首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg and a binding affinity (Kd) of 9.0 nM. [3H]Ryanodine binding to the purified receptor was stimulated by ATP and Ca2+ with a half-maximal stimulation at 1 mM and 8-9 microM, respectively. [3H]Ryanodine binding to the purified receptor was inhibited by ruthenium red and high concentrations of Ca2+ with an IC50 of 2.5 microM and greater than 1 mM, respectively. Reconstitution of the purified receptor in planar lipid bilayers revealed the Ca2+ channel activity of the purified receptor. Like the native sarcoplasmic reticulum Ca2+ channels treated with ryanodine, the purified receptor channels were characterized by (i) the predominance of long open states insensitive to Mg2+ and ruthenium red, (ii) a main slope conductance of approximately 35 pS and a less frequent 22 pS substate in 54 mM trans-Ca2+ or Ba2+, and (iii) a permeability ratio PBa or PCa/PTris = 8.7. The approximately 450,000-Da ryanodine receptor channel thus represents the long-term open "ryanodine-altered" state of the Ca2+ release channel from sarcoplasmic reticulum. We propose that the ryanodine receptor constitutes the physical pore that mediates Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.  相似文献   

2.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long-term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine.  相似文献   

3.
The binding of [3H]ryanodine with cardiac sarcoplasmic reticulum vesicles depends on the calcium concentration. Binding in the absence of calcium appears to be non-specific because it shows no saturation up to 20 microM ryanodine. The apparent Km value for calcium varied between 2 and 0.8 microM when the ryanodine concentration varied between 10 and 265 nM. The Hill coefficient for the calcium dependence of [3H]ryanodine binding was near two. Scatchard analysis of ryanodine binding indicated a high-affinity site with a Bmax of 5.2 +/- 0.4 pmol/mg with a Kd of 6.8 +/- 0.1 nM. Preincubation under conditions in which the high-affinity sites were saturated did not result in stimulation of the calcium uptake rate indicative of closure of the calcium channel. Stimulation of calcium uptake rate occurred only at higher concentrations of ryanodine (apparent Km = 17 microM). This stimulation of the calcium uptake rate also required calcium in the submicromolar range. The data obtained support the hypothesis that ryanodine binding to the low-affinity site (Km about 17 microM) is responsible for closure of the calcium release channel and the subsequent increase in the calcium uptake rate of the sarcoplasmic reticulum. Because the number of ryanodine-binding sites is much less than the number of calcium transport pumps the channel is probably distinct from the pump.  相似文献   

4.
Sheep cardiac muscle sarcoplasmic reticulum ryanodine receptors have been isolated by density-gradient centrifugation following solubilisation with the zwitterionic detergent, CHAPS. The functional state of the receptor complex has been assessed by quantification of [3H]ryanodine binding and by characterisation of single-channel conductance and gating properties following reconstitution into unilamellar proteo-liposomes and incorporation into planar phospholipid bilayers. A method of solubilisation is described which yields a receptor displaying high-affinity [3H]ryanodine binding (Kd 2.8 nM, Bmax 352 pmol/mg protein) and which functions as a cation-selective, ligand-regulated channel under voltage clamp conditions. Previous reports of channel activity of purified rabbit skeletal and canine cardiac muscle ryanodine receptors describe a range of sub- or variable-conductance events. In contrast, the sheep cardiac ryanodine receptor-channels isolated using the optimal conditions described in this report consistently display a single open state conductance with either Ca2+ or K+ as the charge carrying species.  相似文献   

5.
[3H]Ryanodine binding to a preparation of isolated cardiac sarcoplasmic reticulum has been investigated. A method is reported which produces a very high level of specific binding. Scatchard analysis of binding up to 50 nM ryanodine yields data which infer a single class of binding sites with a Kd of 1.4 nM and a Bmax of 9.7 pmol/mg protein. Micromolar calcium is the principal activating ligand and its effects on binding are modulated by ligands which similarly affect the activity of single calcium-release channels incorporated into artificial planar phospholipid bilayers. The benzimidazole drug, sulmazole, is able to stimulate ryanodine binding in the presence of sub-activating calcium concentrations. Ryanodine binds to the native channel only when it is in its open state and stimulation of maximal ryanodine binding is achieved by ligands which are insufficient to produce full single-channel activation. A model is proposed which relates the modulation of ryanodine binding to the behaviour of single channels.  相似文献   

