首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung inflammatory responses in the absence of infection are considered to be one of primary mechanisms of ventilator-induced lung injury. Here, we determined the role of calpain in the pathogenesis of lung inflammation attributable to mechanical ventilation. Male C57BL/6J mice were subjected to high (28 ml/kg) tidal volume ventilation for 2 h in the absence and presence of calpain inhibitor I (10 mg/kg). To address the isoform-specific functions of calpain 1 and calpain 2 during mechanical ventilation, we utilized a liposome-based delivery system to introduce small interfering RNAs targeting each isoform in pulmonary vasculature in vivo. Mechanical ventilation with high tidal volume induced rapid (within minutes) and persistent calpain activation and lung inflammation as evidenced by neutrophil recruitment, production of TNF-α and IL-6, pulmonary vascular hyperpermeability, and lung edema formation. Pharmaceutical calpain inhibition significantly attenuated these inflammatory responses caused by lung hyperinflation. Depletion of calpain 1 or calpain 2 had a protective effect against ventilator-induced lung inflammatory responses. Inhibition of calpain activity by means of siRNA silencing or pharmacological inhibition also reduced endothelial nitric oxide (NO) synthase (NOS-3)-mediated NO production and subsequent ICAM-1 phosphorylation following high tidal volume ventilation. These results suggest that calpain activation mediates early lung inflammation during ventilator-induced lung injury via NOS-3/NO-dependent ICAM-1 phosphorylation and neutrophil recruitment. Inhibition of calpain activation may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury.  相似文献   

2.
Although airway epithelial cells provide important barrier and host defense functions, a crucial role for these cells in development of acute lung inflammation and injury has not been elucidated. We investigated whether NF-kappaB pathway signaling in airway epithelium could decisively impact inflammatory phenotypes in the lungs by using a tetracycline-inducible system to achieve selective NF-kappaB activation or inhibition in vivo. In transgenic mice that express a constitutively active form of IkappaB kinase 2 under control of the epithelial-specific CC10 promoter, treatment with doxycycline induced NF-kappaB activation with consequent production of a variety of proinflammatory cytokines, high-protein pulmonary edema, and neutrophilic lung inflammation. Continued treatment with doxycycline caused progressive lung injury and hypoxemia with a high mortality rate. In contrast, inducible expression of a dominant inhibitor of NF-kappaB in airway epithelium prevented lung inflammation and injury resulting from expression of constitutively active form of IkappaB kinase 2 or Escherichia coli LPS delivered directly to the airways or systemically via an osmotic pump implanted in the peritoneal cavity. Our findings indicate that the NF-kappaB pathway in airway epithelial cells is critical for generation of lung inflammation and injury in response to local and systemic stimuli; therefore, targeting inflammatory pathways in airway epithelium could prove to be an effective therapeutic strategy for inflammatory lung diseases.  相似文献   

3.
Stimulator of interferon genes (STING) contributes to immune responses against tumors and may control viral infection including SARS-CoV-2 infection. However, activation of the STING pathway by airway silica or smoke exposure leads to cell death, self-dsDNA release, and STING/type I IFN dependent acute lung inflammation/ARDS. The inflammatory response induced by a synthetic non-nucleotide-based diABZI STING agonist, in comparison to the natural cyclic dinucleotide cGAMP, is unknown. A low dose of diABZI (1 µg by endotracheal route for 3 consecutive days) triggered an acute neutrophilic inflammation, disruption of the respiratory barrier, DNA release with NET formation, PANoptosis cell death, and inflammatory cytokines with type I IFN dependent acute lung inflammation. Downstream upregulation of DNA sensors including cGAS, DDX41, IFI204, as well as NLRP3 and AIM2 inflammasomes, suggested a secondary inflammatory response to dsDNA as a danger signal. DNase I treatment, inhibition of NET formation together with an investigation in gene-deficient mice highlighted extracellular DNA and TLR9, but not cGAS, as central to diABZI-induced neutrophilic response. Therefore, activation of acute cell death with DNA release may lead to ARDS which may be modeled by diABZI. These results show that airway targeting by STING activator as a therapeutic strategy for infection may enhance lung inflammation with severe ARDS. Open in a separate windowSTING agonist diABZI induces neutrophilic lung inflammation and PANoptosis A, Airway STING priming induce a neutrophilic lung inflammation with epithelial barrier damage, double-stranded DNA release in the bronchoalvelolar space, cell death, NETosis and type I interferon release. B, 1. The diamidobenzimidazole (diABZI), a STING agonist is internalized into the cytoplasm through unknown receptor and induce the activation and dimerization of STING followed by TBK1/IRF3 phosporylation leading to type I IFN response. STING activation also leads to NF-kB activation and the production of pro-inflammatory cytokines TNFα and IL-6. 2. The activation of TNFR1 and IFNAR1 signaling pathway results in ZBP1 and RIPK3/ASC/CASP8 activation leading to MLKL phosphorylation and necroptosis induction. 3. This can also leads to Caspase-3 cleavage and apoptosis induction. 4. Self-dsDNA or mtDNA sensing by NLRP3 or AIM2 induces inflammsome formation leading to Gasdermin D cleavage enabling Gasdermin D pore formation and the release mature IL-1β and pyroptosis. NLRP3 inflammasome formation can be enhanced by the ZBP1/RIPK3/CASP8 complex. 5. A second signal of STING activation with diABZI induces cell death and the release of self-DNA which is sensed by cGAS and form 2′3′-cGAMP leading to STING hyper activation, the amplification of TBK1/IRF3 and NF-kB pathway and the subsequent production of IFN-I and inflammatory TNFα and IL-6. This also leads to IFI204 and DDX41 upregulation thus, amplifying the inflammatory loop. The upregulation of apoptosis, pyroptosis and necroptosis is indicative of STING-dependent PANoptosis. Subject terms: Cell death and immune response, Respiratory tract diseases  相似文献   

