首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Late-onset Alzheimer’s disease (LOAD) is the most common type of dementia causing irreversible brain damage to the elderly and presents a major public health challenge. Clinical research and genome-wide association studies have suggested a potential contribution of the endocytic pathway to AD, with an emphasis on common loci. However, the contribution of rare variants in this pathway to AD has not been thoroughly investigated. In this study, we focused on the effect of rare variants on AD by first applying a rare-variant gene-set burden analysis using genes in the endocytic pathway on over 3,000 individuals with European ancestry from three large whole-genome sequencing (WGS) studies. We identified significant associations of rare-variant burden within the endocytic pathway with AD, which were successfully replicated in independent datasets. We further demonstrated that this endocytic rare-variant enrichment is associated with neurofibrillary tangles (NFTs) and age-related phenotypes, increasing the risk of obtaining severer brain damage, earlier age-at-onset, and earlier age-of-death. Next, by aggregating rare variants within each gene, we sought to identify single endocytic genes associated with AD and NFTs. Careful examination using NFTs revealed one significantly associated gene, ANKRD13D. To identify functional associations, we integrated bulk RNA-Seq data from over 600 brain tissues and found two endocytic expression genes (eGenes), HLA-A and SLC26A7, that displayed significant influences on their gene expressions. Differential expressions between AD patients and controls of these three identified genes were further examined by incorporating scRNA-Seq data from 48 post-mortem brain samples and demonstrated distinct expression patterns across cell types. Taken together, our results demonstrated strong rare-variant effect in the endocytic pathway on AD risk and progression and functional effect of gene expression alteration in both bulk and single-cell resolution, which may bring more insight and serve as valuable resources for future AD genetic studies, clinical research, and therapeutic targeting.  相似文献   

4.
The tumor microenvironment (TME), which characterizes the tumor and its surroundings, plays a critical role in understanding cancer development and progression. Recent advances in imaging techniques enable researchers to study spatial structure of the TME at a single-cell level. Investigating spatial patterns and interactions of cell subtypes within the TME provides useful insights into how cells with different biological purposes behave, which may consequentially impact a subject’s clinical outcomes. We utilize a class of well-known spatial summary statistics, the K-function and its variants, to explore inter-cell dependence as a function of distances between cells. Using techniques from functional data analysis, we introduce an approach to model the association between these summary spatial functions and subject-level outcomes, while controlling for other clinical scalar predictors such as age and disease stage. In particular, we leverage the additive functional Cox regression model (AFCM) to study the nonlinear impact of spatial interaction between tumor and stromal cells on overall survival in patients with non-small cell lung cancer, using multiplex immunohistochemistry (mIHC) data. The applicability of our approach is further validated using a publicly available multiplexed ion beam imaging (MIBI) triple-negative breast cancer dataset.  相似文献   

5.
Non-small-cell lung cancer (NSCLC) accounts for most cancer-related deaths worldwide. Liquid biopsy by a blood draw to detect circulating tumor cells (CTCs) is a tool for molecular profiling of cancer using single-cell and next-generation sequencing (NGS) technologies. The aim of the study was to identify somatic variants in single CTCs isolated from NSCLC patients by targeted NGS. Thirty-one subjects (20 NSCLC patients, 11 smokers without cancer) were enrolled for blood draws (7.5 mL). CTCs were identified by immunofluorescence, individually retrieved, and DNA-extracted. Targeted NGS was performed to detect somatic variants (single-nucleotide variants (SNVs) and insertions/deletions (Indels)) across 65 oncogenes and tumor suppressor genes. Cancer-associated variants were classified using OncoKB database. NSCLC patients had significantly higher CTC counts than control smokers (p = 0.0132; Mann–Whitney test). Analyzing 23 CTCs and 13 white blood cells across seven patients revealed a total of 644 somatic variants that occurred in all CTCs within the same subject, ranging from 1 to 137 per patient. The highest number of variants detected in ≥1 CTC within a patient was 441. A total of 18/65 (27.7%) genes were highly mutated. Mutations with oncogenic impact were identified in functional domains of seven oncogenes/tumor suppressor genes (NF1, PTCH1, TP53, SMARCB1, SMAD4, KRAS, and ERBB2). Single CTC-targeted NGS detects heterogeneous and shared mutational signatures within and between NSCLC patients. CTC single-cell genomics have potential for integration in NSCLC precision oncology.  相似文献   

