首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the mechanical resistance response of submerged macrophytes to floods. An experiment was conducted to investigate the plant growth, root anchorage strength, and stem tensile properties of five submerged macrophytes under three initial water levels (1.0, 2.5, and 4.0 m) with four water level fluctuation speeds (0, 5, 15, and 25 cm d−1). Our results demonstrate that the biomass, relative growth rate, root anchorage strength, and stem tensile properties of the five species decreased with increasing initial water level, suggesting that deep water can inhibit plant growth and decrease their mechanical resistance. Floods weakened the stem tensile properties and strengthened the root performances of Myriophyllum spicatum, Hydrilla verticillata, and Potamogeton malaianus in shallow water. However, floods induced opposite mechanical resistance responses from plants in deep water, indicating a possible trade-off between stem breakage and uprooting under flooding conditions. M. spicatum, Ceratophyllum demersum, and P. malaianus were more tolerant of deep water and flood intensity than Potamogeton maackianus and H. verticillata, as indicated by their larger biomass, plant heights, stem tensile properties, and root anchorage strength. This is the first article that mechanically explains the competitive capability and survival potential of submerged macrophytes to water depth and flood intensity.  相似文献   

2.
To restore deteriorated lake ecosystems, it is important to identify environmental factors that influence submerged macrophyte communities. While sediment is a critical environmental factor for submerged macrophytes and many studies have examined effects of sediment type on the growth of individual submerged macrophytes, very few have tested how sediment type affects the growth and species composition of submerged macrophyte communities. We constructed submerged macrophyte communities containing four co-occurring submerged macrophytes (Hydrilla verticillata, Myriophyllum spicatum, Ceratophyllum demersum and Chara fragilis) and subjected them to three sediment treatments, i.e., clay, a mixture of clay and quartz sand at a volume ratio of 1:1 and a mixture at a volume ratio of 1:4. Compared to the clay, the 1:1 mixture treatment greatly increased overall biomass, number of shoot nodes and shoot length of the community, but decreased its diversity. This was because it substantially promoted the growth of H. verticillata within the community, making it the most abundant species in the mixture sediment, but decreased that of M. spicatum and C. demersum. The sediment type had no significant effects on the growth of C. fragilis. As a primary nutrient source for plant growth, sediment type can have differential effects on various submerged macrophyte species and 1:1 mixture treatment could enhance the performance of the communities, increasing the overall biomass, number of shoot nodes and shoot length by 39.03%, 150.13% and 9.94%, respectively, compared to the clay treatment. Thus, measures should be taken to mediate the sediment condition to restore submerged macrophyte communities with different dominant species.  相似文献   

3.
The presence of algae can greatly reduce the amount of light that reaches submerged macrophytes, but few experimental studies have been conducted to examine the effects of algae on biomass and structure of submerged macrophyte communities. We constructed communities with four submerged macrophytes (Hydrilla verticillata, Egeria densa, Ceratophyllum demersum, and Chara vulgaris) in three environments in which 0 (control), 50 and 100% of the water surface was covered by Spirogyra arcta. Compared to the control treatment, the 100% spirogyra treatment decreased biomass of the submerged macrophyte communities and of all the four macrophytes except C. demersum. Compared to the control and 50% treatments, the 100% treatment significantly increased relative abundance of C. demersum and decreased that of E. densa. Therefore, the presence of S. arcta can greatly affect the productivity and alter the structure of submerged macrophyte communities. To restore submerged macrophyte communities in conditions with abundant algae, assembling communities consisting of C. demersum or similar species may be a good practice.  相似文献   

4.
Rising nitrate concentrations in the water column and the spread of invasive, non-native macrophytes are two major threats to Florida's oligotrophic, freshwater ecosystems. We used a replicated mesocosm experiment to test the effects of elevated nitrate concentrations in the water on the growth of the invasive macrophyte Hydrilla verticillata and two common, native submerged macrophytes Vallisneria americana and Sagittaria kurziana. Results from this study indicate that nitrate concentrations of 1.0 mg L−1 NO3-N in the water increased the final dry-weight biomass of H. verticillata by 2.75 times, while having no statistical effect on the growth of the two native species. Additionally, H. verticillata grew at a faster rate than the two native species in the low nitrate treatments accounting for 82% of the total biomass, indicating that it may have the capacity to invade relatively pristine communities. In waters where nitrate concentrations continue to rise, the cost of control efforts for H. verticillata may substantially increase in the future.  相似文献   

