首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • 1.1. A blue carotenoprotein (λmax = 634 nm) containing astaxanthin as prosthetic group, was extracted and purified from the carapace of the crayfish Astacus leptodactylus.
  • 2.2. The blue carotenoprotein contained (3S,3′S)-astaxanthin, (3R,3′S, meso)-astaxanthin and (3R,3′R)-astaxanthin in relative ratio 38:41:21.
  • 3.3. The blue carotenoprotein had an approximate mol. wt of 440,000 (gel filtration) and 437,000 (gradient gel electrophoresis).
  • 4.4. Sodium dodecyl sulphate polyacrylamide gel electrophoresis indicated the presence of two polypeptides of 19,600 and 18,600 daltons, with different mobility in polyacrylamide gel electrophoresis in the presence of 6 M urea.
  • 5.5. At low ionic strength and in the presence of denaturing agents such as SDS, urea, extreme pH and heat, the blue complex showed a greater stability than most of the carotenoproteins studied to date.
  相似文献   

2.
(1) Only (R,S)2′,3′-epoxypropyl β-d-glucopyranoside of the complete series of mono (R,S)2′.3′-epoxypropyl ethers and glycosides of d-glucopyranose significantly inactivated yeast hexokinase.(2) (R,S)2′,3′-Epoxypropyl β-d-glucopyranoside inactivates yeast hexokinase in the absence of MgATP2?, The rate of inactivation is unaffected by MgATP2?.(3) The rate of inactivation of hexokinase with (R,S)2′,3′-epoxypropyl β-d-ilucopyranoside was much greater when hexokinase was present in a monomeric form than when it was present in a dimeric form.(4) (R,S)2′,3′-Epoxypropyl β-d-glucopyranoside has a high Kt (0.38 M) and at a saturating concentrarion, the first order rate constant for the inactivation of monomeric hexokinase is 8.3 · 10?4 sec.(5) d-Glucose protects against this inactivation and this was used to derive a dissocistion constant of 0.21 mM for d-glucose in the absence of MgATP2?.(6) The alkylation of yeast hexokinase by (R,S)2′,3′-epoxypropyl β-d-gluco-pyranoside was not specific to the active site. When the concentration of (R,S)2′,3′-epoxypropyl β-d-glucopyranoside was 50 mM two thiol groups outside the active site were also alkylated.(7) The reaction between 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and yeast hexokinase was examined in detail. Two thiol groups per monomer (mol. wt. 50000) reacted with a second order rate constant of 27 1 mole?1 sec?1. A third thiol group reacted more slowly with a second-order rate constant of 1.6 1 mole?1 sec?1 and a fourth thiol group reacted very slowly with inactivation of the enzyme. Tue second-order rate constant in this case was 0.1 1 mole?1 sec?1.  相似文献   

3.
Excised, opening inflorescences of Calendula officinalis incorporated (3RS, 5R)- and (3RS, 5S)-[2-14C,5-3H1]mevalonates into the carotenoid fraction. The 14C:3H ratios of lutein isolated from these tissues showed the hydrogen atom at C-3 of the β-ring is derived from the 5-pro-S position of mevalonate, while that at C-3 of the ε-ring is derived from the 5-pro-R position of mevalonate. Oxidation of lutein to monoketolutein showed that both hydrogen atoms at the C-15,15′ central double bond are derived from the 5-pro-R position of mevalonate.  相似文献   

4.
The 9-cis-isomers of antheraxanthin [(3S,5R,6S)-5,6-epoxy-5,6- dihydro-β, β-carotene-3,3′-diol] and lutein epoxide [(3S,5R,6S, 3′R,6′R)-5,6-epoxy-5,6-dihydro-β, ε-carotene-3,3′-diol] were found to occur without their 9′-cis counterparts in the non-photosynthetic tissues of several higher plants. 9-cis-lutein [(3R,3′R,6′R)- β,ε-carotene-3,3′-diol], on the other hand, was observed together with its 9′-cis counterpart in the samples investigated. The qualitative distribution of carotenoids is also reported.  相似文献   

