首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The social brain hypothesis proposes that haplorhine primates have evolved relatively large brains for their body size primarily as an adaptation for living in complex social groups. Studies that support this hypothesis have shown a strong relationship between relative brain size and group size in these taxa. Recent reports suggest that this pattern is unique to haplorhine primates; many nonprimate taxa do not show a relationship between group size and relative brain size. Rather, pairbonded social monogamy appears to be a better predictor of a large relative brain size in many nonprimate taxa. It has been suggested that haplorhine primates may have expanded the pairbonded relationship beyond simple dyads towards the evolution of complex social groups. We examined the relationship between group size, pairbonding, and relative brain size in a sample of 19 lemurs; strepsirrhine primates that last share a common ancestor with monkeys and apes approximately 75 Ma. First, we evaluated the social brain hypothesis, which predicts that species with larger social groups will have relatively larger brains. Secondly, we tested the pairbonded hypothesis, which predicts that species with a pairbonded social organization will have relatively larger brains than non-pairbonded species. We found no relationship between group size or pairbonding and relative brain size in lemurs. We conducted two further analyses to test for possible relationships between two nonsocial variables, activity pattern and diet, and relative brain size. Both diet and activity pattern are significantly associated with relative brain size in our sample. Specifically, frugivorous species have relatively larger brains than folivorous species, and cathemeral species have relatively larger brains than diurnal, but not nocturnal species. These findings highlight meaningful differences between Malagasy strepsirrhines and haplorhines, and between Malagasy strepsirrhines and nonprimate taxa, regarding the social and ecological factors associated with increases in relative brain size. The results suggest that factors such as foraging complexity and flexibility of activity patterns may have driven selection for increases in brain size in lemurs.  相似文献   

2.
In social animals, fission is a common mode of group proliferation and dispersion and may be affected by genetic or other social factors. Sociality implies preserving relationships between group members. An increase in group size and/or in competition for food within the group can result in decrease certain social interactions between members, and the group may split irreversibly as a consequence. One individual may try to maintain bonds with a maximum of group members in order to keep group cohesion, i.e. proximity and stable relationships. However, this strategy needs time and time is often limited. In addition, previous studies have shown that whatever the group size, an individual interacts only with certain grooming partners. There, we develop a computational model to assess how dynamics of group cohesion are related to group size and to the structure of grooming relationships. Groups’ sizes after simulated fission are compared to observed sizes of 40 groups of primates. Results showed that the relationship between grooming time and group size is dependent on how each individual attributes grooming time to its social partners, i.e. grooming a few number of preferred partners or grooming equally or not all partners. The number of partners seemed to be more important for the group cohesion than the grooming time itself. This structural constraint has important consequences on group sociality, as it gives the possibility of competition for grooming partners, attraction for high-ranking individuals as found in primates’ groups. It could, however, also have implications when considering the cognitive capacities of primates.  相似文献   

3.
Anthropoid primates are distinguished from other mammals by having relatively large primary visual cortices (V1) and complex facial expressions. We present a comparative test of the hypothesis that facial expression processing coevolved with the expansion of V1 in anthropoids. Previously published data were analysed using phylogenetic comparative methods. The results of our study suggest a pattern of correlated evolution linking social group size, facial motor control and cortical visual processing in catarrhines, but not platyrrhines. Catarrhines that live in relatively large social groups tended to have relatively large facial motor nuclei, and relatively large primary visual cortices. We conclude that catarrhine brains are adapted for producing and processing complex facial displays.  相似文献   

4.
Primate societies are characterized by bonded social relationships of a kind that are rare in other mammal taxa. These bonded relationships, which provide the basis for coalitions, are underpinned by an endorphin mechanism mediated by social grooming. However, bonded relationships of this kind impose constraints on the size of social groups that are possible. When ecological pressures have demanded larger groups, primates have had to evolve new mechanisms to facilitate bonding. This has involved increasing the size of vocal and visual communication repertoires, increasing the time devoted to social interaction and developing a capacity to manage two-tier social relationships (strong and weak ties). I consider the implications of these constraints for the evolution of human social communities and argue that laughter was an early evolutionary innovation that helped bridge the bonding gap between the group sizes characteristic of chimpanzees and australopithecines and those in later hominins.  相似文献   