5.
The relationships between producers (e.g., macrophytes, phytoplankton and epiphytic algae) and snails play an important role in maintaining the function and stability of shallow ecosystems. Complex relationships exist among macrophytes, epiphytic algae, phytoplankton, and snails. We studied the effects of snail communities (consisting of Radix swinhoei, Hippeutis cantori, Bellamya aeruginosa, and Parafossarulus striatulus) on the biomass of phytoplankton and epiphytic algae as well as on the growth of three species of submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and one exotic submerged plant, Elodea nuttallii) in a 90‐day outdoor mesocosm experiment conducted on the shore of subtropical Lake Liangzihu, China. A structural equation model showed that the snail communities affected the submerged macrophytes by grazing phytoplankton and epiphytic algae (reduction in phytoplankton Chl‐a and epiphytic algal abundance), enhancing the biomass of submerged macrophytes. Highly branched macrophytes with high surfaces and morphologies and many microhabitats supported the most snails and epiphytic algae (the biomass of the snail communities and epiphytic algae on Hverticillata was greater than that on Vnatans), and snails preferred to feed on native plants. Competition drove the snails to change their grazing preferences to achieve coexistence.  相似文献   

6.
两种沉水植物对间隙水磷浓度的影响   总被引:4,自引:0,他引:4  
王立志 《生态学报》2015,35(4):1051-1058
为研究两种根系特征的沉水植物在生长过程中对间隙水中磷浓度的影响,选取根系较多的沉水植物苦草和根系相对较少的沉水植物黑藻作为实验材料,监测底泥中间隙水各形态磷含量及环境因子的变化,探讨不同根系特征沉水植物对间隙水中磷的影响。结果表明:黑藻和苦草实验组沉积物间隙水中各形态磷的浓度均呈不同程度的降低,黑藻和苦草对于稳定水质,减少底泥中磷向水中转移具有明显的效果;沉水植物不同,底泥间隙水中溶解性总磷(DTP)和溶解性活性磷(SRP)存在明显差异。实验结束时黑藻组和苦草组间隙水中DTP的浓度分别为0.24,0.01 mg/L,SRP的浓度分别为0.22 mg/L,0.004 mg/L。间隙水中磷的形态主要以DTP和SRP为主,溶解性有机磷(DOP)的含量相对较低。沉水植物对间隙水中磷的吸收是降低间隙水中磷含量的重要原因,苦草的吸收能力大于黑藻。沉水植物根系通过降低底泥p H值,提高氧化还原电位(Eh)的方式抑制了底泥中磷的释放。  相似文献   

7.
Allometric scaling models describing size-dependent biological relationships are important for understanding the adaptive responses of plants to environmental variation. In this study, allometric analysis was used to investigate the biomass allocation and morphology of three submerged macrophytes (Potamogeton maackianus, Potamogeton malaianus and Vallisneria natans) in response to water depth (1.0 and 2.5?m) in an in situ experiment. The three macrophytes exhibited different allometric strategies associated with distinct adjustments in morphology and biomass allocation in response to varying water depths. In deeper water, after accounting for the effects of plant size, P. maackianus and P. malaianus tended to enhance light harvesting by allocating more biomass to the stem, increasing shoot height and specific leaf area. V. natans tended to allocate more biomass to the leaf than to the basal stem (rosette), showing a higher leaf mass ratio and shoot height in deeper water. The three species decreased biomass allocation to roots as water depth increased. The main effect of water depth treatments was reduced light availability, which induced plastic shoot or leaf elongation. This shows that macrophytes have evolved responses to light limitation similar to those of terrestrial plants.  相似文献   

