities. The wild type forms a membrane protein M r150,000 when incubated with tungsten and inducers of nitrate reductase and this is presumed to represent an inactive form of the enzyme. Suspensions of mutant M-1 did not develop nitrate reductase or formate dehydrogenase activities but the membrane protein M r150,000 was formed under all conditions tested, including without inducers and without molybdenum. Analysis of membranes, solubilized with deoxycholate, by polyacrylamide gel electrophoresis under nondenaturing conditions showed that the mutant protein had similar electrophoretic mobility to the active nitrate reductase formed by the wilde type. Autoradiography of preparations from cells incubated with 55Fe showed that the mutant and wild type proteins contained iron. However, in similar experiments with 99Mo, incorporation of molybdenum into the mutant protein was not detectable.We conclude that mutant M-1 is defective in one or more steps required to process molybdenum for incorporation into molybdoenzymes. This failure affects the normal regulation of nitrate reductase protein with respect to the role of inducers.Non-Standard Abbreviations DOC deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

7.
Avena coleoptile elongation: stimulation by fluorophenylalanine   总被引:1,自引:1,他引:0       下载免费PDF全文
A 100 to 150% stimulation of Avena coleoptile segment elongation by the amino acid analogue p-fluorophenylalanine (FPA) has been observed. The effect is reversed by phenylalanine and is not seen with comparable concentrations of sodium fluoride. FPA does not alter elongation of red-irradiated segments. Stimulation by FPA occurs only when the apex is intact and the segments are incubated in the absence of exogenous auxin. In the presence of FPA, 14C-leucine uptake by coleoptile segments is reduced by 34% and protein synthesis by 42%. When pre-incubated on labeled media and subsequently transferred to unlabeled media, segments fail to incorporate into the protein fraction any of the previously absorbed label. It is therefore difficult to ascertain whether FPA results in a genuine inhibition of protein synthesis in apical coleoptile segments. Possible mechanisms for the action of FPA and its relationship to light dependent elongation are considered.  相似文献   

8.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl–tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl–tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl–tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl–tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

9.
SYNOPSIS High hydrostatic pressure is known to interfere with mitosis, cytokinesis and synthesis of DNA, RNA and protein. In Tetrahymena, incorporation of phenylalanine and formation of polysomes are known to be pressure-sensitive. Microsomal preparations from Tetrahymena pyriformis GL can incorporate [14C]-phenylalanine into polypeptides. Incorporation was enhanced by addition of supernatant fraction and 14.5 mM Mg++ An energy-generating system and exogenous messenger (poly U) were essential for polypeptide biosynthesis, Microsomes from pressurized cells (14,000 psi for 5 min) incorporated [14C]phenylalanine as efficiently as control microsomes. Microsomal function was not grossly damaged by pressure in a test system containing exogenous messenger, crude microsomal preparation, exogenous energy-generating system and supernatant fraction containing activating enzymes.  相似文献   

10.
Summary Phenylalanine production from E. coli KA 197/pJN6 (plasmid harboring genes for aro F, phe AFBR, AmpR and TcR) was studied under varying nutritional conditions in batch and continuous cultures. In batch culture experiments where growth was deliberately interrupted by limiting concentrations of sulphate and phosphate the phenylalanine production continued from the non-growing cells. However, the depletion of phosphate resulted in an immediate cessation of phenylalanine production but thereafter a low specific rate of phenylalanine formation resumed, while the decrease in specific rate of product formation was less after sulphate depletion. In the chemostat experiments, however, phosphate limitation was the only case where the specific rate of phenylalanine formation remained constant, while at the corresponding time in sulphate and glucose limited chemostats it was declining respectively had ceased.  相似文献   

