首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The appearance of human immunodeficiency virus type 1 (HIV-1) plasma viremia is associated with progression to symptomatic disease and CD4+ T cell depletion. To locate the source of systemic viremia, this study employed a novel method to trace HIV-1 infection in vivo. We created JRCSFξnef, a pool of infectious HIV-1 (strain JR-CSF) with highly mutated nef gene regions by random mutagenesis PCR and infected this mutated virus pool into both Jurkat-CCR5 cells and hematopoietic stem cell-transplanted humanized mice. Infection resulted in systemic plasma viremia in humanized mice and viral RNA sequencing helped us to identify multiple lymphoid organs such as spleen, lymph nodes, and bone marrow but not peripheral blood cells as the source of systemic viremia. Our data suggest that this method could be useful for the tracing of viral trafficking in vivo.  相似文献   

2.
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.  相似文献   

3.
We established four new mouse strains with defective T and B cells as well as defects in innate immunological reactions using an NK cell depletion antibody and showed that all mutant mouse strains efficiently received human peripheral blood leukocyte (PBL) engraftment (hu-PBL-scid mice). Higher levels of human immunodeficiency virus type 1 (HIV-1) replication were observed in these new hu-PBL-scid mice than in conventional hu-PBL-C.B-17-scid mice. In one particular strain, hu-PBL-NOD-scid mice, high levels of HIV-1 viremia (more than 10(6) 50% infectious doses per ml) were detected after infection with HIV-1. The plasma viral load was about 100 to 1,000 times higher than that observed in other hu-PBL-scid mice infected with HIV-1. Although high-level viremia did not correlate with the total amount of HIV-1 RNA in cells from infected mice, high levels of free virions were detected only in hu-PBL-NOD-scid mice. HIV-1 viremia induced systemic HIV-1 infection involving the liver, lungs, and brain. PCR in situ hybridization confirmed that HIV-1-infected cells invaded the brain tissue of the hu-PBL-NOD-scid mice. Our results suggest that the genetic background, including innate immunity, is critical in the development of primary HIV-1 viremia and subsequent central nervous system invasion with HIV-1. The hu-PBL-NOD-scid mouse represents a useful model for the study of the pathogenesis of HIV-1 in vivo, especially brain involvement, and therapy of primary HIV-1 viremia.  相似文献   

4.
The pathogenicity of four human immunodeficiency virus type 1 (HIV-1) isolates with nef deleted for SCID mice repopulated with human peripheral blood leukocytes (hu-PBL-SCID mice) was studied. Deletion of nef led to a substantial reduction in CD4-positive T-cell depletion and delayed kinetics of plasma viremia in infected hu-PBL-SCID mice. Deletion of the nef gene impacts both the efficiency of primary infection and the cytopathicity of virus for infected CD4-positive T cells in this animal model of HIV-1 infection.  相似文献   

5.
Small-animal models are needed to test human immunodeficiency virus (HIV) vaccine efficacy following viral challenge. To this end, we examined HIV-1-specific immune responses following immunization of nonobese diabetic-severe combined immunodeficient mice that were repopulated with human peripheral blood lymphocytes (hu-PBL-NOD/SCID mice). Autologous dendritic cells (DC) were transduced ex vivo with replication-defective, helper virus-free, herpes simplex virus type 1 (HSV-1) amplicons that expressed HIV-1 gp120 and were then injected into the hu-PBL-NOD/SCID mice. This resulted in primary HIV-1-specific humoral and cellular immune responses. Serum samples from vaccinated animals contained human immunoglobulin G that reacted with HIV-1 Env proteins by enzyme-linked immunosorbent assay and neutralized the infectivity of HIV-1 LAI and ADA strains. T cells isolated from the mice responded to viral antigens by producing gamma interferon when analyzed by enzyme-linked immunospot assay. Importantly, exposure of the vaccinated animals to infectious HIV-1 demonstrated partial protection against infectious HIV-1 challenge. This was reflected by a reduction in HIV-1(ADA) and by protection of the engrafted human CD4(+) T lymphocytes against HIV-1(LAI)-induced cytotoxicity. These data demonstrate that transduction of DC by HSV amplicon vectors expressing HIV-1 gp120 induce virus-specific immune responses in hu-PBL-NOD/SCID mice. This mouse model may be a useful tool to evaluate human immune responses and protection against viral infection following vaccination.  相似文献   