5.
Easily solubilized carotenoid-containing proteins have been found in aqueous extracts from three genera of cyanobacteria. The three proteins have been purified, and the absorption spectra have been determined to be virtually identical with absorption maxima at 495 and 465 nm. During the purification the orange protein spontaneously changed to a red protein with a single, broad absorption maximum at 505 nm. The orange protein showed a molecular weight of 47 000 on gel filtration while that of the red protein was 26 700. Sodium dodecyl sulfate polacrylamide gel electrophoresis indicated a single polypeptide of Mr 16 000 in both the red and orange forms, but this method removed the chromophore from the proteins. The main carotenoid component of the complex was determined to be 3′-hydroxy-4-keto-ββ-carotenoid or 3′-hydroxyechinenone. The number of carotenoid molecules per molecule of orange protein of molecular weight 47 000 was between 20 and 40. The stoichiometry of carotenoid to protein seemed reasonably constant.  相似文献   

6.
The configurations of (6′R)-β,ε-carotene, (3′R,6′R)-β,ε-caroten-3′-ol (α-cryptoxanthin), (3R,3′R,6′R)-β,ε-carotene-3,3′-diol (lutein), (3R)-β,β-caroten-3-ol (β-cryptoxanthin), (3R,3′R)-β,β-carotene-3,3′-diol (zeaxanthin) and all-trans (3S,5R,6S,3′R)-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3′-diol (antheraxanthin) were established by CD and 1H NMR studies. The red algal carotenoids consequently possessed chiralities at each chiral center (C-3, C-5, C-6, C-3′, C-6′), corresponding to the chiralities established for the same carotenoids in higher plants. Two post mortem artifacts from Erythrotrichia carnea were assigned the chiral structures (3S,5R,8R,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8R)-mutatoxanthin] and (3S,5R,8S,3′R)-5,8-epoxy-5,8-dihydro-β,β-carotene-3,3′-diol [(8S)-mutatoxanthin]. This is the first well documented report of a naturally occurring β,ε-caroten-3′-ol (1H NMR, CD, chemical derivatization).  相似文献   

7.
The quantitative carotenoid composition of natural blooms of Oscillatoria rubescens and O. agardhii is reported and compared with previous isolations. Chemical or enzymatic conversion of oscillaxanthin to the chiral aglycone failed. CD-correlation of oscillaxanthin hexaacetate with (2S,2′S)-bacterioruberin, (2′R)-plectaniaxanthin and (2′R)-plectaniaxanthin-2′-β-D-glucoside tetraacetate support the 2R,2′R-configuration for oscillaxanthin.  相似文献   

8.
After the inactivation of yeast hexokinase with (R,S)2′,3′-epoxypropyl β-d-[U-14C]glucopyranoside (50 mM), four moles of this inhibitor were found to be bound per mole of hexokinase monomer (mol.wt., 50 000). The hexokinase inactivated in this way did not show any reaction with 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) in 8 M urea; this is consistent with the alkylation of four cysteine residues per monomer by (R,S)2′,3′-epoxypropyl β-d-glucopyranoside.Amino acid analyses of hexokinase which had been alkylated with (R,S)2′,3′-epoxypropyl β-d-glucopyranoside and then oxidised with performic acid gave evidence for the alkylation of two types of cysteine residue, one type reactive towards DTNB and not essential for enzyme activity, the other type less reactive towards DTNB and essential for enzyme activity.The presence of a cysteine residue in the binding site of d-glucose is proposed and a mechanism for the binding of d-glucose involving an intermediate covalent, d-glucose enzyme complex is suggested.  相似文献   