6.
7.
8.
Next-generation sequencing (NGS) technologies provide the potential for developing high-throughput and low-cost platforms for clinical diagnostics. A limiting factor to clinical applications of genomic NGS is downstream bioinformatics analysis for data interpretation. We have developed an integrated approach for end-to-end clinical NGS data analysis from variant detection to functional profiling. Robust bioinformatics pipelines were implemented for genome alignment, single nucleotide polymorphism (SNP), small insertion/deletion (InDel), and copy number variation (CNV) detection of whole exome sequencing (WES) data from the Illumina platform. Quality-control metrics were analyzed at each step of the pipeline by use of a validated training dataset to ensure data integrity for clinical applications. We annotate the variants with data regarding the disease population and variant impact. Custom algorithms were developed to filter variants based on criteria, such as quality of variant, inheritance pattern, and impact of variant on protein function. The developed clinical variant pipeline links the identified rare variants to Integrated Genome Viewer for visualization in a genomic context and to the Protein Information Resource’s iProXpress for rich protein and disease information. With the application of our system of annotations, prioritizations, inheritance filters, and functional profiling and analysis, we have created a unique methodology for downstream variant filtering that empowers clinicians and researchers to interpret more effectively the relevance of genomic alterations within a rare genetic disease.  相似文献   

9.
Sequencing projects have identified large numbers of rare stop-gain and frameshift variants in the human genome. As most of these are observed in the heterozygous state, they test a gene’s tolerance to haploinsufficiency and dominant loss of function. We analyzed the distribution of truncating variants across 16,260 autosomal protein coding genes in 11,546 individuals. We observed 39,893 truncating variants affecting 12,062 genes, which significantly differed from an expectation of 12,916 genes under a model of neutral de novo mutation (p<10−4). Extrapolating this to increasing numbers of sequenced individuals, we estimate that 10.8% of human genes do not tolerate heterozygous truncating variants. An additional 10 to 15% of truncated genes may be rescued by incomplete penetrance or compensatory mutations, or because the truncating variants are of limited functional impact. The study of protein truncating variants delineates the essential genome and, more generally, identifies rare heterozygous variants as an unexplored source of diversity of phenotypic traits and diseases.  相似文献   

10.
Untranslated gene regions (UTRs) play an important role in controlling gene expression. 3′-UTRs are primarily targeted by microRNA (miRNA) molecules that form complex gene regulatory networks. Cancer genomes are replete with non-coding mutations, many of which are connected to changes in tumor gene expression that accompany the development of cancer and are associated with resistance to therapy. Therefore, variants that occurred in 3′-UTR under cancer progression should be analysed to predict their phenotypic effect on gene expression, e.g., by evaluating their impact on miRNA target sites. Here, we analyze 3′-UTR variants in DICER1 and DROSHA genes in the context of myelodysplastic syndrome (MDS) development. The key features of this analysis include an assessment of both “canonical” and “non-canonical” types of mRNA-miRNA binding and tissue-specific profiling of miRNA interactions with wild-type and mutated genes. As a result, we obtained a list of DICER1 and DROSHA variants likely altering the miRNA sites and, therefore, potentially leading to the observed tissue-specific gene downregulation. All identified variants have low population frequency consistent with their potential association with pathology progression.  相似文献   

11.
In many human fungal pathogens, genes required for disease remain largely unannotated, limiting the impact of virulence gene discovery efforts. We tested the utility of a cross-species genetic interaction profiling approach to obtain clues to the molecular function of unannotated pathogenicity factors in the human pathogen Cryptococcus neoformans. This approach involves expression of C. neoformans genes of interest in each member of the Saccharomyces cerevisiae gene deletion library, quantification of their impact on growth, and calculation of the cross-species genetic interaction profiles. To develop functional predictions, we computed and analyzed the correlations of these profiles with existing genetic interaction profiles of S. cerevisiae deletion mutants. For C. neoformans LIV7, which has no S. cerevisiae ortholog, this profiling approach predicted an unanticipated role in the Golgi apparatus. Validation studies in C. neoformans demonstrated that Liv7 is a functional Golgi factor where it promotes the suppression of the exposure of a specific immunostimulatory molecule, mannose, on the cell surface, thereby inhibiting phagocytosis. The genetic interaction profile of another pathogenicity gene that lacks an S. cerevisiae ortholog, LIV6, strongly predicted a role in endosome function. This prediction was also supported by studies of the corresponding C. neoformans null mutant. Our results demonstrate the utility of quantitative cross-species genetic interaction profiling for the functional annotation of fungal pathogenicity proteins of unknown function including, surprisingly, those that are not conserved in sequence across fungi.  相似文献   