8.
Radix swinhoei (H. Adams) is a freshwater snail commonly found in shallow regions of Lake Taihu. This research estimated, based on experiments, the consumption rates of R. swinhoei on three young submerged plants (Vallisneria spiralis, Hydrilla verticillata and Potamogeton malaianus) and its rates of nutrient release. Results showed that the snails consumed V. spiralis at the highest rate (23.34 mg g−1 d−1), P. malaianus at a lower rate (11.97 mg g−1 d−1), and H. verticillata at the lowest rate (7.04 mg g−1 d−1). The consumption rates on V. spiralis varied significantly, with snail size, ranging from 13.63 mg g−1 d−1 for large-size snails to 143.42 mg g−1 d−1 for small-size ones.The average nutrient release rates of snails grazing on different macrophytes were 45.93 μg PO4-P and 0.58 mg NH4-N g−1 d−1. The food species had a significant effect on NH4-N release rates but not on PO4-P. However, the snail size had a significant effect on PO4-P release rates and not on NH4-N. The present study indicates that through selective grazing and nutrient release, snails may impose a significant impact on the macrophyte community, which should be considered in managing the macrophytes of a lake.  相似文献   

9.
湿地生态系统中凤眼莲(Eichhornia crassipes)入侵造成湿地植物群落结构退化及功能崩溃,直接影响沉水植物的生长繁殖及初级生产力。目前关于凤眼莲的入侵机制有一定的研究,而关于凤眼莲入侵程度对沉水植物金鱼藻(Ceratophyllum demersum)和黑藻(Hydrilla verticillate)生长及种间关系的影响相对缺乏。以外来入侵植物凤眼莲,沉水植物金鱼藻和黑藻为研究对象,设计凤眼莲入侵程度(无入侵,轻度入侵对应盖度25%,重度入侵对应盖度75%)交叉定植方式(黑藻单种模式、金鱼藻单种模式,金鱼藻和黑藻混种模式)的控制实验,探究凤眼莲入侵强度对沉水植物金鱼藻和黑藻生长及种间关系的影响。结果表明,凤眼莲入侵程度显著降低了金鱼藻的生物量、分枝数;黑藻的株高、分枝数和分节数。无凤眼莲入侵时,两种沉水植物生物量均最大,两者种间竞争关系较强;随凤眼莲入侵盖度增加,两种沉水植物的生物量先急剧降低后略微增加,种间关系经过微弱促进后又变为竞争作用,其中黑藻表现出明显的竞争优势。此外,凤眼莲入侵略微降低了水体中的总氮、总磷含量。结构方程模型分析结果表明凤眼莲入侵以及水体总氮、总磷等水体理化性质对沉水植物生长均有显著负向影响(P<0.05),且水体理化性质对沉水植物生长的影响强于凤眼莲入侵。总之,凤眼莲入侵显著降低了金鱼藻和黑藻生长繁殖,随着凤眼莲入侵程度增加,两种沉水植物种间关系由竞争转变为促进再转变为竞争。研究结果为凤眼莲入侵有效控制及湿地沉水植被的恢复与重建提供了一定的理论依据和技术支撑。  相似文献   

10.
Physiological integration may help clonal macrophytes invade or escape from existing communities. No studies have tested the above hypothesis in aquatic plants. In an outdoor pond experiment, we subjected clonal fragments of the submerged macrophyte Vallisneria spiralis L. to heterogeneous environments in which V. spiralis spread from bare habitats towards vegetated habitats occupied by Myriophyllum spicatum L. or V. spiralis spread from vegetated habitats towards bare habitats. V. spiralis stolons between ramets in bare habitats and in vegetated habitats were either intact or severed. We investigated the habitat selection of V. spiralis by examining the allocation of biomass and ramets to heterogeneous habitats during its vegetative spread phase. Results showed that the stolon connection had different effects on the habitat selection of V. spiralis with regard to invasion and escape. When V. spiralis spread from bare to vegetated habitats, in comparison to severing the stolon, the stolon connection eventually facilitated a 49% increase in biomass and a 27% increase in number of ramets allocated to vegetated habitats. However, when V. spiralis spread from vegetated to bare habitats, biomass and ramets allocated to bare habitats were not significantly changed by the stolon connection (only a 5% increase in biomass and a 6% increase in number of ramets). These results indicate that clonal integration facilitated V. spiralis not to escape from but invade into vegetated habitats. The study provides evidence that physiological integration is important for survival and tolerance of ramets in competitively stressful environments and can help clonal macrophytes coexist with other species.  相似文献   