6.
Radioligand binding experiments and single channel recordings demonstrate that verapamil interacts with the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum of rabbit skeletal muscle. In isolated triads, verapamil decreased binding of [3H]Ryanodine with an IC50 of approximately 8 microM at an optimal pH 8.5 and pCa 4.3. Nitrendipine and d-cis-diltiazem did not interfere with binding of [3H]Ryanodine to triads, suggesting that the action of verapamil does not involve the dihydropyridine receptor. Single channel recordings showed that verapamil blocked Ca2+ release channels by decreasing open probability, duration of open events, and number of events per unit time. A direct interaction of verapamil with the ryanodine receptor peptide was demonstrated after purification of the approximately 400 kDa receptor protein from Chaps-solubilized triads. The purified receptor displayed high affinity for [3H]Ryanodine with a Kd of approximately 5 nM and a Bmax of approximately 400 pmol/mg. Verapamil and D600 decreased [3H]Ryanodine binding noncompetitively by reducing the Bmax. Thus the presence of binding sites for phenylalkylamines in the Ca2+ release channel was confirmed. Verapamil blockade of Ca2+ release channels may explain some of the paralyzing effects of phenylalkylamines observed during excitation-contraction coupling of skeletal muscle.  相似文献   

7.
Nanomolar to micromolar ryanodine alters the gating kinetics of the Ca2+ release channel from skeletal sarcoplasmic reticulum (SR) fused with bilayer lipid membranes (BLM). In the presence of asymmetric CsCl and 100 microM CaCl2 cis, ryanodine (RY) (5-40 nM) activates the channel, increasing the open probability (po; maximum 300% of control) without changing unitary conductance (468 picosiemens (pS)). Statistical analyses of gating kinetics reveal that open and closed dwell times exhibit biexponential distributions and are significantly modified by nanomolar RY. Altered channel gating kinetics with low nanomolar RY is fully reversible and correlates well with binding kinetics of nanomolar [3H]RY with its high affinity site (Kd1 = 0.7 nM) under identical experimental conditions. RY (20-50 nM) induces occasional 1/2 conductance fluctuations which correlate with [3H]RY binding to a second site having lower affinity (Kd2 = 23 nM). RY (5-50 nM) in the presence of 500 mM CsCl significantly enhances Ca(2+)-induced Ca2+ release from actively loaded SR vesicles. Ryanodine > or = 50 nM stabilizes the channel in a 234-pS subconductance which is not readily reversible. RY (> or = 70 microM) produces a unidirectional transition from the 1/2 to a 1/4 conductance fluctuation, whereas RY > or = 200 microM causes complete closure of the channel. The RY required for stabilizing 1/4 conductance transitions and channel closure do not quantitatively correlate with [3H]RY equilibrium binding constants and is attributed to significant reduction in association kinetics with > 200 nM [3H]RY in the presence of 500 mM CsCl. These results demonstrate that RY stabilizes four discrete states of the SR release channel and supports the existence of multiple interacting RY effector sites on the channel protein.  相似文献   

8.
Two distinct types of [3H]IP3 binding were found in canine cardiac microsomes with high (Kd = 21 nM, Bmax = 0.66 pmol/mg) and low affinity (Kd = 230 nM, Bmax = 2.9 pmol/mg). Also found were low affinity [3H]IP4 binding (Kd = 190 nM, Bmax = 4.5 pmol/mg) and high affinity [3H]IP6 binding (Kd = 10 nM, Bmax = 4.9 pmol/mg). The rank order of potency to displace these radioligands indicates that binding of IP3 and IP6 is ligand-specific. Sucrose gradient centrifugation of the detergent-solubilized cardiac microsomes indicates that the molecular size of the cardiac high affinity IP3 receptor is similar to that of the aortic smooth muscle IP3 receptor and smaller than that of the ryanodine receptor which migrates more rapidly. The IP4 and IP6 binding migrates more slowly than the IP3 receptor.  相似文献   