6.
In an attempt to generate a suitable animal model to study the infectivity and possible pathogenicity of human immunodeficiency viruses, we intravenously inoculated juvenile rhesus macaques and African green monkeys with a molecularly cloned virus, human immunodeficiency virus type 2 HIV-2sbl/isy, as well as with the uncloned HIV-2nih-z virus. Infection was monitored by virus recovery from the peripheral blood cells and by seroconversion against HIV-2 antigens measured by Western immunoblot, radioimmunoprecipitation, and enzyme-linked immunosorbent assay. We successfully infected two out of two macaques with the molecularly cloned virus and one macaque out of two with the HIV-2nih-z. No evidence of infection was seen in the African green monkeys with either virus. We followed the infected animals for 2 years. The animals remained healthy, although we observed intermittent lymphadenopathy and a transient decrease in the absolute number of circulating CD4+ T lymphocytes in both animals infected with the molecularly cloned virus. Virus isolation from the peripheral blood cells of the infected animals was successful only within the first few months after inoculation. Evidence of persistent infection was provided by the detection of proviral DNA by polymerase chain reaction analysis of the blood cells of the inoculated animals and by the stability of antiviral antibody titers. To evaluate the genetic drift of the proviral DNA, we molecularly cloned viruses which were reisolated 1 and 5 months postinoculation from one of these animals. Comparison of the DNA sequences of the envelope genes of both these isolates indicated that a low degree of variation (0.2%) in the envelope protein had occurred in vivo during the 5-month period. These data suggest that the use of HIV-2sbl/isy in rhesus macaques may represent a good animal model system to study prevention of viral infection. In particular, molecularly cloned virus can be manipulated for functional studies of viral genes in the pathogenesis of acquired immune deficiency syndrome and provides a reproducible source of virus for vaccine studies.  相似文献   

7.
We previously showed that broadly neutralizing anti-HIV-1 antibody 2G12 (human IgG1) naturally forms dimers that are more potent than monomeric 2G12 in in vitro neutralization of various strains of HIV-1. In this study, we have investigated the protective effects of monomeric versus dimeric 2G12 against HIV-1 infection in vivo using a humanized mouse model. Our results showed that passively transferred, purified 2G12 dimer is more potent than 2G12 monomer at preventing CD4 T cell loss and suppressing the increase of viral load following HIV-1 infection of humanized mice. Using humanized mice bearing IgG "backpack" tumors that provided 2G12 antibodies continuously, we found that a sustained dimer concentration of 5-25 μg/ml during the course of infection provides effective protection against HIV-1. Importantly, 2G12 dimer at this concentration does not favor mutations of the HIV-1 envelope that would cause the virus to completely escape 2G12 neutralization. We have therefore identified dimeric 2G12 as a potent prophylactic reagent against HIV-1 in vivo, which could be used as part of an antibody cocktail to prevent HIV-1 infection.  相似文献   

8.
The precise role of viral protein R (Vpr), an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5+ CD4+ T cells, which mainly consist of regulatory CD4+ T cells (Tregs), resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD), to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4+ T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5+ CD4+ T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection.  相似文献   

9.

Background

Worldwide, vaginal transmission now accounts for more than half of newly acquired HIV-1 infections. Despite the urgency to develop and implement novel approaches capable of preventing HIV transmission, this process has been hindered by the lack of adequate small animal models for preclinical efficacy and safety testing. Given the importance of this route of transmission, we investigated the susceptibility of humanized mice to intravaginal HIV-1 infection.

Methods and Findings

We show that the female reproductive tract of humanized bone marrow–liver–thymus (BLT) mice is reconstituted with human CD4+ T and other relevant human cells, rendering these humanized mice susceptible to intravaginal infection by HIV-1. Effects of HIV-1 infection include CD4+ T cell depletion in gut-associated lymphoid tissue (GALT) that closely mimics what is observed in HIV-1–infected humans. We also show that pre-exposure prophylaxis with antiretroviral drugs is a highly effective method for preventing vaginal HIV-1 transmission. Whereas 88% (7/8) of BLT mice inoculated vaginally with HIV-1 became infected, none of the animals (0/5) given pre-exposure prophylaxis of emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF) showed evidence of infection (Chi square = 7.5, df = 1, p = 0.006).