11.
全球气候变化背景下,未来降水强度和频率发生改变,极端降水事件可使水体中的氨氮含量在短时间内显著增加,对沉水植物的生长造成影响。然而,沉水植物对氨氮脉冲式变化(浓度与频率)的形态和生理响应机制仍不明确。选取两种常见的沉水植物苦草(Vallisneria natans)和黑藻(Hydrilla verticillata),设置不同底质(黏土和砂土)、不同氨氮脉冲模式(CK:对照组,即不加氨氮;P1:低浓度×高频率;P2:高浓度×低频率)和处理阶段(氨氮脉冲阶段和解除脉冲阶段),测定植株形态和生理性状,研究不同脉冲模式的影响差异和脉冲解除后的潜在影响。研究结果表明,(1)氨氮脉冲改变沉水植物的形态和生理性状,其中高浓度低频率氨氮脉冲对沉水植物的生长抑制作用最大。(2)氨氮脉冲解除一个月后,两种沉水植物的生物量较对照组无显著差异,而生理性状(如游离氨基酸和可溶性碳水化合物含量)较对照组差异较为明显,表明形态性状基本得到恢复,而氨氮脉冲对沉水植物生理性状的影响更为强烈而持久。(3)在解除脉冲阶段,苦草游离氨基酸含量仍显著高于对照组,而黑藻游离氨基酸含量较对照组差异较小,表明黑藻对氮的利用周转效率更高。(4)底质类型影响了苦草生理性状对氨氮脉冲的响应,即砂土中游离氨基酸和可溶性碳水化合物含量的变化幅度较黏土中更大。因此,氨氮脉冲效应与脉冲浓度和频率、底质类型、植物种类及其形态和生理性状密切相关。研究结果说明了沉水植物生理性状作为评估植物环境适应性的重要性,可为全球气候变化背景下湖泊生态系统沉水植被的管理提供科学参考。  相似文献   

12.
Most aquatic vegetation restorations involve the transplantation of submerged macrophytes. Sediment type and the clonal size are of great significance as they determine the fate of submerged macrophytes. In order to ensure successful restoration, a simulation experiment was conducted using aquarium mesocosms to investigate the response of stolon propagation capacity, the morphological features and productivity of Vallisneria natans for four types of sediment (lake mud [L], lake mud + sand [L + S, 50:50, v/v mixture], sand [S], clay [C]), and three types of clonal sizes. Results showed that sediment types significantly affected V. natans biomass accumulation, stolon propagation ability, ramet morphological characteristics, and productivity, where the asexual reproduction ability and productivity ranked as L > L + S > S > C in four sediment types. Total biomass, maximum net production, number of ramets, root diameter, number of stolons, and stolon propagation rate were all highest in L. In L and L + S, the plant chlorophyll content was higher than in S and C. The root diameter and the ratio of aboveground/underground biomass in S were the smallest among the four sediments. Moreover, when more V. natans seedlings were linked, more ramets and biomass were produced. The stolon propagation rate was ranked as the stolon with single seedling greater than the stolon with two‐linked seedlings greater than the stolon with three‐linked seedlings in L and L + S. The concentration of total nitrogen, total phosphorus, and NO3?‐N in water was remarkably reduced in four aquariums. Findings provide a scientific basis for restoring submerged macrophytes in different sediment settings.  相似文献   

13.
Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.  相似文献   

14.
3种种植方式下沉水植物恢复效果研究   总被引:2,自引:0,他引:2  
恢复沉水植物是受污染水体生态修复与重建的有效措施之一,人工快速大面积恢复沉水植物的方法是关键。选取杭州西湖西进区域茅家埠和浴鹄湾近岸水域,分别采用扦插法、沉栽法和播种法对沉水植物菹草、苦草和黑藻进行种植。研究表明:运用沉栽法种植的菹草存活率比用播种法种植的存活率高71.1%;运用扦插法种植的苦草比沉栽法和播种法的存活率分别高84.3%和87.8%;运用扦插法种植的黑藻比用播种法种植的存活率高69%;3种种植方式下最终的单株植物生物量间无显著差异。  相似文献   