9.
When compared to normal pig sarcoplasmic reticulum (SR), SR from malignant hyperthermia susceptible (MHS) porcine skeletal muscle has been shown to exhibit an increased rate of calcium release, as well as alterations in [3H]ryanodine-binding activity in the presence of microM Ca2+ (Mickelson et al., 1988, J. Biol. Chem. 263, 9310). In the present study, various stimulators (adenine nucleotides and caffeine) and inhibitors (ruthenium red and Mg2+) of the SR calcium release channel were examined for effects on MHS and normal SR [3H]ryanodine binding. The apparent affinity of the MHS SR receptor for ryanodine in the presence of 10 mM ATP (Kd = 6.0 nM) or 10 mM caffeine (Kd = 28 nM) was significantly greater than that of the normal SR (Kd = 8.5 and 65 nM in 10 mM ATP or caffeine, respectively), the Bmax (12-16 pmol/mg) was similar in all cases. The Ca2+(0.5) for inhibition of [3H]ryanodine binding in the presence of 5 mM AMPPNP (238 vs 74 microM for MHS and normal SR, respectively) and the Ca2+(0.5) for stimulation of [3H]ryanodine binding in the presence of 5 mM caffeine (0.049 vs 0.070 microM for MHS and normal SR, respectively) were also significantly different. Furthermore, in the presence of optimal Ca2+, MHS SR [3H]ryanodine binding was more sensitive to caffeine stimulation (C0.5 of 1.7 vs 3.4 mM) and was less sensitive to ruthenium red (C0.5 of 1.9 vs 1.2 microM) or Mg2+ inhibition (C0.5 of 0.34 vs 0.21 mM) than was normal SR. These results further support the hypothesis that differences in the ryanodine/receptor calcium release channel regulatory properties are responsible for the abnormal calcium releasing activity of MHS SR.  相似文献   

10.
Ryanodine at concentrations of 0.01-10 microM increased, while greater concentrations of 10-300 microM decreased the calcium permeability of both rabbit fast twitch skeletal muscle junctional and canine cardiac sarcoplasmic reticulum membranes. Ryanodine did not alter calcium binding by either sarcoplasmic reticulum membranes or the calcium binding protein, calsequestrin. Therefore, the effects by this agent appear to involve only changes in membrane permeability, and the characteristics of the calcium permeability pathway affected by ryanodine were those of the calcium release channel. Consistent with this, the actions by ryanodine were localized to junctional sarcoplasmic reticulum membranes and were not observed with either longitudinal sarcoplasmic reticulum or transverse tubular membranes. In addition, passage of the junctional sarcoplasmic reticulum membranes through a French press did not diminish the effects of ryanodine indicating that intact triads were not required. Under the conditions used for the permeability studies, the binding of [3H]ryanodine to skeletal junctional sarcoplasmic reticulum membranes was specific and saturable, and Scatchard analyses indicated the presence of a single binding site with a Kd of 150-200 nM and a maximum capacity of 10.1-18.9 pmol/mg protein. [3H]ryanodine binding to this site and the increase in membrane calcium permeability caused by low concentrations of ryanodine had similar characteristics suggesting that actions at this site produce this effect. Depending on the assay conditions used, ryanodine (100-300 microM) could either increase or decrease ATP-dependent calcium accumulation by skeletal muscle junctional sarcoplasmic reticulum membranes indicating that the alterations of sarcoplasmic reticulum membrane calcium permeability caused by this agent can be determined in part by the experimental environment.  相似文献   