11.
12.
K. Lindsey 《Planta》1985,165(1):126-133
The relationship between the synthesis and accumulation of protein and capsaicin was investigated in cultured cells of Capsicum frutescens Mill. cv. annuum immobilized in reticulate polyurethane. Cells were cultured in media containing reduced concentrations of essential nutrients, in an attempt to manipulate the rates of protein synthesis. Cells cultured in the absence of orthophosphate for 7 d demonstrated no reduction in the incorporation of l-[U-14C]phenylalanine into soluble protein or an increase in incorporation into capsaicin, compared with controls supplied with orthophosphate. By day 15 of culture, however, a differential incorporation of label was observed. Over a 21-d culture period the intracellular phosphate did not completely disappear. Cells cultured in the absence of nitrate and phosphate combined, however, exhibited some reduction in incorporation of [14C]phenylalanine into protein and an increased incorporation into capsaicin after 7 d of culture, but the differences were greater at day 15, when increases in the total capsaicin content of the cultures were apparent. There was observed a relationship between the intracellular nitrate concentration, the culture growth index, and the incorporation of [14C]phenylalanine into soluble protein — each of these factors was inversely related to the incorporation of label into capsaicin and the total capsaicin content of the cultures.Abbreviations HPLC high-performance liquid chromatography - Phe phenylalanine  相似文献   

13.
Conditions were defined under which rates of protein synthesis and degradation could be estimated in alveolar macrophages isolated from rabbits by pulmonary lavage and incubated in the presence of plasma concentrations of amino acids and 5.6 mM-glucose. Phenylalanine was validated as suitable precursor for use in these studies: it was not metabolized appreciably, except in the pathways of protein synthesis and degradation; it entered the cells rapidly; it maintained a stable intracellular concentration; and it was incorporated into protein at measurable rates. When extracellular phenylalanine was raised to a concentration sufficient to minimize dilution of the specific radioactivity of the precursor for protein synthesis with amino acid derived from protein degradation, the specific radioactivity of phenylalanyl-tRNA was only 60% of that of the extracellular amino acid. This relationship was unchanged in cells where proteolysis increased 2.5-fold after uptake and degradation of exogenous bovine serum albumin. In contrast, albumin prevented the decrease in phenylalanine incorporation observed in macrophages deprived of an exogenous source of amino acids. These observations suggested that macrophages preferentially re-utilized amino acids derived from the degradation of endogenous, but not from exogenous (albumin), protein. However, when the extracellular supply of amino acids was restricted, substrates derived from albumin catabolism could support the protein-synthetic pathway.  相似文献   

14.
Six mutants resistant to p-fluorophenylalanine (FPA) were selected on a medium containing aspartate as the sole source of nitrogen using a phenylalanine-requiring (phenA)auxotroph of A. nidulans as the wild type. The mutants, on the basis of genetic characterization, were found to be alleilic and located on the left arm of the linkage group III, approximately 13 map unit left to meth H locus, henceforth assigned to the symbol fpaV. At a fixed concentration of phenylalanine (23 micrograms/ml), the LD50 value of FPA for all the six mutants was found to be about three times more than that for the wild type strain. Affinity chromatographic purification of the enzyme phenylalanyl-tRNA (Phe-tRNA) synthetase from the mutant as well as the wild type strains, revealed that the wild type enzyme had about 1.4-fold higher affinity for phenylalanine as compared to that for FPA, both in the affinity column and in the catalytic reaction. However, the mutant enzyme showed almost a similar affinity for both in columns but a greatly reduced affinity for FPA in the catalytic reaction.  相似文献   

15.
Summary A chloramphenicol concentration of 3 mg per ml inhibits uptake of 14C-labelled phenylalanine, lysine, and adenine by Chlorella cells. Incorporation into both the free pool and the TCA insoluble fraction is inhibited. The inhibition is not related to inhibition of protein synthesis since cycloheximide (a specific inhibitor of protein synthesis in Chlorella) does not inhibit uptake of the 14C-labelled amino acids. Uptake of 14C-uracil is not inhibited by chloramphenicol.Both chloramphenicol and 2.4-dinitrophenol stimulate endogenous respiration of Chlorella, but whereas the latter reduces the internal concentration of ATP, the former (in concentrations of 1–3 mg/ml) stimulates it about two-fold. Similar concentrations of chloramphenicol decreases slightly the concentration of ADP, and it is therefore suggested that in Chlorella, chloramphenicol concentrations of 1–3 mg per ml inhibit some energy-linked reactions by preventing ATP utilization.  相似文献   