9.
A small Mr, protein from linseed meal has been isolated by CM-Sephadex chromatography. The protein was found to be homogeneous by the techniques of gel filtration, polyacrylamide gel electrophoresis and ultracentrifugation. It had S20,w value of 1.6S. Amino acid composition of the protein revealed a high amount of glutamic acid, cystine, arginine and glycine. The absorption spectrum of the protein consisted of a peak at 280 nm with a shoulder at 290 nm. The fluorescence emission maximum was at 340 nm. The protein contained large amounts of α-helix and β-structure. SDS-PAGE showed the protein to consist of a single polypeptide chain. The Mr estimated by Archibald's method, sedimentation-diffusion method and gel filtration was 17 000,16 000 and 15 000 respectively. Difference spectra studies as a function of pH and temperature showed no variation in the conformation of the protein, probably due to disulphide bridges.  相似文献   

10.
The scope and limitation of circular dichroism (CD) correlations of several C-2′ substituted monocyclic monochiral, homodichiral and heterodichiral carotenoids have been investigated, aiming at the assignment of absolute configuration at C-2′ by using the diester and 2′-β-d-tetraacetylglucosyl derivative of (2′R)-plectaniaxanthin and a synthetic chiral C45-carotene as key references. The correlations are based on the additivity hypothesis, the conformational rule and a comparison of CD spectra, preferably conservative ones. Quantitative aspects of the conformational rule are considered. Substituent effects at C-2′ and C-1′ have been studied. Absolute configurations are suggested for (2′)-phleixanthophyll (3S,2′S)-2′-hydroxyflexixanthin, (3R,2′S)-myxoxanthophyll, (3S,2′S-4-ketomyxoxanthophyll (3R,2′S)-myxol-2′-O-methyl methylpentoside and (2R,2′S)-Cp. 473 from relevant CD correlations. The chiralities of (2′S)-4-ketophleixanthophyll and (2R,6R,2′S)-A.g. 471 are suggested from biogenetic considerations. A chemosystematic consideration of chirality and source is included.  相似文献   

11.
Analysis of photosynthetic reaction centers from Rhodopseudomonas sphaeroides strains 2.4.1 and Ga shows that each contains approx. 1 mol of a specific carotenoid per mol of reaction center. In strain 2.4.1. the carotenoid is spheroidene (1-methoxy-3,4-didehydro-1,2,7′,8′-tetrahydro-ψ,ψ-carotene); in strain Ga, it is chloroxanthin (1-hydroxy-1,2,7′,8′-tetrahydro-ψ,ψ-carotene). The carotenoid is bound to the same pair of proteins as are the bacteriochlorophylls and bacteriopheophytins of the reaction center. This binding induces strong circular dichroism in the absorption bands of the carotenoid. The carotenoid is close enough to the other pigments of the reaction center so that light energy transfers efficiently from the carotenoid to the bacteriochlorophyll, sensitizing bacteriochlorophyll fluorescence. The fluorescence polarization spectrum of the reaction centers shows that the transition vectors for the visible absorption bands of the carotenoid lie approximately parallel to the 600 nm (Qx) transition of the bacteriochlorophyll complex.  相似文献   

12.
The chirality of plectaniaxanthin, a carotenoid vic. glycol from Plectania coccinea, could not be determined by the modified Horeau method. Chiroptical correlation of plectaniaxanthin acetonide and (2′S)-16′, 17′-dinorplectaniaxanthin acetonide was taken as proof of 2′R chirality for natural plectaniaxanthin and its mono- and diesters. The synthesis of the chiral model carotenoid was effected from d-mannitol via 2, 3-O-isopropylidene-d-glyceraldehyde as key synthon.  相似文献   