5.
According to the social intelligence hypothesis, relative neocortex size should be directly related to the degree of social complexity. This hypothesis has found support in a number of comparative studies of group size. The relationship between neocortex and sociality is thought to exist either because relative neocortex size limits group size or because a larger group size selects for a larger neocortex. However, research on primate social evolution has indicated that male and female group sizes evolve in relation to different demands. While females mostly group according to conditions set by the environment, males instead simply go where the females are. Thus, any hypothesis relating to primate social evolution has to analyse its relationship with male and female group sizes separately. Since sex-specific neocortex sizes in primates are unavailable in sufficient quantity, I here instead present results from phylogenetic comparative analyses of unsexed relative neocortex sizes and female and male group sizes. These analyses show that while relative neocortex size is positively correlated with female group size, it is negatively, or not at all correlated with male group size. This indicates that the social intelligence hypothesis only applies to female sociality.  相似文献   

6.
Several theories have been proposed to explain the evolution of species differences in brain size, but no consensus has emerged. One unresolved question is whether brain size differences are a result of neural specializations or of biological constraints affecting the whole brain. Here I show that, among primates, brain size variation is associated with visual specialization. Primates with large brains for their body size have relatively expanded visual brain areas, including the primary visual cortex and lateral geniculate nucleus. Within the visual system, it is, in particular, one functionally specialized pathway upon which selection has acted: evolutionary changes in the number of neurons in parvocellular, but not magnocellular, layers of the lateral geniculate nucleus are correlated with changes in both brain size and ecological variables (diet and social group size). Given the known functions of the parvocellular pathway, these results suggest that the relatively large brains of frugivorous species are products of selection on the ability to perceive and select fruits using specific visual cues such as colour. The separate correlation between group size and visual brain evolution, on the other hand, may indicate the visual basis of social information processing in the primate brain.  相似文献   

7.
Neocortex size predicts deception rate in primates   总被引:4,自引:0,他引:4  
Human brain organization is built upon a more ancient adaptation, the large brain of simian primates: on average, monkeys and apes have brains twice as large as expected for mammals of their size, principally as a result of neocortical enlargement. Testing the adaptive benefit of this evolutionary specialization depends on finding an association between brain size and function in primates. However, most cognitive capacities have been assessed in only a restricted range of species under laboratory conditions. Deception of conspecifics in social circumstances is an exception, because a corpus of field data is available that encompasses all major lines of the primate radiation. We show that the use of deception within the primates is well predicted by the neocortical volume, when observer effort is controlled for; by contrast, neither the size of the rest of the brain nor the group size exert significant effects. These findings are consistent with the hypothesis that neocortical expansion has been driven by social challenges among the primates. Complex social manipulations such as deception are thought to be based upon rapid learning and extensive social knowledge; thus, learning in social contexts may be constrained by neocortical size.  相似文献   

8.
The evolutionary origin of Primates' exceptionally large brains is still highly debated. Two competing explanations have received much support: the ecological hypothesis and the social brain hypothesis (SBH). We tested the SBH in (n = 82) baboons (Papio anubis) belonging to the same research centre but housed in groups with size ranging from 2 to 63 individuals. We found that baboons living in larger social groups had larger brains. This effect was driven mainly by white matter volume and to a lesser extent by grey matter volume but not by the cerebrospinal fluid. In comparison, the size of the enclosure, an ecological variable, had no such effect. In contrast to the current re-emphasis on potential ecological drivers of primate brain evolution, the present study provides renewed support for the social brain hypothesis and suggests that the social brain plastically responds to group size. Many factors may well influence brain size, yet accumulating evidence suggests that the complexity of social life might be an important determinant of brain size in primates.  相似文献   

