首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
There is increasing interest in the isolation of adult microglia to study their functions at a morphological and molecular level during normal and neuroinflammatory conditions. Microglia have important roles in brain homeostasis, and in disease states they exert neuroprotective or neurodegenerative functions. To assay expression profiles or functions of microglia, we have developed a method to isolate microglial cells and infiltrating leukocytes from adult mouse brain. This protocol uses a digestion cocktail containing collagenase and dispase, and it involves separation over discontinuous percoll gradients. Isolated cells can be used for RNA analysis, including RNase protection analysis (RPA), quantitative RT-PCR, high-density microarray, proteomic or flow cytometric characterization of cell surface markers or adoptive transfer. Cell isolation can be completed in less than 4 h.  相似文献   

3.
Kozlowski C  Weimer RM 《PloS one》2012,7(2):e31814
Microglia are specialized immune cells of the brain. Upon insult, microglia initiate a cascade of cellular responses including a characteristic change in cell morphology. To study the dynamics of microglia immune response in situ, we developed an automated image analysis method that enables the quantitative assessment of microglia activation state within tissue based solely on cell morphology. Per cell morphometric analysis of fluorescently labeled microglia is achieved through local iterative threshold segmentation, which reduces errors caused by signal-to-noise variation across large volumes. We demonstrate, utilizing systemic application of lipopolysaccharide as a model of immune challenge, that several morphological parameters, including cell perimeter length, cell roundness and soma size, quantitatively distinguish resting versus activated populations of microglia within tissue comparable to traditional immunohistochemistry methods. Furthermore, we provide proof-of-concept data that monitoring soma size enables the longitudinal assessment of microglia activation in the mouse neocortex imaged via 2-photon in vivo microscopy. The ability to quantify microglia activation automatically by shape alone allows unbiased and rapid analysis of both fixed and in vivo central nervous system tissue.  相似文献   

4.
Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame‐to‐frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB‐based image processing package well‐suited to quantitative analysis of high‐throughput live‐cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine‐learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame‐to‐frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell‐cycle dynamics in bacteria as well as cell‐contact mediated phenomena. This package has a range of built‐in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution.  相似文献   

5.
Microglia, which are CNS-resident neuroimmune cells, transform their morphology and size in response to CNS damage, switching to an activated state with distinct functions and gene expression profiles. The roles of microglial activation in health, injury and disease remain incompletely understood due to their dynamic and complex regulation in response to changes in their microenvironment. Thus, it is critical to non-invasively monitor and analyze changes in microglial activation over time in the intact organism. In vivo studies of microglial activation have been delayed by technical limitations to tracking microglial behavior without altering the CNS environment. This has been particularly challenging during chronic neurodegeneration, where long-term changes must be tracked. The retina, a CNS organ amenable to non-invasive live imaging, offers a powerful system to visualize and characterize the dynamics of microglia activation during chronic disorders.This protocol outlines methods for long-term, in vivo imaging of retinal microglia, using confocal ophthalmoscopy (cSLO) and CX3CR1GFP/+ reporter mice, to visualize microglia with cellular resolution. Also, we describe methods to quantify monthly changes in cell activation and density in large cell subsets (200-300 cells per retina). We confirm the use of somal area as a useful metric for live tracking of microglial activation in the retina by applying automated threshold-based morphometric analysis of in vivo images. We use these live image acquisition and analyses strategies to monitor the dynamic changes in microglial activation and microgliosis during early stages of retinal neurodegeneration in a mouse model of chronic glaucoma. This approach should be useful to investigate the contributions of microglia to neuronal and axonal decline in chronic CNS disorders that affect the retina and optic nerve.  相似文献   