4.
5.
Acute inflammatory responses are one of the major underlying mechanisms for tissue damage of multiple diseases, such as ischemia-reperfusion injury, sepsis, and acute lung injury. By use of cellular and molecular approaches and transgenic animals, Src protein tyrosine kinase (PTK) family members have been identified to be essential for the recruitment and activation of monocytes, macrophages, neutrophils, and other immune cells. Src PTKs also play a critical role in the regulation of vascular permeability and inflammatory responses in tissue cells. Importantly, animal studies have demonstrated that small chemical inhibitors for Src PTKs attenuate tissue injury and improve survival from a variety of pathological conditions related to acute inflammatory responses. Further investigation may lead to the clinical application of these inhibitors as drugs for ischemia-reperfusion injury (such as stroke and myocardial infarction), sepsis, acute lung injury, and multiple organ dysfunction syndrome.  相似文献   

6.
Tissue injury, mediated by pathologically elevated production and action of various serine- and matrix metalloproteinases (MMPs), is a hallmark of chronic inflammatory airway diseases (CIAD). CIAD includes such diseases as bronchial asthma, bronchiectasis, and chronic obstructive pulmonary disease. Tissue injury, as a consequence of chronic inflammation, can disturb the relevant repair mechanisms and also result in irreversible alteration of lung architecture. By use of proteomic methods, we analyzed proteinase cascades as an initiator of tissue destruction in CIAD. The present results revealed that elevated levels of MMP-8, -13, -14, and -2, mainly in active forms, can also be detected in CIAD BALFs. Enhanced levels of different active MMPs evidently reflect ongoing tissue-destructive inflammation and airway remodeling occurring in CIAD lung. An inverse correlation between BALF MMP-8 levels and activation degree and airflow obstruction in bronchial asthma tissue injury was shown for the first time. This strongly indicates that chronic peri-inflammatory tissue injury is a main cause of decline of lung functional capacity. Together, these data suggest that the serine and MMP proteinase network is an important feature in predicting clinical worsening of airway obstruction in CIAD. Activation of elevated MMPs seems to have a common profile for all studied CIAD, but different lung disorders react differently to ICS treatment.  相似文献   

