首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The in vitro proliferation and differentiation of myeloid progenitor cells (CFU-c) in agar culture from CBA/Ca mouse bone marrow cells was studied. Density sub-populations of marrow cells were obtained by equilibrium centrifugation in continuous albumin density gradients. The formation of colonies of granulocytes and/or macrophages was studied under the influence of three types of colony-stimulating factor (CSF) from mouse lung conditioned medium CSFMLCM), post-endotoxin mouse serum (CSFES) and from human urine (CSFHu). The effect of the sulphydryl reagent mercaptoethanol on colony development was also examined. The density distribution of CFU-c was dependent on the type of CSF. Functional heterogeneity was found among CFU-c with partial discrimination between progenitor cells forming pure granulocytic colonies and those forming pure macro-phage colonies. Mercaptoethanol increased colony incidence but had no apparent effect on colony morphology or the density distribution of CFU-c.  相似文献   

2.
Equilibrium density centrifugation was used to characterise and separate subpopulations of mouse haemopoietic progenitor cells capable of producing colonies of granulocytes and macrophages in vitro. The material used to induce colony formation (CSF) was prepared from an extract of pregnant mouse uteri. This CSF preparation was found to be free of factors modifying the response. Under these culture conditions, in vitro colony forming cells (CFU-c) were found to be relatively homogeneous in their buoyant density. This homogeneity was independent of CSF concentration. A heterogeneous density profile of CFU-c was obtained when various cell fractions were cultured in the presence of CSF and rat blood lysate. The majority of the additional cells which responded to erythrocyte lysate were dense (modal density 1.080 g/cm3) compared to CFU-c which respond to CSF alone (modal density 1.074 g/cm3). It is concluded that in vitro colonies induced by CSF and in vitro colonies grown in the presence of CSF and erythrocyte lysate reflect two different populations of CFU-c.  相似文献   

3.
Medium conditioned by human peripheral blood leukocytes (HLCM) was studied for its in vitro effects on haemopoietic progenitor cells (CFU-s and CFU-c) present in mouse bone marrow. HLCM has poor colony stimulating activity in semi-solid cultures of mouse bone marrow cells, but invariably increases the number of colonies obtained in the presence of plateau levels of semi-purified colony stimulating factor (CSF). In liquid cultures, HLCM appears to contain a potent initiator of DNA synthesis in CFU-s, an activity which coincides with an increased CFU-s maintenance and causes a three- to four-fold increase in CFU-c number. It is apparent from this study that HLCM, in addition to stimulating colony formation in cultures of human bone marrow cells, has a profound in vitro effect on primitive haemopoietic progenitor cells of the mouse, which cannot be attributed to CSF.  相似文献   

4.
Medium conditioned by human peripheral blood leukocytes (HLCM) was studied for its in vitro effects on haemopoietic progenitor cells (CFU-s and CFU-c) present in mouse bone marrow. HLCM has poor colony stimulating activity in semi-solid cultures of mouse bone marrow cells. but invariably increases the number of colonies obtained in the presence of plateau levels of semi-purified colony stimulating factor (CSF). In liquid cultures, HLCM appears to contain a potent initiator of DNA synthesis in CFU-s. an activity which coincides with an increased CFU-s maintenance and causes a three- to four-fold increase in CFU-c number. It is apparent from this study that HLCM, in addition to stimulating colony formation in cultures of human bone marrow cells, has a profound in vitro effect on primitive haemopoietic progenitor cells of the mouse, which cannot be attributed to CSF.  相似文献   

5.
Isolation of colony stimulating factor from human milk   总被引:1,自引:0,他引:1  
Human milk contains colony stimulating factor (CSF), a polypeptide growth factor, which stimulates in in vitro bone marrow culture proliferation and differentiation of colony forming granulocytic macrophage progenitor cells (CFU-GM) to form colonies. This activity was not found in either bovine milk or colostrum when assayed in human or mouse bone marrow cells. The human milk CSF activity is destroyed by treatment with proteases. However, neither 6M urea, 4M guanidine hydrochloride, 5 mM dithiothreitol, nor exposure to pH 2 will inactivate the milk derived CSF. Gel filtration and isoelectric focusing indicate that human milk CSF differs biochemically from the other CSFs isolated from various sources and has a molecular weight between 250,000 and 240,000 and an isoelectric point between 4.4 and 4.9.  相似文献   