6.
The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.  相似文献   

7.
Contact-mode atomic force microscopy (AFM) has been shown to reveal cortical actin structures. Using live endothelial cells, we visualized cortical actin dynamics simultaneously by AFM and confocal fluorescence microscopy. We present a method that quantifies dynamic changes in the mechanical ultrastructure of the cortical actin web. We argue that the commonly used, so-called error signal imaging in AFM allows a qualitative, but not quantitative, analysis of cortical actin dynamics. The approach we used comprises fast force-curve-based topography imaging and subsequent image processing that enhances local height differences. Dynamic changes in the organization of the cytoskeleton network can be observed and quantified by surface roughness calculations and automated morphometrics. Upon treatment with low concentrations of the actin-destabilizing agent cytochalasin D, the cortical cytoskeleton network is thinned out and the average mesh size increases. In contrast, jasplakinolide, a drug that enhances actin polymerization, consolidates the cytoskeleton network and reduces the average mesh area. In conclusion, cortical actin dynamics can be quantified in live cells. To our knowledge, this opens a new pathway for conducting quantitative structure-function analyses of the endothelial actin web just beneath the apical plasma membrane.  相似文献   

8.
A fast routine method for estimating bacterial cell growth rates by using the metachromatic dye acridine orange is described. The method allows simultaneous estimates of cellular RNA and DNA contents of single cells. Acridine orange staining can be used as a nonspecific supplement to quantitative species-specific hybridizations with fluorescence-labelled ribosomal probes to estimate the single-cell concentration of RNA. By automated analysis of digitized images of stained cells, we determined four independent growth rate-related parameters: cellular RNA and DNA contents, cell volume, and the frequency of dividing cells in a cell population. These parameters were used to compare physiological states of liquid-suspended and surface-growing Pseudomonas putida KT2442 in chemostat cultures. The major finding is that the correlation between substrate availability and cellular growth rate found for the free-living cells was not observed for the surface-bound cells; in contrast, the data indicate an almost constant growth rate for attached cells which was independent of the dilution rate in the chemostat.  相似文献   

9.
Post-mortem analysis of brains from Parkinson''s disease (PD) patients strongly supports microglia activation and adaptive immunity as factors contributing to disease progression. Such responses may be triggered by α-synuclein (α-syn), which is known to be the main constituent of the aggregated proteins found in Lewy bodies in the brains of PD patients. To investigate this we used a recombinant viral vector to express human α-syn in rat midbrain at levels that induced neuronal pathology either in the absence or the presence of dopaminergic cell death, thereby mimicking early or late stages of the disease. Microglia activation was assessed by stereological quantification of Mac1+ cells, as well as the expression patterns of CD68 and MCH II. In our study, when α-syn induced neuronal pathology but not cell death, a fast transient increase in microglia cell numbers resulted in the long-term induction of MHC II+ microglia, denoting antigen-presenting ability. On the other hand, when α-syn induced both neuronal pathology and cell death, there was a delayed increase in microglia cell numbers, which correlated with long-lasting CD68 expression and a morphology reminiscent of peripheral macrophages. In addition T-lymphocyte infiltration, as judged by the presence of CD4+ and CD8+ cells, showed distinct kinetics depending on the degree of neurodegeneration, and was significantly higher when cell death occurred. We have thus for the first time shown that the microglial response differs depending on whether α-syn expression results on cell death or not, suggesting that microglia may play different roles during disease progression. Furthermore, our data suggest that the microglial response is modulated by early events related to α-syn expression in substantia nigra and persists at the long term.  相似文献   

10.
Knowledge of membrane receptor organization is essential for understanding the initial steps in cell signaling and trafficking mechanisms, but quantitative analysis of receptor interactions at the single-cell level and in different cellular compartments has remained highly challenging. To achieve this, we apply a quantitative image analysis technique—spatial intensity distribution analysis (SpIDA)—that can measure fluorescent particle concentrations and oligomerization states within different subcellular compartments in live cells. An important technical challenge faced by fluorescence microscopy-based measurement of oligomerization is the fidelity of receptor labeling. In practice, imperfect labeling biases the distribution of oligomeric states measured within an aggregated system. We extend SpIDA to enable analysis of high-order oligomers from fluorescence microscopy images, by including a probability weighted correction algorithm for nonemitting labels. We demonstrated that this fraction of nonemitting probes could be estimated in single cells using SpIDA measurements on model systems with known oligomerization state. Previously, this artifact was measured using single-step photobleaching. This approach was validated using computer-simulated data and the imperfect labeling was quantified in cells with ion channels of known oligomer subunit count. It was then applied to quantify the oligomerization states in different cell compartments of the proteolipid protein (PLP) expressed in COS-7 cells. Expression of a mutant PLP linked to impaired trafficking resulted in the detection of PLP tetramers that persist in the endoplasmic reticulum, while no difference was measured at the membrane between the distributions of wild-type and mutated PLPs. Our results demonstrate that SpIDA allows measurement of protein oligomerization in different compartments of intact cells, even when fractional mislabeling occurs as well as photobleaching during the imaging process, and reveals insights into the mechanism underlying impaired trafficking of PLP.  相似文献   