9.
Compared to most other mammals and birds, anthropoid primates have unusually complex societies characterised by bonded social groups. Among primates, this effect is encapsulated in the social brain hypothesis: the robust correlation between various indices of social complexity (social group size, grooming clique size, tactical behaviour, coalition formation) and brain size. Hitherto, this has always been interpreted as a simple, unitary relationship. Using data for five different indices of brain volume from four independent brain databases, we show that the distribution of group size plotted against brain size is best described as a set of four distinct, very narrowly defined grades which are unrelated to phylogeny. The allocation of genera to these grades is highly consistent across the different data sets and brain indices. We show that these grades correspond to the progressive evolution of bonded social groups. In addition, we show, for those species that live in multilevel social systems, that the typical sizes of the different grouping levels in each case coincide with different grades. This suggests that the grades correspond to demographic attractors that are especially stable. Using five different cognitive indices, we show that the grades correlate with increasing social cognitive skills, suggesting that the cognitive demands of managing group cohesion increase progressively across grades. We argue that the grades themselves represent glass ceilings on animals' capacity to maintain social and spatial coherence during foraging and that, in order to evolve more highly bonded groups, species have to be able to invest in costly forms of cognition.  相似文献   

10.
The social intelligence hypothesis suggests that living in large social networks was the primary selective pressure for the evolution of complex cognition in primates. This hypothesis is supported by comparative studies demonstrating a positive relationship between social group size and relative brain size across primates. However, the relationship between brain size and cognition remains equivocal. Moreover, there have been no experimental studies directly testing the association between group size and cognition across primates. We tested the social intelligence hypothesis by comparing 6 primate species (total N = 96) characterized by different group sizes on two cognitive tasks. Here, we show that a species’ typical social group size predicts performance on cognitive measures of social cognition, but not a nonsocial measure of inhibitory control. We also show that a species’ mean brain size (in absolute or relative terms) does not predict performance on either task in these species. These data provide evidence for a relationship between group size and social cognition in primates, and reveal the potential for cognitive evolution without concomitant changes in brain size. Furthermore our results underscore the need for more empirical studies of animal cognition, which have the power to reveal species differences in cognition not detectable by proxy variables, such as brain size.  相似文献   

11.
It is well established that allogrooming, which evolved for a hygienic function, has acquired an important derived social function in many primates. In particular, it has been postulated that grooming may play an essential role in group cohesion and that human language, as verbal grooming or gossip, evolved to maintain group cohesion in the hominin lineage with its unusually large group sizes. Here, we examine this group cohesion hypothesis and test it against the alternative grooming-need hypothesis which posits that rates of grooming are higher in species where grooming need (i.e. the motivation to groom for hygiene and its associated psychological reward) is more pronounced. This alternative predicts that the derived social function of grooming evolved mostly in those lineages that had the highest exposure to ectoparasites and dirt, i.e. terrestrial species. A detailed comparative analysis of 74 species of wild primates, controlling for phylogenetic non-independence, showed that terrestriality was a highly significant predictor of allogrooming time, consistent with the prediction. The predictions of the group cohesion hypothesis were not supported, however. Group size did not predict grooming time across primates, nor did it do so in separate intra-population analyses in 17 species. Thus, there is no comparative support for the group-cohesion function of allogrooming, which questions the role of grooming in the evolution of human language.  相似文献   