16.
The yeastSaccharomyces cerevisiae X2180-1A (wild) and its mutants X2180-1A-4 (mnn 1) and X2180-1A-5 (mnn 2) defective in mannan biosynthesis were used as enzyme sources to catalyzein vitro mannosyl transfer from GDP-[14C-U]-mannose to endogenous glycoproteins as well as to exogenous, low-molecular weight acceptors. While the enzyme preparation from the wild strain exhibited all mannosyl transferase activities involved in mannan biosynthesis by catalyzing the synthesis of characteristic mannoprotein, the enzyme frommnn 1 mutant failed to catalyze the synthesis of α(1→3) mannoside linkages both with endogenous as well as with exogenous acceptors. The enzyme preparation from themnn 2 mutant catalyzed the formation of mannoprotein very similar to that obtained with the enzyme from the wild strain. The most important difference was the formation of a higher number of unsubstituted mannosyl units in the α(1→ 6) linked mannan backbone. The observed results support the hypothesis that in themnn 1 the mutation has altered the structural gene involved in biosynthesis of an α(1→3) mannosyl transferase catalyzing the addition of α(1→3) linked mannosyl units to α(1→2) linked mannotrioses in the polysaccharide side chains and in the oligosaccharides attached to serine and/or threonine in the protein part of mannan molecule. Themnn 2 mutant represents most probably a kind of regulatory mutation where the activity of an α(1→2) mannosyl transferase adding the mannosyl units directly to α(1→6) linked backbone in the outer region of polysacoharide part of yeast mannan is repressedin vivo but becomes significantin vitro.  相似文献   

17.
Salt stress is a widespread phenomenon, limiting plant performance in large areas around the world. Although various types of plant sodium/proton antiporters have been characterized, the physiological function of NHD1 from Arabidopsis thaliana has not been elucidated in detail so far. Here we report that the NHD1–GFP fusion protein localizes to the chloroplast envelope. Heterologous expression of AtNHD1 was sufficient to complement a salt‐sensitive Escherichia coli mutant lacking its endogenous sodium/proton exchangers. Transport competence of NHD1 was confirmed using recombinant, highly purified carrier protein reconstituted into proteoliposomes, proving Na+/H+ antiport. In planta NHD1 expression was found to be highest in mature and senescent leaves but was not induced by sodium chloride application. When compared to wild‐type controls, nhd1 T–DNA insertion mutants showed decreased biomasses and lower chlorophyll levels after sodium feeding. Interestingly, if grown on sand and supplemented with high sodium chloride, nhd1 mutants exhibited leaf tissue Na+ levels similar to those of wild‐type plants, but the Na+ content of chloroplasts increased significantly. These high sodium levels in mutant chloroplasts resulted in markedly impaired photosynthetic performance as revealed by a lower quantum yield of photosystem II and increased non‐photochemical quenching. Moreover, high Na+ levels might hamper activity of the plastidic bile acid/sodium symporter family protein 2 (BASS2). The resulting pyruvate deficiency might cause the observed decreased phenylalanine levels in the nhd1 mutants due to lack of precursors.  相似文献   

18.
The contemporary data of the participation of phenylalanine in the biosynthesis of fluorescent pigment pyoverdine PM of Pseudomonas putida strain M are presented. Using aro1phu1 mutant of this strain, it has been shown that one of the precursors of the dihydroxyquinoline moiety of the pyoverdine PM is phenylalanine in the D- or L-form. These results were confirmed in experiments with 14C-phenylalanine incorporation. Pyoverdine PM that was synthesized by aro1phu1 mutant from exogenous phenylalanine is identical with the pigment from wild type cells.  相似文献   

19.
A trifluoroleucine-resistant mutant of yeast has been isolated that exhibits reduced incorporation of the analogue into protein (15%) of that in the wild type. In the mutant, uptake of the analogue and leucine into the expandable (water-extractable) pool is enhanced, passage from the expandable to the conversion (nonwater-, ethanol-extractable) pool is unaffected, and endogenous synthesis of leucine is normally regulated. Although the leucyl transfer ribonucluic acid (tRNA) synthetase appears normal, and the tRNAleu has wild-type acceptor activities in vitro and in vivo, the level of the mutant trifluoroleucyl tRNA pool is only 2 to 3% of that in the wild type. The data support the idea of a mutation affecting passage between the conversion pool and the site of charging of the analogue. The mutation is dominant and exhibits pleiotropic effects: the first leucine biosynthetic enzyme appears nonrepressible, and the leucine, valine, and tyrosine uptake systems are constitutively elevated (three- to fourfold) in the absence of exogenous amino acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号