6.
Transforming growth factor beta 1 (TGF-beta 1) has been shown to inhibit bone marrow colony formation after in vitro treatment as well as after in vivo administration to normal mice. These data suggest that TGF-beta might either protect, or further depress, progenitor cell levels in mice exposed to a cell cycle-active drug such as 5-fluorouracil (5FU). rTGF-beta 1 was administered repeatedly by either the i.v. or i.p. routes to mice during the hyperproliferative state of the bone marrow that occurs 7 to 9 days after the i.v. administration of 150 mg/kg 5FU. The formation of both multilineage and the more differentiated (CFU-c) colonies was inhibited by 20 to 40%/culture, and 66 to 93%/mouse. When multiple doses of rTGF-beta 1 were administered systemically immediately before the injection of 5FU, the resulting rebound in the number of CFU-c and multilineage colonies containing granulocyte, erythroid, megakaryocyte, and macrophage lineage colonies per culture was markedly inhibited by 30 to 77%, whereas the total number of CFU per mouse was inhibited up to 93%. This effect was maximal when rTGF-beta 1 was administered at daily doses of greater than or equal to 5 micrograms/mouse for at least 3 days. This inhibition of the recovery of the bone marrow from 5FU treatment induced by rTGF-beta 1 was a delayed transient response because by day 16 the progenitor cell numbers and bone marrow cellularity were identical to the 5FU-treated marrow controls.  相似文献   

7.
Antisera to mouse brain reacts with hematopoietic stem cells in the mouse bone marrow. We have examined the effect of anti-mouse brain serum (AMBS) on the development of in vitro colonies from mouse bone marrow cells. The addition of 5% AMBS to the cultures markedly decreased the numbers of colonies formed to an average of 10% of the number obtained with normal rabbit serum. AMBS suppressed formation induced by colony stimulating factors (CSF) derived from three different sources; serum from endotoxin treated mice, mouse L-cell conditioned media, and human peripheral mononuclear cell conditioned media. The suppressive activity was quantitatively recovered in the IgG fraction of AMBS. Divalent F(ab')2 fragments were as effective as the intact IgG in decreasing colony formation. Fab fragments were not suppressive. These results suggest that colony formation is induced via a dynamic interaction between CSF and the progenitor cell membrane, and that antibody directed at cell membrane antigen(s) interferes with the generation of the induction signal.  相似文献   

8.
The progenitor cells of neutrophil granulocytes and macrophages which are able to proliferate and differentiate in vitro (CFU-c) form a heterogeneous population. By the use of specific colony stimulating activities and cell separation by equilibrium density centrifugation, three subpopulations of CFU-c can be detected. These three CFU-c are characterized by buoyant densities of 1.070, 1.075 and 1.080 g.cm?3 and by their proliferative response to 18 h postendotoxin serum, colony stimulating factor from extracts of mouse embryos and uteri (CSF-pmue) and erythrocyte lysate, respectively. The three CFU-c are compared with respect to their differentiation potential, the maturation rate of their progeny cells and their proliferation capacity. It is shown that with increasing density of the CFU-c the maturation rate increases (sequential maturation of colonies derived from CFU-c with densities of 1.080, 1.075, 1.070 g.cm?3) and the proliferation capacity decreases (colony size decreases in the sequence of CFU-c with densities 1.070, 1.075, 1.080 g.cm?3). Concerning the differentiation potential it is shown that all three CFU-c detected have the capacity to form granulocytes as well as macrophages. On the basis of these results it is concluded that the CFU-c with densities of 1.070, 1.075 and 1.080 g.cm?3 represent a maturation sequence.  相似文献   