15.
沉水植物化感作用对西湖湿地浮游植物群落的影响   总被引:5,自引:0,他引:5  
通过微宇宙实验,在控制光照和营养盐浓度的条件下分别研究了苦草(Vallisneria spiralis)、金鱼藻(Ceratophyllum demersum)和穗花狐尾藻(Myriophyllum spicatum)的化感作用对采集于杭州西湖湖西湿地的藻类密度、叶绿素a浓度、群落结构、多样性指数等的影响。其结果表明,3种沉水植物对微宇宙系统中的藻类都具有明显影响,藻类密度与叶绿素a浓度受到显著抑制,3个草-藻研究系统中藻类群落结构都发生了变化。在实验末期苦草组、金鱼藻组和穗花狐尾藻组中藻类总生物量(以细胞密度计)分别较初始值降低了37.06%、78.37%和83.40%。栅藻对3种沉水植物的化感作用敏感性较弱。藻类生物多样性方面,穗花狐尾藻系统中最高,其次是金鱼藻组,最后是苦草组,其Shannon-Wiener指数(H)分别为2.76、2.06和0.72,穗花狐尾藻组中H的显著高于苦草组(P0.05)。  相似文献   

16.
Two years of measurements are explored with a view to formulating an ecosystem model for Myall Lake. Stable physical characteristics, low catchment loads, low light attenuation, flat-bottomed hypsometry, and soft gyttja substrate allow stable charophyte biomass throughout the year in Myall Lake. Chara fibrosa dominates the total biomass and is abundant over the depth range 0.5–4 m. Nitella hyalina is found over the same depth range but has diminished biomass at depths greater than 2 m due to increased incidence of zero-biomass samples at depths greater than 1.5 m. Upper bounds for biomass densities were estimated for charophytes. Najas marina has great seasonal variability and meadows can have very high biomass in waters 1.5–2.7 m deep. High biomass of Najas marina is associated with low biomass of Nitella hyalina and may be a factor determining how the biomass of Nitella hyalina is distributed with respect to depth. Patchiness of Najas marina is particularly high. Temperature and light can support two growing seasons for Najas marina but mechanical disturbance is often high in spring and high biomass was only observed in late autumn during the present study. Less than 5% of the present-day production of submerged macrophytes would have been required to produce organic material of the gyttja over a 1,000-year period. The spatial distributions of gyttja and the dominant macrophytes are consistent with wind patterns. Down-lake limits on the distributions of charophytes and Najas marina are related to a gradient in the coefficient of light attenuation that is, in turn, related to proximity to the bulk of the catchment load.  相似文献   

17.
1. We investigate long‐term (>200 years) changes to the composition and spatial structure of macrophyte communities in a shallow, eutrophic lake (Barton Broad, eastern England) and consider the implications for lake restoration. 2. Historical macrophyte data were assembled from a variety of sources: existing plant databases, museum herbaria, journal articles, old photographs and eyewitness accounts. Additionally, two types of sediment core sample were analysed for plant macro‐remains and pollen; bulk basal samples from multiple core sites analysed to provide information on ‘pre‐disturbance’ macrophyte communities and two whole cores analysed to determine historical change. 3. Prior to the late 1800s, macrophyte communities were diverse and included a multilayered mosaic of short‐stature submerged taxa and taller submerged and floating‐leaved species. With the progression of eutrophication after around 1900, the former community was displaced by the latter. Diversity was maintained, however, since an encroaching Schoenoplectus–nymphaeid swamp generated extensive patches of low‐energy habitat affording refugia for several macrophytes otherwise unable to withstand the hydraulic forces associated with open water conditions. When this swamp vegetation disappeared in the 1950s, many of the ‘dependent’ aquatic macrophytes also declined leaving behind a sparse, species‐poor community (as today) resilient to both eutrophication and turbulent open waters. 4. The combination of historical and palaeolimnological data sources offers considerable benefits for reconstructing past changes to the aquatic vegetation of lakes and for setting restoration goals. In this respect, our study suggests that successful restoration might often be better judged by reinstatement of the characteristic structure of plant communities than the fine detail of species lists; when nutrients are low and the structure is right, the right species will follow.  相似文献   