13.
The cytotoxic activities of sesquilignans, (7S,8S,7′R,8′R)- and (7R,8R,7′S,8′S)-morinol A and (7S,8S,7′S,8′S)- and (7R,8R,7′R,8′R)-morinol B were compared, showing no significant difference between stereoisomers (IC50 = 24–35 μM). As a next stage, the effect of substituents at 7, 7′, and 7″-aromatic ring on the activity was evaluated to find out the higher activity of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18 (IC50 = 6–7 μM). In the research on the structure–activity relationship of 7″-position of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18, the most potent compounds were 7,7′,7″-phenyl derivative 18 (IC50 = 6 μM) against HeLa cells. Against HL-60 cells, 7″-(4-nitrophenyl)-7,7′-phenyl derivative 33 and 7″-hexyl-7,7′-phenyl derivative 37 (IC50 = 5 μM) showed highest activity. We discovered the compounds showed four to sevenfold potent activity than that of natural (7S,8S,7′R,8′R)-morinol A. It was also confirmed that the 7′-benzylic hydroxy group have an important role for exhibiting activity, on the other hand, the resonance system of cinnamyl structure is not crucial for the potent activity.  相似文献   

14.
《Phytochemistry》1986,26(1):319-321
Fruits of Licaria armeniaca contain, besides eight known lignoids, three novel neolignans: (1S,5R,6S,7R,8R)-8-acetoxy-1-allyl-3,5-dimethoxy-7-methyl-6-(3′-methoxy-4′,5′-methylenedioxyphenyl)-4-oxobicyclo[3.2.1]oct-2-ene; (1S,5R,6S,7R)-1-allyl-3-methoxy-7-methyl-6-(3′-methoxy-4′,5′-methylenedioxyphenyl)-4,8-dioxobicyclo[3.2.1]oct-2-ene and (1S,5R,6S,7R)-1-allyl-3-methoxy-7-methyl-6-(3′,4′,5′-trimethoxyphenyl)-4,8-dioxobicyclo[3.2.1]oct-2-ene.  相似文献   

15.
The absolute configurations of heteroxanthin ((3S,5S,6S,3′R)- 7′,8′-didehydro-5,6-dihydro-β,β-carotene-3,5,3′,6′-tetrol) ex Euglena gracilis and of diadinoxanthin ((3S,5R,6S,3′R)-5,6-epoxy-7′,8′-didehydro-5,6-dihydro-β,β-carotene-3,3′-diol) from the same source have been established by chemical reactions, hydrogen bonding studies, 1H NMR and CD. Two previously unknown carotenoids (artefacts?) from Trollius europaeus, assigned the structures (3S,5S,6S,3′S,5′R,6′R)-6,7-didehydro-5,6,5′,6′-tetrahydro-β,β -carotene-3,5,6,3′,5′-pentol and its 5R epimer, served as useful models.  相似文献   

16.
The structural elucidation of the minor carotenoid sulfates from the marine sponge lanthella basta is discussed in context with the structure assigned to the major sulfate bastaxanthin (c; 3,19,17′-trihydroxy-7,8-didehydro-β-κ-carotene-3′,6′-dione 3-sulfate. Plausible structures are assigned to other bastaxanthins (b,b2, c2, d, e and f) on the basis of electroic, IR, 1H NMR, mass and CD spectra, electrophoretic behaviour, chemical derivatization and enzymatic or acid-catalysed hydrolysis. The minor sulfates represent structural variation in the cylopentane end group with different oxidation levels. Bastaxanthol b (desulfated bastaxanthin b) was a minor carotenoid constituent of l. basta. Including tentative chiralities, the structures favoured for the bastaxanthins are: c2, (3R,3′R, 5′R)-3,19,3′-trihydroxy-7,8-didehydro-β,κ-caroten-6′-one 3-sulfate; b2, (3R,3′R,5′R)-3, 19-dihydroxy-7,8-didehydro-β,κ- dione 3-sulfate; b, (3R,1′R, 5′R)-3, 19-dihydroxy 3′,6′-dioxo-7,8-didehydro-β,κ-caroten-17′-al 3-sulfate; d. (3R,1′R,3′R,5′R)-3, 19,3′,17′-tetrahydroxy 7,8 didehydro-β,κ-caroten-6′-one 3-sulfate; e. hydrogen (3R,1′R,5′R)-3, 19-dihydroxy-3′,6′-dioxo-7,8-didehydro-β,κ-caroten-17′-oate 3 sulfate (?); and f, hydrogen (3R.1′R,3′R,5′R)-3,19,3′-trihydroxy-7,8-didehydro-6′-oxo-β,κ-caroten-17′-oate 3-sulfate; for bastaxanthol b(3R.1′R.5′R)-3, 19-dihydroxy-3′,6′-dioxo-7,8-didehydro-β,κ-caroten-17′-al. The bastaxanthins are considered as metabolic products of l. basta, diadinoxanthin of phytoplankton origin representing a plausiable precursor.  相似文献   