9.
A monoclonal antibody specifically reactive with MLR-activated T cells (MLR2) was added to light density normal marrow cells, depleted of adherent cells and T lymphocytes, and plated in soft agar for granulocyte macrophage colony formation. Colonies from MLR2-treated marrow cells were reduced to less than 10% of expected growth. The inhibition was not complement dependent, did not require the continuous presence of MLR2 in culture, and could not be detected also when human placenta-conditioned medium was used in the place of leukocyte feeder layers as a source of colony-stimulating factor (CSF). Co-culture experiments with MLR2 treated and untreated marrow cells further excluded the possibility of an indirect effect of MLR2 on CFU-c via auxiliary cells. The results of this study suggest that myeloid progenitor cells express a lymphoid antigen that is absent on resting or activated B cells and on resting T cells, but is expressed on activated T cells.  相似文献   

10.
Summary Two continuous cell lines derived from long-term cultures of AKR mouse bone marrow adherent cells were isolated. These cell lines release colony stimulating activity (CSA), a factor that induces in vitro differentiation of granulocyte-macrophage progenitor cells. The colony forming cells and cluster forming cells in mouse marrow responsive to CSA from cell line conditioned medium were compared with those responsive to CSA from mouse lung conditioned medium (MLCM). Colony forming cells were characterized by analysis of their density distribution after equilibrium centrifugation in density gradient. Cluster forming cells were characterized by analyzing the progeny of individual clusters after transfer to fresh semisolid culture medium containing MLCM. The results obtained indicate that the CSA from cell line conditioned medium closely compares with the CSA from MLCM in terms of the populations of colony and cluster forming cells stimulated. This work was supported by a research grant from the Institut National de la Santé et de la Recherche Médicale (CRL 802620), Paris, France.  相似文献   

11.
Time- and dose-dependent patterns of depletion and regeneration of hemopoietic progenitor cells in mouse femora and spleens following treatment with the antileukemic agent Myleran (Busulphan, MY) were studied using the murine spleen colony system and the agar gel in vitro colony system. MY was found to depress granulopoiesis selectively, as manifested by the development of marked prolonged neutropenia, hypoplasia of the bone marrow and (to a lesser degree) of the spleen, reduction of the incidence of multipotential hemopoietic progenitor cells (CFU-S) and of granulocytic progenitor cells (CFU-C) in both femora and spleens, and impairment of the capacity of CFU-S from either tissue to generate granulocytic colonies in the spleens of irradiated hosts. The severity and duration was greatest at high dose levels of MY (800 microgram). The action of MY on CFU-S was more pronounced than that on CFU-C, suggesting that MY is a cycle-independent agent. Repopulation of the CFU-C pool preceded that of the CFU-S pool. Development of neutropenia and maximal marrow hypoplasia followed the onset of depression of CFU-S and CFU-C incidence, while recovery of normal nucleated cellularity in the blood, femur and spleen preceded repopulation of the CFU-S and CFU-C pools. MY treatment resulted in transitory stimulation of colony stimulating factor (CSF) generation by the femur but had no effect on serum CSF levels. The peak of femoral CSF generation coincided with the nadir of CFU-C depression. These findings indicated that the prolonged neutropenia following MY treatment was secondary to depletion of the progenitor cell pools, that during recovery granulopoietic repopulation took precedence over self-maintenance of the hemopoietic progenitor cell pools, and that increased generation of CSF may play a role in the early phase of granulopoietic recovery.  相似文献   

12.
The response and subsequent recovery of mouse haemopoietic progenitor cells (spleen colony forming cells and agar colony forming cells) has been studied following two cytotoxic agents. Busulphan was administered to normal mice and vinblastine to mice where the progenitor cell proliferation rate had been increased by a period of continuous γ-irradiation. With both these agents there is a difference between the response of the spleen colony forming cells and the agar colony forming cells during the first five days. They then recover together, but much more slowly after busulphan than after vinblastine even though their proliferation rate is increased. The rate of progenitor cell recovery after busulphan is increased if the progenitor cells are depleted further by vinblastine. However, methotrexate, which severely depletes the peripheral blood count and bone marrow cellularity but not the progenitor cells, has no effect on the recovery following busulphan. These results suggest that following cytotoxic agents the agar colony forming cells (“committed” stem cells) are not self-maintaining but are dependent on a supply of cells from the pluripotential spleen colony forming cells. In addition it appears that the depletion of the progenitor cells of the bone marrow and not the depletion of the maturing cells, provides a stimulus for stem cell recovery.  相似文献   