12.
Many individuals tested for inherited cancer susceptibility at the BRCA1 gene locus are discovered to have variants of unknown clinical significance (UCVs). Most UCVs cause a single amino acid residue (missense) change in the BRCA1 protein. They can be biochemically assayed, but such evaluations are time-consuming and labor-intensive. Computational methods that classify and suggest explanations for UCV impact on protein function can complement functional tests. Here we describe a supervised learning approach to classification of BRCA1 UCVs. Using a novel combination of 16 predictive features, the algorithms were applied to retrospectively classify the impact of 36 BRCA1 C-terminal (BRCT) domain UCVs biochemically assayed to measure transactivation function and to blindly classify 54 documented UCVs. Majority vote of three supervised learning algorithms is in agreement with the assay for more than 94% of the UCVs. Two UCVs found deleterious by both the assay and the classifiers reveal a previously uncharacterized putative binding site. Clinicians may soon be able to use computational classifiers such as those described here to better inform patients. These classifiers can be adapted to other cancer susceptibility genes and systematically applied to prioritize the growing number of potential causative loci and variants found by large-scale disease association studies.  相似文献   

13.
As large-scale re-sequencing of genomes reveals many protein mutations, especially in human cancer tissues, prediction of their likely functional impact becomes important practical goal. Here, we introduce a new functional impact score (FIS) for amino acid residue changes using evolutionary conservation patterns. The information in these patterns is derived from aligned families and sub-families of sequence homologs within and between species using combinatorial entropy formalism. The score performs well on a large set of human protein mutations in separating disease-associated variants (∼19 200), assumed to be strongly functional, from common polymorphisms (∼35 600), assumed to be weakly functional (area under the receiver operating characteristic curve of ∼0.86). In cancer, using recurrence, multiplicity and annotation for ∼10 000 mutations in the COSMIC database, the method does well in assigning higher scores to more likely functional mutations (‘drivers’). To guide experimental prioritization, we report a list of about 1000 top human cancer genes frequently mutated in one or more cancer types ranked by likely functional impact; and, an additional 1000 candidate cancer genes with rare but likely functional mutations. In addition, we estimate that at least 5% of cancer-relevant mutations involve switch of function, rather than simply loss or gain of function.  相似文献   

14.
Groupwise functional analysis of gene variants is becoming standard in next-generation sequencing studies. As the function of many genes is unknown and their classification to pathways is scant, functional associations between genes are often inferred from large-scale omics data. Such data types—including protein–protein interactions and gene co-expression networks—are used to examine the interrelations of the implicated genes. Statistical significance is assessed by comparing the interconnectedness of the mutated genes with that of random gene sets. However, interconnectedness can be affected by confounding bias, potentially resulting in false positive findings. We show that genes implicated through de novo sequence variants are biased in their coding-sequence length and longer genes tend to cluster together, which leads to exaggerated p-values in functional studies; we present here an integrative method that addresses these bias. To discern molecular pathways relevant to complex disease, we have inferred functional associations between human genes from diverse data types and assessed them with a novel phenotype-based method. Examining the functional association between de novo gene variants, we control for the heretofore unexplored confounding bias in coding-sequence length. We test different data types and networks and find that the disease-associated genes cluster more significantly in an integrated phenotypic-linkage network than in other gene networks. We present a tool of superior power to identify functional associations among genes mutated in the same disease even after accounting for significant sequencing study bias and demonstrate the suitability of this method to functionally cluster variant genes underlying polygenic disorders.  相似文献   