Conclusions

The fact that humanized BLT mice are susceptible to intravaginal infection makes this system an excellent candidate for preclinical evaluation of both microbicides and pre-exposure prophylactic regimens. The utility of humanized mice to study intravaginal HIV-1 transmission is particularly highlighted by the demonstration that pre-exposure prophylaxis can prevent intravaginal HIV-1 transmission in the BLT mouse model.  相似文献   

10.
Non-human primate models for acquired immunodeficiency syndrome (AIDS) are important for studies of prevention and intervention strategies. Ideally, such models would make use of human immunodeficiency virus type 1 (HIV-1) and animals that are readily available for research. HIV-1 was obtained from an infected macaque, and passaged sequentially in three groups of two Macaca nemestrina neonates each. Evidence for enhanced viral replication was first found in one of the group 2 animals, and in both group 3 animals. Observations that underlie this conclusion are sustained viral recovery from peripheral blood mononuclear cells (PBMCs), increased and accelerated production of antiviral antibodies, and the ability to detect plasma viral ribonucleic acid (RNA) months after infection. There was no evidence of CD4 depletion in any of the animals during the follow-up period. These data suggest that a useful non-human primate model for AIDS can be attained in pigtailed macaques ( M. nemestrina ).  相似文献   

11.
Non-human primate models for acquired immunodeficiency syndrome (AIDS) are important for studies of prevention and intervention strategies. Ideally, such models would make use of human immunodeficiency virus type 1 (HIV-1) and animals that are readily available for research. HIV-1 was obtained from an infected macaque, and passaged sequentially in three groups of two Macaca nemestrina neonates each. Evidence for enhanced viral replication was first found in one of the group 2 animals, and in both group 3 animals. Observations that underlie this conclusion are sustained viral recovery from peripheral blood mononuclear cells (PBMCs), increased and accelerated production of antiviral antibodies, and the ability to detect plasma viral ribonucleic acid (RNA) months after infection. There was no evidence of CD4 depletion in any of the animals during the follow-up period. These data suggest that a useful non-human primate model for AIDS can be attained in pigtailed macaques (M. nemestrina).  相似文献   

12.
Gammadelta T cells are primarily found in the gastrointestinal mucosa and play an important role in the first line of defense against viral, bacterial, and fungal pathogens. We sought to examine the impact of human immunodeficiency virus type 1 (HIV-1) infection on mucosal as well as peripheral blood gammadelta T-cell populations. Our results demonstrate that HIV-1 infection is associated with significant expansion of Vdelta1 and contraction of Vdelta2 cell populations in both the mucosa and peripheral blood. Such changes were observed during acute HIV-1 infection and persisted throughout the chronic phase, without apparent reversion after treatment with highly active antiretroviral therapy (HAART). Despite an increase in the expression of CCR9 and CD103 mucosal homing receptors on peripheral blood gammadelta T cells in infected individuals, mucosal and peripheral blood gammadelta T cells appeared to be distinct populations, as reflected by distinct CDR3 length polymorphisms and sequences in the two compartments. Although the underlying mechanism responsible for triggering the expansion of Vdelta1 gammadelta T cells remains unknown, HIV-1 infection appears to have a dramatic impact on gammadelta T cells, which could have important implications for HIV-1 pathogenesis.  相似文献   

13.
Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT) mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC) transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA). However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR). Here, we report that human CD4+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4+ T-cells ex vivo. Furthermore, levels of gene-marked CD4+ T-cells in peripheral blood increased despite systemic infection with either CXCR4- or CCR5- tropic HIV-1 in vivo. These results demonstrate that transplantation of HSPCs engineered with our combination shRNA vector may be a potential therapy against HIV disease.  相似文献   