7.
Ma X  Chang W  Zhang C  Zhou X  Yu F 《PloS one》2012,7(4):e34970
Panton-Valentine leukocidin (PVL) is a cytotoxin secreted by Staphylococcus aureus and associated with severe necrotizing infections. PVL targets polymorphonuclear leukocytes, especially neutrophils, which are the first line of defense against infections. Although PVL can induce neutrophil death by necrosis or apoptosis, the specific inflammatory responses of neutrophils to this toxin are unclear. In this study, both in vivo and in vitro studies demonstrated that recombinant PVL has an important cytotoxic role in human neutrophils, leading to apoptosis at low concentrations and necrosis at high concentrations. Recombinant PVL also increased the levels of pro-inflammatory cytokine secretion from neutrophils. The up-regulation of pro-inflammatory cytokines was due to nuclear factor-kappa B (NF-κB) activation induced by PVL. Moreover, blocking NF-κB inhibited the production of inflammatory cytokines. To test the role of neutrophil immune responses during the pathogenesis of PVL-induced acute lung injury, we used immunocompetent or neutropenic rabbits to develop a model of necrotizing pneumonia. Immunocompetent rabbits challenged with PVL demonstrated increased inflammation containing neutrophilic infiltrates. In addition, there were elevated levels of inflammatory cytokines (IL-6, IL-8, TNF-α and IL-10) and NF-κB in the lung homogenate. In contrast, the lung tissues from neutropenic rabbits contained mild or moderate inflammation, and the levels of inflammatory cytokines and NF-κB increased only slightly. Data from the current study support growing evidence that neutrophils play an important role in the pathogenesis of PVL-induced tissue injury and inflammation. PVL can stimulate neutrophils to release pro-inflammatory mediators, thereby causing an acute inflammatory response. The ability of PVL to induce inflammatory cytokine release may be associated with the activation of NF-κB or its pore-forming properties.  相似文献   

8.
9.
10.
Innate immunity as the first line of the immune system, provides initial protection against various pathogens and infections. Recent studies suggest a link between cell stress response and immune response upon exogenous insults in the lung. The key proteins in cellular stress responses were demonstrated to be involved in the activation and regulation of the immune signaling pathways. Further research on the function of these stress proteins in innate immunity defenses, particularly in pulmonary diseases and inflammation may help to clarify the disease pathogenesis and provide potential therapeutic treatments for various infectious and inflammatory lung diseases.  相似文献   

11.
当前因SARS-CoV-2感染而引起的2019新型冠状病毒肺炎(COVID-19)肆虐全球,严重危害人类健康。SARS-CoV-2感染性强,危重症患者死亡率高,尽管各种各样的治疗正在进行临床试验,但目前尚无有效的治疗方法。间充质干细胞(mesenchymal stem cell,MSC)在临床前试验中对多种疾病有良好的治疗效果,因而受到了广泛地关注。MSC可能利用分化潜能诱导分化成功能性肺样细胞、免疫调节与免疫细胞互作、抑制炎症来降低促炎细胞因子分泌、迁移和归巢靶向损伤肺部、抗病毒作用来减少肺上皮细胞中的病毒复制、产生细胞外囊泡来修复受损的组织,进而使COVID-19患者肺功能逐渐恢复正常,缓解并达到治疗COVID-19的目的。综合讨论了COVID-19的基本特征和当前主要治疗手段,同时总结了MSC在COVID-19中的临床研究和当前面临的挑战,探讨了MSC治疗COVID-19的应用前景,为MSC在COVID-19中的治疗提供了理论基础和现实依据。  相似文献   

12.
13.
The role of Toll-like receptors in non-infectious lung injury   总被引:2,自引:0,他引:2  
Jiang D  Liang J  Li Y  Noble PW 《Cell research》2006,16(8):693-701
The role of Toll-like receptors (TLRs) in pathogen recognition has been expeditiously advanced in recent years. However, investigations into the function of TLRs in non-infectious tissue injury have just begun. Previously, we and others have demonstrated that fragmented hyaluronan (HA) accumulates during tissue injury. CD44 is required to clear HA during tissue injury, and impaired clearance of HA results in unremitting inflammation. Additionally, fragmented HA stimulates the expression of inflammatory genes by inflammatory cells at the injury site. Recently, we identified that HA fragments require both TLR2 and TLR4 to stimulate mouse macrophages to produce inflammatory chemokines and cytokines. In a non-infectious lung injury model, mice deficient in both TLR2 and TLR4 show an impaired transepithelial migration of inflammatory cells, increased tissue injury, elevated lung epithelial cell apoptosis, and decreased survival. Lung epithelial cell overexpression of high molecular mass HA protected mice against acute lung injury and apoptosis, in part through TLR-dependent basal activation of NF-κB. The exaggerated injury in TLR2 and TLR4 deficient mice appears to be due to impaired HA-TLR interactions on epithelial cells. These studies identify that host matrix component HA and TLR interactions provide signals that initiate inflammatory responses, maintain epithelial cell integrity, and promote recovery from acute lung injury.  相似文献   