11.
The distribution of inositol 1,4,5-trisphosphate and ryanodine binding sites between plasma membrane, microsomal, and mitochondrial fractions of rat liver were compared. IP3 bound mostly to the plasma membrane fraction (Kd = 6 nM; Bmax = 802 fmol/mg protein). Some IP3 binding sites were also present in the microsomal and mitochondrial fractions (Kd = 2.5 and 2.9 nM; Bmax = 35 and 23 fmol/mg protein respectively). The possibility that these binding sites are due to contamination of the fractions with plasma membrane cannot be excluded. Binding of IP3 to the plasma membrane was inhibited by heparin but not by either caffeine or tetracaine. High-affinity ryanodine binding sites were present mostly in the microsomal fraction (Kd = 13 nM; Bmax = 301 fmol/mg protein). Lower affinity binding sites were also found to be present in the mitochondrial and plasma membrane fractions. Binding of ryanodine to the microsomal fraction was inhibited by both caffeine and tetracaine but not by heparin. These data demonstrate that IP3 and ryanodine binding sites are present in different cellular compartments in the liver. These differences in the localization of the binding sites might be indicative of their functional differences.  相似文献   

12.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

13.
1. The binding characteristics of gastric mucosal prostaglandin (PG) E2 (PGE2) receptor were investigated using mucosal cell membranes from rat stomach. The binding was found to be dependent upon PGE2 and membrane protein concentration, the time of incubation and the pH of the mixture, being highest at pH 3.0. 2. Scatchard analysis of the binding data revealed a curvilinear plot with high affinity binding (Kd = 2 nM; Bmax = 0.106 pmol/mg protein) and low affinity binding (Kd = 319 nM; Bmax = 2.262 pmol/mg protein) sites. 3. Competitive displacement study indicated that the receptor was specific for PGs of the E series, as PGF2 alpha and 6-keto-PGF1 alpha failed to displace the PGE2. 4. The study is the first report to provide biochemical parameters of specific PGE receptors in rat gastric mucosa.  相似文献   

14.
Characterization of gingival epithelium epidermal growth factor receptor   总被引:1,自引:0,他引:1  
The binding characteristics of gingival epithelium epidermal growth factor (EGF) receptor were investigated using epithelial cell membranes from bovine gingiva. The binding of [125I]EGF was found to be time and protein concentration dependent, reversible, and specific. Unlabeled EGF competed for [125I]EGF binding with IC50 of 0.25nM and maximum displacement of 93% at 0.81nM. Scatchard analysis of the binding data inferred the presence of two binding sites, one of high affinity (Kd = 3.3 nM and Bmax = 47.3fmol/mg protein) and the other of a low affinity (Kd = 1.6 microM and Bmax = 1.9pmol/mg protein). Crosslinking of [125I]EGF to gingival membranes followed by polyacrylamide gel electrophoresis and autoradiography revealed a receptor protein of 170kDa.  相似文献   