14.
The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.  相似文献   

15.
16.
While human cells express potent antiviral proteins as part of the host defense repertoire, viruses have evolved their own arsenal of proteins to antagonize them. BST2 was identified as an inhibitory cellular protein of HIV-1 replication, which tethers virions to the cell surface to prevent their release. On the other hand, the HIV-1 accessory protein, Vpu, has the ability to downregulate and counteract BST2. Vpu also possesses the ability to downmodulate cellular CD4 and SLAMF6 molecules expressed on infected cells. However, the role of Vpu in HIV-1 infection in vivo remains unclear. Here, using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrate that Vpu contributes to the efficient spread of HIV-1 in vivo during the acute phase of infection. Although Vpu did not affect viral cytopathicity, target cell preference, and the level of viral protein expression, the amount of cell-free virions in vpu-deficient HIV-1-infected mice was profoundly lower than that in wild-type HIV-1-infected mice. We provide a novel insight suggesting that Vpu concomitantly downregulates BST2 and CD4, but not SLAMF6, from the surface of infected cells. Furthermore, we show evidence suggesting that BST2 and CD4 impair the production of cell-free infectious virions but do not associate with the efficiency of cell-to-cell HIV-1 transmission. Taken together, our findings suggest that Vpu downmodulates BST2 and CD4 in infected cells and augments the initial burst of HIV-1 replication in vivo. This is the first report demonstrating the role of Vpu in HIV-1 infection in an in vivo model.  相似文献   

17.
INTRODUCTION In addition to the prototypical retroviral Gag, Pol, and Env proteins, HIV-1 produces six additional proteins, i.e., Tat, Rev, Nef, Vif, Vpr and Vpu (Fig. 1, adapted from [1]). While Tat and Rev are required for viral replication, Nef, Vif, V…  相似文献   

18.
Genetic recombination contributes to the diversity of human immunodeficiency virus (HIV-1). Productive HIV-1 recombination is, however, dependent on both the number of HIV-1 genomes per infected cell and the genetic relationship between these viral genomes. A detailed analysis of the number of proviruses and their genetic relationship in infected cells isolated from peripheral blood and tissue compartments is therefore important for understanding HIV-1 recombination, genetic diversity and the dynamics of HIV-1 infection. To address these issues, we used a previously developed single-cell sequencing technique to quantify and genetically characterize individual HIV-1 DNA molecules from single cells in lymph node tissue and peripheral blood. Analysis of memory and naïve CD4+ T cells from paired lymph node and peripheral blood samples from five untreated chronically infected patients revealed that the majority of these HIV-1-infected cells (>90%) contain only one copy of HIV-1 DNA, implying a limited potential for productive recombination in virus produced by these cells in these two compartments. Phylogenetic analysis revealed genetic similarity of HIV-1 DNA in memory and naïve CD4+ T-cells from lymph node, peripheral blood and HIV-1 RNA from plasma, implying exchange of virus and/or infected cells between these compartments in untreated chronic infection.  相似文献   

19.
Humanized mice reconstituted with human hematopoietic cells have been developed as an experimental animal model for human immunodeficiency virus type 1 (HIV-1) infection. Myeloablative irradiation is usually performed to augment the engraftment of donor hematopoietic stem cells (HSCs) in recipient mice; however, some mouse strains are susceptible to irradiation, making longitudinal analysis difficult. We previously attempted to construct humanized NOD/SCID/JAK3null (hNOJ) mice, which were not irradiated prior to human HSC transplantation. We found that, over time, many of the reconstituted CD4+ T cells expanded with an activated effector memory phenotype. Therefore, the present study used hNOJ mice that were irradiated (hNOJ (IR+)) or not (hNOJ (IR−)) prior to human HSC transplantation to examine whether the development and cellularity of the reconstituted CD4+ T cells were influenced by the degree of chimerism, and whether they affected HIV-1 infectivity. Indeed, hNOJ (IR+) mice showed a greater degree of chimerism than hNOJ (IR−) mice. However, the conversion of CD4+ T cells to an activated effector memory phenotype, with a high percentage of cells showing Ki-67 expression, occurred in both hNOJ (IR+) and hNOJ (IR−) mice, probably as a result of lymphopenia-induced homeostatic expansion. Furthermore, when hNOJ (IR+) and hNOJ (IR−) mice, which were selected as naïve- and memory CD4+ T cell subset-rich groups, respectively, were infected with CCR5-tropic HIV-1 in vivo, virus replication (as assessed by the plasma viral load) was delayed; however, the titer subsequently reached a 1-log higher level in memory-rich hNOJ (IR−) mice than in naïve-rich hNOJ (IR+) mice, indicating that virus infectivity in hNOJ mice was affected by the different status of the reconstituted CD4+ T cells. Therefore, the hNOJ mouse model should be used selectively, i.e., according to the specific experimental objectives, to gain an appropriate understanding of HIV-1 infection/pathogenesis.  相似文献   

20.
T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice   总被引:1,自引:0,他引:1  
Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号