12.
The social brain hypothesis argues that large brains have arisen over evolutionary time as a response to the social and ecological conflicts inherent in group living. We test predictions arising from the hypothesis using comparative data from birds and four mammalian orders (Carnivora, Artiodactyla, Chiroptera and Primates) and show that, across all non-primate taxa, relative brain size is principally related to pairbonding, but with enduring stable relationships in primates. We argue that this reflects the cognitive demands of the behavioural coordination and synchrony that is necessary to maintain stable pairbonded relationships. However, primates differ from the other taxa in that they also exhibit a strong effect of group size on brain size. We use data from two behavioural indices of social intensity (enduring bonds between group members and time devoted to social activities) to show that primate relationships differ significantly from those of other taxa. We suggest that, among vertebrates in general, pairbonding represents a qualitative shift from loose aggregations of individuals to complex negotiated relationships, and that these bonded relationships have been generalized to all social partners in only a few taxa (such as anthropoid primates).  相似文献   

13.
We investigated the effects of anthropogenic habitat degradation on group size, ranging, fecundity, and parasite dynamics in four groups of the Tana River mangabey (Cercocebus galeritus). Two groups occupied a forest disturbed by human activities, while the other two occupied a forest with no human disturbance. We predicted that the groups in the disturbed forest would be smaller, travel longer distances daily, and have larger home ranges due to low food tree abundance. Consequently, these groups would have lower fecundity and higher parasite prevalence and richness (number of parasite species). We measured the abundance of food trees and anthropogenic activity in the forests, the groups' daily travel distances and home range sizes, and censused social groups over 12 months. We also analyzed fecal samples for gastrointestinal parasites from three of the groups. The disturbed forest had a lower abundance of food trees, and groups in this forest traveled longer distances, had larger home range sizes, were smaller, and had lower fecundity. The groups in the disturbed forest had higher, although not statistically significant, parasite prevalence and richness. This study contributes to a better understanding of how anthropogenic habitat change influences fecundity and parasite infections in primates. Our results also emphasize the strong influence of habitat quality in determining daily travel distance and home range size in primates. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Group size influences many aspects of mammalian social life, including stress levels, disease transmission, reproductive rates, and behavior. However, much of what is known about the effects of group size on behavioral ecology has come from comparisons across multiple groups of different sizes. These findings may be biased because behavioral differences across groups may be more indicative of how environmental variation influences animal behavior, rather than group size itself. To partially circumvent this limitation, we used longitudinal data to examine how changes in group size across time affect the behavior of folivorous red colobus monkeys (Procolobus rufomitratus) of Kibale National Park, Uganda. Controlling for food availability, we demonstrated that increasing group size resulted in altered activity budgets, based on 6 yr of data on a group that increased from 57 to 98 members. Specifically, as group size increased, individuals spent less time feeding and socializing, more time traveling, and increased the diversity of their diet. These changes appear to allow the monkeys to compensate for greater scramble competition apparent at larger group sizes, as increasing group size did not show the predicted relationship with lower female fecundity. Our results support recent findings documenting feeding competition in folivorous primates. Our results also document behavioral flexibility, an important trait that allows many social mammals to maximize the benefits of sociality (e.g., increased vigilance), while minimizing the costs (e.g., increased feeding competition).  相似文献   

15.
Mammals living in more complex social groups typically have large brains for their body size and many researchers have proposed that the primary driver of the increase in brain size through primate and hominin evolution was the selection pressures associated with sociality. Many mammals, and especially primates, use flexible signals that show a high degree of voluntary control and these signals may play an important role in forming and maintaining social relationships between group members. However, the specific role that cognitive skills play in this complex communication, and how in turn this relates to sociality, is still unclear. The hypothesis for the communicative roots of complex sociality and cognition posits that cognitive demands behind the communication needed to form and maintain bonded social relationships in complex social settings drives the link between brain size and sociality. We review the evidence in support of this hypothesis and why key features of cognitively complex communication such as intentionality and referentiality should be more effective in forming and maintaining bonded relationships as compared with less cognitively complex communication. Exploring the link between cognition, communication and sociality provides insights into how increasing flexibility in communication can facilitate the emergence of social systems characterised by bonded social relationships, such as those found in non‐human primates and humans. To move the field forward and carry out both within‐ and among‐species comparisons, we advocate the use of social network analysis, which provides a novel way to describe and compare social structure. Using this approach can lead to a new, systematic way of examining social and communicative complexity across species, something that is lacking in current comparative studies of social structure.  相似文献   