14.
Extracellular cyclophilins have been well described as chemotactic factors for various leukocyte subsets. This chemotactic capacity is dependent upon interaction of cyclophilins with the cell surface signaling receptor CD147. Elevated levels of extracellular cyclophilins have been documented in several inflammatory diseases. We propose that extracellular cyclophilins, via interaction with CD147, may contribute to the recruitment of leukocytes from the periphery into tissues during inflammatory responses. In this study, we examined whether extracellular cyclophilin-CD147 interactions might influence leukocyte recruitment in the inflammatory disease allergic asthma. Using a mouse model of asthmatic inflammation, we show that 1) extracellular cyclophilins are elevated in the airways of asthmatic mice; 2) mouse eosinophils and CD4+ T cells express CD147, which is up-regulated on CD4+ T cells upon activation; 3) cyclophilins induce CD147-dependent chemotaxis of activated CD4+ T cells in vitro; 4) in vivo treatment with anti-CD147 mAb significantly reduces (by up to 50%) the accumulation of eosinophils and effector/memory CD4+ T lymphocytes, as well as Ag-specific Th2 cytokine secretion, in lung tissues; and 5) anti-CD147 treatment significantly reduces airway epithelial mucin production and bronchial hyperreactivity to methacholine challenge. These findings provide a novel mechanism whereby asthmatic lung inflammation may be reduced by targeting cyclophilin-CD147 interactions.  相似文献   

15.
The classical tachykinin substance P (SP) has numerous potent neuroimmunomodulatory effects on all kinds of airway functions. Belonging to a class of neuromediators targeting not only residential cells but also inflammatory cells, studying SP provides important information on the bidirectional linkage between how neural function affects inflammatory events and, in turn, how inflammatory responses alter neural activity. Therefore, this study aimed to investigate the effect of local burn injury on inducing distant organ pulmonary SP release and its relevance to lung injury. Our results show that burn injury in male BALB/c mice subjected to 30% total body surface area full thickness burn augments significant production of SP, preprotachykinin-A gene expression, which encodes for SP, and biological activity of SP-neurokinin-1 receptor (NK1R) signaling. Furthermore, the enhanced SP-NK1R response correlates with exacerbated lung damage after burn as evidenced by increased microvascular permeability, edema, and neutrophil accumulation. The development of heightened inflammation and lung damage was observed along with increased proinflammatory IL-1beta, TNF-alpha, and IL-6 mRNA and protein production after injury in lung. Chemokines MIP-2 and MIP-1alpha were markedly increased, suggesting the active role of SP-induced chemoattractants production in trafficking inflammatory cells. More importantly, administration of L703606, a specific NK1R antagonist, 1 h before burn injury significantly disrupted the SP-NK1R signaling and reversed pulmonary inflammation and injury. The present findings show for the first time the role of SP in contributing to exaggerated pulmonary inflammatory damage after burn injury via activation of NK1R signaling.  相似文献   

16.
Proinflammatory responses generated by T helper type 1 (Th1) cells may contribute significantly to immune-mediated lung injury. We describe a murine model of Th1 cell-induced lung injury in which adoptive transfer of alloreactive Th1 cells produces pulmonary inflammation characterized by mononuclear cell vasculitis, alveolitis, and interstitial pneumonitis. To investigate the link between activation of Th1 cells in the lung and inflammatory cell recruitment, we characterized cytokine and chemokine mRNA expression in Th1 cells activated in vitro and in lung tissue after adoptive transfer of Th1 cells. Activated Th1 cells per se express mRNA for interferon (IFN)-gamma and several members of the tumor necrosis factor family as well as the C-C chemokine receptor-5 ligands regulated on activation normal T cells expressed and secreted and macrophage inflammatory protein-1alpha and -1beta. Additional chemokine genes were induced in the lung after Th1 cell administration, most notably IFN-gamma-inducible protein (IP-10) and monokine induced by IFN-gamma (MIG). Remarkable increases in IP-10- and MIG-immunoreactive proteins were present in inflammatory foci lung and identified in macrophages, endothelium, bronchial epithelium, and alveolar structures. The findings suggest that IFN-gamma-inducible chemokines are an important mechanism for amplifying inflammation initiated by Th1 cells in the lung.  相似文献   