13.
Effects of okadaic acid, a potent non-12-O-tetradecanoyl-phorbol-13-acetate(TPA)-type tumor promoter, on mouse hemopoietic cells were investigated. Okadaic acid stimulated mouse bone marrow cells to form granulocyte-macrophage colony-forming unit (CFU-GM) colonies without added colony stimulating factors(CSFs). At the concentration of 1.82 x 10(-8) M, colony formation of 77 +/- 14 colonies/1 x 10(5) bone marrow cells was observed. Observations on the effects of other cells on the CSF induction suggested that okadaic acid primarily stimulated the functions of macrophages, and the CSF production from macrophages might be attributed to the CFU-GM colony formation. On the other hand, the erythroid colony-forming unit(CFU-E) colony formation stimulated by  相似文献   

14.
Time- and dose-dependent patterns of depletion and regeneration of hemopoietic progenitor cells in mouse femora and spleens following treatment with the antileukemic agent Myleran (Busulphan, MY) were studied using the murine spleen colony system and the agar gel in vitro colony system. MY was found to depress granulopoiesis selectively, as manifested by the development of marked prolonged neutropenia, hypoplasia of the bone marrow and (to a lesser degree) of the spleen, reduction of the incidence of multipotential hemopoietic progenitor cells (CFU-S) and of granulocytic progenitor cells (CFU-C) in both femora and spleens, and impairment of the capacity of CFU-S from either tissue to generate granulocytic colonies in the spleens of irradiated hosts. the severity and duration was greatest at high dose levels of MY (800 μ). the action of MY on CFU-S was more pronounced than that on CFU-C, suggesting that MY is a cycle-independent agent. Repopulation of the CFU-C pool preceded that of the CFU-S pool. Development of neutropenia and maximal marrow hypoplasia followed the onset of depression of CFU-S and CFU-C incidence, while recovery of normal nucleated cellularity in the blood, femur and spleen preceded repopulation of the CFU-S and CFU-C pools. MY treatment resulted in transitory stimulation of colony stimulating factor (CSF) generation by the femur but had no effect on serum CSF levels. the peak of femoral CSF generation coincided with the nadir of CFU-C depression. These findings indicated that the prolonged neutropenia following MY treatment was secondary to depletion of the progenitor cell pools, that during recovery granulopoietic repopulation took precedence over self-maintenance of the hemopoietic progenitor cell pools, and that increased generation of CSF may play a role in the early phase of granulopoietic recovery.  相似文献   

15.
This report examines the actions of IFN-gamma on monocytopoiesis in murine liquid and semisolid bone marrow cultures. The proliferative response of bone marrow cells to macrophage CSF and granulocyte-macrophage CSF was assayed by measuring [3H]TdR uptake in a range of mouse strains. No interstrain difference in kinetics was observed for CSF-1 action, but GM-CSF acted significantly more rapidly on C57B1/6, Swiss, and to a lesser extent A/J mice than on BALB/c or CBA. IFN-gamma inhibited [3H]TdR incorporation elicited by CSF-1, and to a much lesser extent, GM-CSF. When the two CSF were added together, the effects were not additive; in fact, the response was the same as that seen with GM-CSF alone. When IFN-gamma was also added, the response was restored to the level seen with CSF-1 alone. In essence, the inhibitory actions of GM-CSF and IFN-gamma were mutually exclusive. The mechanism of these actions was investigated using colony assays. As expected, CSF-1 caused the formation of pure macrophage colonies, whereas GM-CSF stimulated production of macrophage, granulocyte, and mixed granulocyte macrophage colonies. When the two CSF were added in combination, the total colony count was greater than with either alone, but less than additive. The number of pure macrophage colonies was reduced to the number seen with GM-CSF alone. IFN-gamma reduced the number of colonies in the presence of CSF-1, but slightly increased the number with GM-CSF. In the presence of both CSF, IFN-gamma increased the colony count by around 25 to 40%, so that the numbers were greater than the combined total of CSF-1 plus GM-CSF added separately. Similar results were obtained in all mouse strains tested. The results suggest that the thymidine uptake data reflect changes in the number of progenitor cells responding rather than changes in cell cycle time. The results are discussed in terms of the possibility that coadministration of GM-CSF and CSF-1 could ameliorate the myelosuppressive actions of IFN-gamma in vivo, leading to more effective use of this agent as a biologic response modifier.  相似文献   