15.
Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle.  相似文献   

16.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

17.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

18.
Under appropriate conditions, the interaction of the plant alkaloid ryanodine with a single cardiac sarcoplasmic reticulum Ca(2+)-release channel results in a profound modification of both channel gating and conduction. On modification, the channel undergoes a dramatic increase in open probability and a change in single-channel conductance. In this paper we aim to provide a mechanistic framework for the interpretation of the altered conductance seen after ryanodine binding to the channel protein. To do this we have characterized single-channel conductance with representative members of three classes of permeant cation; group 1a monovalent cations, alkaline earth divalent cations, and organic monovalent cations. We have quantified the change in single-channel conductance induced by ryanodine and have expressed this as a fraction of conductance in the absence of ryanodine. Fractional conductance seen in symmetrical 210 mM solutions is not fixed but varies with the nature of the permeant cation. The group 1a monovalent cations (K+, Na+, Cs+, Li+) have values of fractional conductance in a narrow range (0.60- 0.66). With divalent cations fractional conductance is considerably lower (Ba2+, 0.22 and Sr2+, 0.28), whereas values of fractional conductance vary considerably with the organic monovalent cations (ammonia 0.66, ethylamine 0.76, propanolamine 0.65, diethanolamine 0.92, diethylamine 1.2). To establish the mechanisms governing these differences, we have monitored the affinity of the conduction pathway for, and the relative permeability of, representative cations in the ryanodine-modified channel. These parameters have been compared with those obtained in previous studies from this laboratory using the channel in the absence of ryanodine and have been modeled by modifying our existing single-ion, four-barrier three-well rate theory model of conduction in the unmodified channel. Our findings indicate that the high affinity, essentially irreversible, interaction of ryanodine with the cardiac sarcoplasmic reticulum Ca(2+)-release channel produces a conformational alteration of the protein which results in modified ion handling. We suggest that, on modification, the affinity of the channel for the group 1a monovalent cations is increased while the relative permeability of this class of cations remains essentially unaltered. The affinity of the conduction pathway for the alkaline earth divalent cations is also increased, however the relative permeability of this class of cations is reduced compared to the unmodified channel. The influence of modification on the handling by the channel of the organic monovalent cations is determined by both the size and the nature of the cation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
We investigated the effects of benzodiazepines on [3H]muscimol binding to rat brain membranes and on heat inactivation of GABA receptors. Scatchard analysis of [3H]muscimol binding to frozen and 0.05% Triton X-100 treated membranes revealed two components; a higher affinity (Kd=2.2 nM, Bmax=1.2 pmol/mg protein) and a lower affinity component (Kd=15.9 nM, Bmax=4.4 pmol/mg protein). Diazepam and flurazepam (3 μM) increased significantly the specific binding of 40 nM but not of 2 nM [3H]muscimol. This stimulation was attributed to an increase in the affinity of the lower affinity component for GABA receptors. The time course of heat inactivation of GABA receptors revealed rapidly and then slowly denaturating Phases. These observations would suggest that there are multiple GABA receptors with different sensitivities to the heat treatment. Diazepam depressed remarkably the slowly denaturating phase(s). After heat treatment for 50 min, the single component of GABA receptors with Kd of 14.3 nM and Bmax of 0.6 pmol/mg protein survived, whereas in the membranes preincubated with 3 μM diazepam, the Kd and Bmax of the still viable GABA receptors were 14.8 nM and 1.14 pmol/mg protein, respectively. In light of these findings, the stimulation of the lower affinity component of GABA receptors may be related to the protective effect of these drugs against heat inactivation.  相似文献   

20.
We purified and characterized ryanotoxin, an approximately 11.4-kDa peptide from the venom of the scorpion Buthotus judiacus that induces changes in ryanodine receptors of rabbit skeletal muscle sarcoplasmic reticulum analogous to those induced by the alkaloid ryanodine. Ryanotoxin stimulated Ca2+ release from sarcoplasmic reticulum vesicles and induced a state of reduce unit conductance with a mean duration longer than that of unmodified ryanodine receptor channels. With Cs+ as the current carrier, the slope conductance of the state induced by 1 microM ryanotoxin was 163 +/- 12 pS, that of the state induced by 1 microM ryanodine was 173 +/- 26 pS, and that of control channels was 2.3-fold larger (396 +/- 25 pS). The distribution of substate events induced by 1 microM RyTx was biexponential and was fitted with time constants approximately 10 times shorter than those fitted to the distribution of substates induced by 1 microM ryanodine. Bath-applied 5 microM ryanotoxin had no effect on the excitability of mouse myotubes in culture. When 5 microM ryanotoxin was dialyzed into the cell through the patch pipette in the whole-cell configuration, there was a voltage-dependent increase in the amplitude of intracellular Ca2+ transients elicited by depolarizing potentials in the range of -30 to +50 mV. Ryanotoxin increased the binding affinity of [3H]ryanodine in a reversible manner with a 50% effective dose (ED50) of 0.16 microM without altering the maximum number (Bmax) of [3H]ryanodine-binding sites. This result suggested that binding sites for ryanotoxin and ryanodine were different. Ryanotoxin should prove useful in identifying domains coupling the ryanodine receptor to the voltage sensor, or domains affecting the gating and conductance of the ryanodine receptor channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号