15.
Understanding the functional impact of cancer somatic mutations represents a critical knowledge gap for implementing precision oncology. It has been increasingly appreciated that the interaction profile mediated by a genomic mutation provides a fundamental link between genotype and phenotype. However, specific effects on biological signaling networks for the majority of mutations are largely unknown by experimental approaches. To resolve this challenge, we developed e-MutPath (edgetic Mutation-mediated Pathway perturbations), a network-based computational method to identify candidate ‘edgetic’ mutations that perturb functional pathways. e-MutPath identifies informative paths that could be used to distinguish disease risk factors from neutral elements and to stratify disease subtypes with clinical relevance. The predicted targets are enriched in cancer vulnerability genes, known drug targets but depleted for proteins associated with side effects, demonstrating the power of network-based strategies to investigate the functional impact and perturbation profiles of genomic mutations. Together, e-MutPath represents a robust computational tool to systematically assign functions to genetic mutations, especially in the context of their specific pathway perturbation effect.  相似文献   

16.
17.

Background

Genetic association studies are conducted to discover genetic loci that contribute to an inherited trait, identify the variants behind these associations and ascertain their functional role in determining the phenotype. To date, functional annotations of the genetic variants have rarely played more than an indirect role in assessing evidence for association. Here, we demonstrate how these data can be systematically integrated into an association study’s analysis plan.

Results

We developed a Bayesian statistical model for the prior probability of phenotype–genotype association that incorporates data from past association studies and publicly available functional annotation data regarding the susceptibility variants under study. The model takes the form of a binary regression of association status on a set of annotation variables whose coefficients were estimated through an analysis of associated SNPs in the GWAS Catalog (GC). The functional predictors examined included measures that have been demonstrated to correlate with the association status of SNPs in the GC and some whose utility in this regard is speculative: summaries of the UCSC Human Genome Browser ENCODE super–track data, dbSNP function class, sequence conservation summaries, proximity to genomic variants in the Database of Genomic Variants and known regulatory elements in the Open Regulatory Annotation database, PolyPhen–2 probabilities and RegulomeDB categories. Because we expected that only a fraction of the annotations would contribute to predicting association, we employed a penalized likelihood method to reduce the impact of non–informative predictors and evaluated the model’s ability to predict GC SNPs not used to construct the model. We show that the functional data alone are predictive of a SNP’s presence in the GC. Further, using data from a genome–wide study of ovarian cancer, we demonstrate that their use as prior data when testing for association is practical at the genome–wide scale and improves power to detect associations.

Conclusions

We show how diverse functional annotations can be efficiently combined to create ‘functional signatures’ that predict the a priori odds of a variant’s association to a trait and how these signatures can be integrated into a standard genome–wide–scale association analysis, resulting in improved power to detect truly associated variants.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-398) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
In order to foster the systematic identification of novel genes with important functional roles in pancreatic cancer, we have devised a multi-stage screening strategy to provide a rational basis for the selection of highly relevant novel candidate genes based on the results of functional high-content analyses. The workflow comprised three consecutive stages: 1) serial gene expression profiling analyses of primary human pancreatic tissues as well as a number of in vivo and in vitro models of tumor-relevant characteristics in order to identify genes with conspicuous expression patterns; 2) use of ‘reverse transfection array’ technology for large-scale parallelized functional analyses of potential candidate genes in cell-based assays; and 3) selection of individual candidate genes for further in-depth examination of their cellular roles. A total of 14 genes, among them 8 from “druggable” gene families, were classified as high priority candidates for individual functional characterization. As an example to demonstrate the validity of the approach, comprehensive functional data on candidate gene ADRBK1/GRK2, which has previously not been implicated in pancreatic cancer, is presented.  相似文献   

20.
The core promoter plays a central role in setting metazoan gene expression levels, but how exactly it “computes” expression remains poorly understood. To dissect its function, we carried out a comprehensive structure–function analysis in Drosophila. First, we performed a genome‐wide bioinformatic analysis, providing an improved picture of the sequence motifs architecture. We then measured synthetic promoters’ activities of ~3,000 mutational variants with and without an external stimulus (hormonal activation), at large scale and with high accuracy using robotics and a dual luciferase reporter assay. We observed a strong impact on activity of the different types of mutations, including knockout of individual sequence motifs and motif combinations, variations of motif strength, nucleosome positioning, and flanking sequences. A linear combination of the individual motif features largely accounts for the combinatorial effects on core promoter activity. These findings shed new light on the quantitative assessment of gene expression in metazoans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号