16.
A rat monoclonal antibody, YBM/42, directed against mouse leukocyte common antigen, was used for the analysis and separation of hemopoietic progenitor cells from mouse bone marrow and fetal liver. Cells were fractionated on a FACS-II cell sorter and the resulting subpopulations examined for their morphology and ability to form colonies in agar (for day 7 colonies) and methylcellulose (for day 2 erythroid clones). The antibody bound to all leukocytes, including blast cells and day 7 hemopoietic progenitor cells (day 7 colony forming cells, CFC), but not to erythrocytes or nucleated erythroid cells. This antibody can be used to advantage to enrich for early progenitor cells from mouse fetal liver, in which the majority of cells (70%) are nucleated erythroid cells. In day 12 fetal liver, approximately 10% of all cells bind this antibody strongly and, of these approximately 70% are blast cells. Contained within this positive population are 95% of all day 7 CFC. In the most enriched fraction about 20% of the cells formed day 7 colonies. This represents a 25-fold enrichment over unsorted fetal liver. The negative fractions contain 94% of all cells forming erythroid clones (≥8 cells) on day 2 of culture (day 2 CFU-E). In the most enriched fraction, 20% of the cells are day 2 CFU-E. Day 7 CFC can therefore be well separated from day 2 CFU-E, with good recovery of both cell types, by use of a single label. Day 7 colony forming cells were classified as granulocyte (G-CFC), macrophage (M-CFC), mixed granulocyte/macrophage (GM-CFC), pure erythroid (E), or mixed erythroid (Emix). A high enrichment for multipotential cells is achieved and constitues 3–5% of cells in the most enriched fraction. Most types of day 7 CFC could not be separated with YMB/42, but GM-CFC and M-CFC exhibit a broader distribution than the other CFC with regard to fluorescence intensity. This implicit heterogeneity in GM-CFC and M-CFC is further substantiated by the finding that myeloid progenitors in the different FACS fractions also share a differential reactivity to different sources of growth factors.  相似文献   

17.
CFU-F circulating in cord blood   总被引:3,自引:0,他引:3  
CFU-F (colony forming units-fibroblast) were studied from cord blood and, as controls, from normal bone marrow of older children and adults. Numbers of CFU-F in cord blood buffy coat cells are lower by a factor of 10 in comparison to bone marrow CFU-F. Cytomorphology and staining with monoclonal antibody identify the progeny cells of CFU-F as fibroblasts. Cord blood CFU-F derived fibroblasts have properties supporting hematopoiesis: They produce CSF (colony stimulating factor) to which fresh cord blood CFU-GM (colony forming units-granulocytic, monocytic) react by colony formation in a dose-response manner. In addition, fibroblast colonies discharge clonogenic round cells into the medium forming CFU-GM and CFU-F colonies in secondary methyl cellulose cultures. We conclude that fetal blood contains clonogenic stromal cells (CFU-F) that give rise to fibroblasts with properties of hematopoietic support.  相似文献   

18.
Dialysable leucocyte extract (DLE) prepared from buffy coats of human blood, potentiates the effect of Colony-stimulating factor (CSF) on the growth of granulocyte-macrophage colony forming cell (GM-CFC) colonies in vitro. This relative increase of the number of colonies is apparent when diluted CSF (present in lung conditioning medium) as a control, and DLE, in a wide range of concentrations are added to the culture of mouse bone marrow cells. Fractionation of DLE on Amicon membranes revealed that the activity resides in molecules of 0-5kD. Molecules 5-10kD have no potentiating effect. DLE and its fractions (0-5kD, 0-1kD), except fractions 0-500 D and 5-10kD, when added undiluted i.e. at the initial concentration, exerted a suppressive effect: colonies are not formed despite the presence of CSF. In a pilot experiment, it was shown that DLE is able to stimulate colony-forming activity of earlier progenitors of erythroid cells (BFUe), under the influence of erythropoietin.  相似文献   