17.
Seven neolignans, isolated from a C6H6 extract of Nectandra miranda (Lauraceae) trunk wood, included the hitherto undescribed (2S, 3S, 3aS)- and (2S, 3S, 3aR)-5-allyl-3a-methoxy-2-(3′, 4′, 5′-trimethoxyphenyl)-3-methyl-2, 3, 3a, 6-tetrahydro-6-oxobenzofurans (respectively mirandin-A and mirandin -B), 7-allyl-6-hydroxy-5-methoxy-2-(3′, 4′, 5′-trimethoxyphenyl)-3-methylbenzofuran and (2R, 3R)-7-methoxy-2-(3′, 4′, 5′-trimethoxyphenyl)-3-methyl-5 -(E)-propenyl-2, 3-dihydrobenzofuran (licarin C).  相似文献   

18.
《Phytochemistry》1987,26(4):1155-1158
The stem bark of Ocotea veraguensis has yielded nine neolignans of which five appear to be novel. The new neolignans, which were identified on the basis of spectral characteristics, are* (7S,8R,1′S,2′S,3′R,4′S)-Δ8′-2′,4′-dihydroxy-3,3′5′-trimethoxy-4,5-methylenedioxy-1′,2′,3′,4′-tetrahydro-7.3′,8.1′-neolignan, (7S,8R,1′S,3′S,4′S)-Δ8′-4,4'-dihydroxy-3,3′,5′-trimethoxy-1′,2′,3′,4′-tetrahydro-2′-oxo-7.3′,8.1′-neolignan, (7S,8S,1′R)-Δ8′-3′,5′-dimethoxy-3,4-methylenedioxy-1′,4′-dihydro-4′-oxo-7.0.2′,8.1′-neolignan, (7S,8S,1′R )-Δ8′-1′-methoxy-3,4-methylenedioxy-1′,6′-dihydro-6′-oxo-7.0.4′,8.3′-neolignan and (7S,8S)-Δ8′-2′,6′-dimethoxy-3,4-methylenedioxy-7.0.3′,8.4′,1′.0.7′-neolignan.  相似文献   

19.
The chirality of eschscholtzxanthin (all-trans (3S,3′S)-4′,5′-didehydro-4,5′-retro-β,βcarotene-3,3′-diol) at 3,3′ was assigned from the CD correlation of the natural material and the semi-synthetic carotenoid prepared by (NBS-dehydrogenation of natural zeaxanthin ((3R,3′R)-β,β-carotene-3,3′-diol). The δ6(6′)-trans configuration followed from 1H NMR evidence, including nuclear Overhauser experiments with rhodoxanthin, retrodehydro-carotene (4′,5′-didehydro-4,5′-retro-β,β-carotene) and smaller retro model compounds revealing a general preference for the δ6-trans configuration in retro compounds. Biosynthetic considerations are made.  相似文献   

20.
A new cis isomer in the violaxanthin series has been isolated from the blossoms of Viola tricolor and identified by MS, IR and UV as the central-monocis form. It was converted to all-trans-violaxanthin by stereomutation. The CD correlation between 15-cis-violaxanthin and natural violaxanthin (5,6,5′,6′-diepoxy-5,6,5′,6′-tetrahydro- β,β-caroten-3,3′-diol) provided the basis for assignment of the absolute configurations 3S, 5R, 6S, 3′S, 5′R, 6′S. Trans—cis isomerization of all-trans-violaxanthin also resulted in 15- cis-violaxanthin. In addition a quantitative determination of the carotenoids was conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号