17.
Chronic lung disease due to interstitial fibrosis can be a consequence of acute lung injury and inflammation. The inflammatory response is mediated through the migration of inflammatory cells, actions of proinflammatory cytokines, and the secretion of matrix-degrading proteinases. After the initial inflammatory insult, successful healing of the lung may occur, or alternatively, dysregulated tissue repair can result in scarring and fibrosis. On the basis of recent insights into the mechanisms underlying acute lung injury and its long-term consequences, data suggest that proteinases, such as the matrix metalloproteinases (MMPs), may not only be involved in the breakdown and remodeling that occurs during the injury but may also cause the release of growth factors and cytokines known to influence growth and differentiation of target cells within the lung. Through the release of and activation of fibrosis-promoting cytokines and growth factors such as transforming growth factor-beta1, tumor necrosis factor-alpha, and insulin-like growth factors by MMPs, we propose that these metalloproteinases may be integral to the initiation and progression of pulmonary fibrosis.  相似文献   

18.
BackgroundSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection-induced inflammatory responses are largely responsible for the death of novel coronavirus disease 2019 (COVID-19) patients. However, the mechanism by which SARS-CoV-2 triggers inflammatory responses remains unclear. Here, we aimed to explore the regulatory role of SARS-CoV-2 spike protein in infected cells and attempted to elucidate the molecular mechanism of SARS-CoV-2-induced inflammation.MethodsSARS-CoV-2 spike pseudovirions (SCV-2-S) were generated using the spike-expressing virus packaging system. Western blot, mCherry-GFP-LC3 labeling, immunofluorescence, and RNA-seq were performed to examine the regulatory mechanism of SCV-2-S in autophagic response. The effects of SCV-2-S on apoptosis were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Western blot, and flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the mechanism of SCV-2-S in inflammatory responses.ResultsAngiotensin-converting enzyme 2 (ACE2)-mediated SCV-2-S infection induced autophagy and apoptosis in human bronchial epithelial and microvascular endothelial cells. Mechanistically, SCV-2-S inhibited the PI3K/AKT/mTOR pathway by upregulating intracellular reactive oxygen species (ROS) levels, thus promoting the autophagic response. Ultimately, SCV-2-S-induced autophagy triggered inflammatory responses and apoptosis in infected cells. These findings not only improve our understanding of the mechanism underlying SARS-CoV-2 infection-induced pathogenic inflammation but also have important implications for developing anti-inflammatory therapies, such as ROS and autophagy inhibitors, for COVID-19 patients.  相似文献   

19.
Regulation of lung injury and repair by Toll-like receptors and hyaluronan   总被引:26,自引:0,他引:26  
Mechanisms that regulate inflammation and repair after acute lung injury are incompletely understood. The extracellular matrix glycosaminoglycan hyaluronan is produced after tissue injury and impaired clearance results in unremitting inflammation. Here we report that hyaluronan degradation products require MyD88 and both Toll-like receptor (TLR)4 and TLR2 in vitro and in vivo to initiate inflammatory responses in acute lung injury. Hyaluronan fragments isolated from serum of individuals with acute lung injury stimulated macrophage chemokine production in a TLR4- and TLR2-dependent manner. Myd88(-/-) and Tlr4(-/-)Tlr2(-/-) mice showed impaired transepithelial migration of inflammatory cells but decreased survival and enhanced epithelial cell apoptosis after lung injury. Lung epithelial cell-specific overexpression of high-molecular-mass hyaluronan was protective against acute lung injury. Furthermore, epithelial cell-surface hyaluronan was protective against apoptosis, in part, through TLR-dependent basal activation of NF-kappaB. Hyaluronan-TLR2 and hyaluronan-TLR4 interactions provide signals that initiate inflammatory responses, maintain epithelial cell integrity and promote recovery from acute lung injury.  相似文献   

20.
This paper reviews hypotheses about roles of angiogenesis in the pathogenesis of inflammatory disease in two organs, the synovial joint and the lung. Neovascularisation is a fundamental process for growth and tissue repair after injury. Nevertheless, it may contribute to a variety of chronic inflammatory diseases, including rheumatoid arthritis, osteoarthritis, asthma, and pulmonary fibrosis. Inflammation can promote angiogenesis, and new vessels may enhance tissue inflammation. Angiogenesis in inflammatory disease may also contribute to tissue growth, disordered tissue perfusion, abnormal ossification, and enhanced responses to normal or pathological stimuli. Angiogenesis inhibitors may reduce inflammation and may also help to restore appropriate tissue structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号