19.
We studied an immunotoxin consisting of recombinant ricin A chain (rRA) conjugated to 454A12 MoAb, a monoclonal antibody which recognizes an epitope on the human transferrin receptor, and compared the ability of 454A12 MoAb-rRA immunotoxin to inhibit the growth of erythroid burst-forming units (BFU-e) and myeloid colony-forming units (CFU-c) with unconjugated 454A12 MoAb. A significant reduction in BFU-e colony growth was observed at 0.001 microgram/ml of 454A12 MoAb-rRA versus 0.1 microgram/ml of unconjugated 454A12 MoAb (p = 0.005). Comparison of the effects of 454A12 MoAb-rRA and 454A12 MoAb on myeloid colony development gave markedly different results. Unconjugated antibody had no effect on CFU-c colony growth; in contrast, 0.01 microgram/ml of 454A12 MoAb-rRA reduced the number of colonies from 139 per 1 X 10(5) to 75 per 1 X 10(5) cells plated (p = 0.0005). No myeloid progenitor colonies developed at 0.1 microgram/ml of immunotoxin. These observations suggest that 454A12 MoAb-rRA inhibits growth by a potent, ricin A chain-mediated toxic effect on any proliferating cells expressing transferrin receptors, whereas the 454A12 MoAb exerts a selective inhibitory effect primarily on erythroid progenitors by perturbing the transferrin cycle. While growth factor receptors expressed on hematopoietic cells represent promising targets for immunotoxin therapy, our data indicate that an immunotoxin could inhibit cellular proliferation by a different mechanism than the corresponding unconjugated MoAb. Depending on the antibody used, these differences may be important in trials using immunotoxins for in vivo treatment or in vitro purging of malignant hematopoietic cells.  相似文献   

20.
Purified recombinant human B cell growth factor-1/IL-4 was evaluated, alone and in combination, with purified preparations of recombinant human (rhu) CSF or erythropoietin (Epo) for effects on colony formation by human bone marrow CFU-GM progenitor cells (GM) and burst forming unit-E progenitor cells. rhu IL-4 synergized with rhu G-CSF to enhance granulocyte colony formation, but had no effect on CFU-GM colony formation stimulated by rhu GM-CSF, rhu IL-3, or rhu CSF-1. Rhu IL-4 synergized with Epo to enhance BFU-E colony formation equal to that of Epo plus either rhu IL-3, rhu GM-CSF, or rhu G-CSF. Removal of adherent cells and T lymphocytes did not influence the synergistic activities of rhu IL-4. Rmu IL-4, synergized with rhu G-CSF, but not with rmu GM-CSF, rmu IL-3, or natural mu CSF-1, to enhance CFU-GM (mainly granulocyte) colony numbers by a greater than 90% pure preparation of murine CFU-GM. Also, rhu IL-4 at low concentrations enhanced release of CSF and at higher concentrations the release also of suppressor molecules from human monocytes and PHA-stimulated human T lymphocytes. Use of specific CSF antibodies suggested that rhu IL-4 was enhancing the release of G-CSF and CSF-1 from monocytes and the release of GM-CSF and possibly G-CSF from PHA-stimulated T lymphocytes. Use of antibodies for TNF-alpha, IFN-gamma, or TNF-beta as well as measurement of TNF and IFN titers suggested that the suppressor molecule(s) released from monocytes were acting with TNF-alpha and those released from PHA-stimulated T lymphocytes were acting with IFN-gamma. These results implicate B cell growth factor-1/IL-4 as a synergistic activity for hematopoietic progenitors and suggest that the actions can be on both progenitor and accessory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号