16.
The effects of human activity on population and social structure are a pantropical concern for primate conservation. We compare census data and social group counts from two forests in the Udzungwa Mountains, Tanzania. The main aim is to relate differences within and between the forests to current theory on the effect of human disturbance on primate abundance and group size. The survey reveals the presence of the restricted-range red colobus, Procolobus gordonorum, in New Dabaga/Ulangambi Forest Reserve (NDUFR). The primate community of NDUFR is impoverished compared to that in Ndundulu forest. Red colobus and black-and-white colobus (Colobus angolensis palliatus) abundance and group size are lowest in NDUFR. Fission-fusion of red colobus social groups may be occurring in previously logged areas of both forests. Our observations are consistent with current theory on the effect of habitat degradation and hunting on primates, but the relative effects of the 2 factors could not be differentiated. We pooled the results with previous data to show that abundance of red colobus in the Udzungwa Mountains is lowest at high elevations. Low red colobus group sizes appear to be related to human activity rather than elevation. Black-and-white colobus and Sykes monkeys (Cercopithecus mitis) show no relationship with elevation. Future studies will require more detailed information on vegetation, diet and ranging patterns to interpret fully intraspecific variation in population demography and social structure in the Udzungwa Mountains.  相似文献   

17.
In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support ‘technical intelligence’ hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency.  相似文献   

18.
Selection pressures in the evolution of morphological characters which are exclusive to primates were discussed. While the evolutionary change in some morphological characters of primates can be explained by natural or sexual selection, there are also morphological characters of primates, such as some regions of neocortices, which are involved in social interactions and whose evolutionary changes can hardly be explained by natural or sexual selection alone. Furthermore, recent studies have demonstrated that relative sizes of brain, neocortex and some thalamic nuclei of brains differ significantly by social structure in primates. Based on these and other findings, we propose here that “active” selection pressures may have favored a variety of morphological characters related to social interactions, the selection pressures which are derived from social interactions and are operative within animals or troops. The introduction of concept of active selection will be useful in developing conceptual frameworks for understanding of the mechanism of evolution of primates, in particular, of hominids.  相似文献   

19.
Among mammals, the members of some Orders have relatively large brains. Alternative explanations for this have emphasized either social or ecological selection pressures favouring greater information-processing capacities, including large group size, greater foraging efficiency, higher innovation rates, better invasion success and complex problem solving. However, the focal taxa for these analyses (primates, carnivores and birds) often show both varied ecological competence and social complexity. Here, we focus on the specific relationship between social complexity and brain size in ungulates, a group with relatively simple patterns of resource use, but extremely varied social behaviours. The statistical approach we used, phylogenetic generalized least squares, showed that relative brain size was independently associated with sociality and social complexity as well as with habitat use, while relative neocortex size is associated with social but not ecological factors. A simple index of sociality was a better predictor of both total brain and neocortex size than group size, which may indicate that the cognitive demands of sociality depend on the nature of social relationships as well as the total number of individuals in a group.  相似文献   

20.
The social brain hypothesis, an explanation for the unusually large brains of primates, posits that the size of social group typical of a species is directly related to the volume of its neocortex. To test whether this hypothesis also applies at the within-species level, we applied the Cavalieri method of stereology in conjunction with point counting on magnetic resonance images to determine the volume of prefrontal cortex (PFC) subfields, including dorsal and orbital regions. Path analysis in a sample of 40 healthy adult humans revealed a significant linear relationship between orbital (but not dorsal) PFC volume and the size of subjects' social networks that was mediated by individual intentionality (mentalizing) competences. The results support the social brain hypothesis by indicating a relationship between PFC volume and social network size that applies within species, and, more importantly, indicates that the relationship is mediated by social cognitive skills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号