18.
Submerged macrophytes play a key role in maintaining a clear‐water phase and promoting biodiversity in shallow aquatic ecosystems. Since their abundance has declined globally due to anthropogenic activities, it is important to include them in aquatic ecosystem restoration programs. Macrophytes establishment in early spring is crucial for the subsequent growth of other warm‐adapted macrophytes. However, factors affecting this early establishment of submerged macrophytes have not been fully explored yet. Here, we conducted an outdoor experiment from winter to early spring using the submerged macrophytes Potamogeton crispus and Vallisneria spinulosa to study the effects of shading, nutrient loading, snail herbivory (Radix swinhoei), and their interactions on the early growth and stoichiometric characteristics of macrophytes. The results show that the effects strongly depend on macrophyte species. Biomass and number of shoots of P. crispus decreased, and internode length increased during low light conditions, but were not affected by nutrient loading. P. crispus shoot biomass and number showed hump‐shaped responses to increased snail biomass under full light. In contrast, the biomass of the plant linearly decreased with snail biomass under low light. This indicates an interaction of light with snail herbivory. Since snails prefer grazing on periphyton over macrophytes, a low density of snails promoted growth of P. crispus by removing periphyton competition, while herbivory on the macrophyte increased during a high density of snails. The growth of V. spinulosa was not affected by any of the factors, probably because of growth limitation by low temperature. Our study demonstrates that the interaction of light with snail herbivory may affect establishment and growth of submerged macrophytes in early spring. Macrophyte restoration projects may thus benefit from lowering water levels to increase light availability and making smart use of cold‐adapted herbivores to reduce light competition with periphyton.  相似文献   

19.
Both substrate type and plant–plant interaction can greatly influence the growth and establishment of plants. In order to assist the re-vegetation of submerged macrophytes, the growth of Hydrilla verticillata with increasing equi-distance neighboring plant density on two substrate types (sediment and sand, representing high- and low-nutrient level, respectively) was assessed in monoculture stands. The results showed that substrate type greatly changed the biomass allocation patterns of the target plants, with a smaller root mass ratio on sediment compared to sand (0.70 vs. 3.11%). However, interaction between substrate type and neighboring density was observed. At low density, growth on sediment greatly increased plant height (43.90 vs. 22.10 cm), leaf biomass (216.63 vs. 68.41 mg), and total biomass (298.39 vs. 121.77 mg) when compared to growth on sand. However, at high density, no significant effect of the substrate type was found in those parameters. On sediment, high neighboring density greatly decreased the height, root number, total root length, root mass, and total biomass, implying large intraspecific plant–plant competition. However, such competition can be greatly reduced in infertile environments. Therefore, when the plants were grown on sand, neighboring density showed little effect on the height (22.10–26.53 cm), total root length (21.34–40.50 cm), and root biomass (3.14–6.27 mg). Total biomass and root number significantly increased by 50% and 115%, respectively, at high density compared to low density on sand, suggesting that facilitation rather than competition was occurring. Therefore, plant–plant interaction can vary from competition in fertile environments to facilitation in infertile environments. In summary, neighboring density should be manipulated according to the environmental nutrient level, so as to reduce intraspecific competition or increase intraspecific facilitation, and finally enhance the initial growth and establishment of H. verticillata in re-vegetation activities.  相似文献   

20.
修复白洋淀镉污染水体的沉水植物筛选试验   总被引:1,自引:0,他引:1  
为了筛选出适宜修复白洋淀镉(Cd)污染水体的沉水植物,该研究通过室内模拟试验,分析了四种沉水植物黑藻、狐尾藻、金鱼藻和菹草对Cd的耐受性及对底泥Cd的富集和迁移能力。结果表明:(1)通过毒性测试研究,Cd对黑藻、狐尾藻、金鱼藻及菹草的4 d-EC50(半数抑制浓度)分别为0.51、0.81、0.03、0.12 mg·L-1,狐尾藻对Cd的耐性最强,黑藻次之,金鱼藻对Cd的耐性最低; 四种沉水植物对Cd的最大富集量分别为27.89、15.28、22.54、32.74 g·kg-1,菹草对Cd的富集能力最强,黑藻次之,狐尾藻对Cd的富集能力最低。(2)通过Cd污染底泥修复研究,黑藻、狐尾藻和菹草体内Cd富集量整体表现为根>叶片和茎(P<0.05); 地上部、根对Cd的富集能力分别表现为黑藻>菹草>狐尾藻,菹草>黑藻>狐尾藻; 三种沉水植物对Cd的迁移能力则表现为黑藻>狐尾藻>菹草。总之,黑藻对底泥中Cd富集和迁移能力均较强,且耐性较高,是最适合修复白洋淀Cd污染水体的沉水植物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号