11.
Proteomic analysis is helpful in identifying cancer-associated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine meta-static process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials—NCI-H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.  相似文献   

12.
Brain microglial morphology relates to function, with ramified microglia surveying the micro-environment and amoeboid microglia engulfing debris. One subgroup of microglia, rod microglia, have been observed in a number of pathological conditions, however neither a function nor specific morphology has been defined. Historically, rod microglia have been described intermittently as cells with a sausage-shaped soma and long, thin processes, which align adjacent to neurons. More recently, our group has described rod microglia aligning end-to-end with one another to form trains adjacent to neuronal processes. Confusion in the literature regarding rod microglia arises from some reports referring to the sausage-shaped cell body, while ignoring the spatial distribution of processes. Here, we systematically define the morphological characteristics of rod microglia that form after diffuse brain injury in the rat, which differ morphologically from the spurious rod microglia found in uninjured sham. Rod microglia in the diffuse-injured rat brain show a ratio of 1.79±0.03 cell length∶cell width at day 1 post-injury, which increases to 3.35±0.05 at day 7, compared to sham (1.17±0.02). The soma length∶width differs only at day 7 post-injury (2.92±0.07 length∶width), compared to sham (2.49±0.05). Further analysis indicated that rod microglia may not elongate in cell length but rather narrow in cell width, and retract planar (side) processes. These morphological characteristics serve as a tool for distinguishing rod microglia from other morphologies. The function of rod microglia remains enigmatic; based on morphology we propose origins and functions for rod microglia after acute neurological insult, which may provide biomarkers or therapeutic targets.  相似文献   

13.
Autophagy is induced by many cytotoxic stimuli but it is often unclear whether, under specific conditions, autophagy plays a prosurvival or a prodeath role. To answer this critical question we developed a novel methodology that employs automated live microscopy and image analysis to measure autophagy and apoptosis simultaneously in single cells. We used this approach to perform a systems-level analysis of pathway dynamics for both autophagy and apoptosis. We found that induction of autophagy in response to different stimuli is uniformly unimodal; in contrast, cells induce apoptosis in an all-or-none bimodal fashion. By tracking the fate of single cells we found that autophagy precedes apoptosis, and that within the same population apoptosis is delayed in cells that mount a stronger autophagy response. Inhibition of autophagy by knocking down ATG5 promoted apoptosis, thus confirming that autophagy plays a protective role. We anticipate that our single-cell approach will be a powerful tool for gaining a quantitative understanding of the complex regulation of autophagy, its influence on cell fate decisions and its relationship with other cellular pathways.  相似文献   

14.
The measurements of concentration, viability, and budding percentages of Saccharomyces cerevisiae are performed on a routine basis in the brewing and biofuel industries. Generation of these parameters is of great importance in a manufacturing setting, where they can aid in the estimation of product quality, quantity, and fermentation time of the manufacturing process. Specifically, budding percentages can be used to estimate the reproduction rate of yeast populations, which directly correlates with metabolism of polysaccharides and bioethanol production, and can be monitored to maximize production of bioethanol during fermentation. The traditional method involves manual counting using a hemacytometer, but this is time-consuming and prone to human error. In this study, we developed a novel automated method for the quantification of yeast budding percentages using Cellometer image cytometry. The automated method utilizes a dual-fluorescent nucleic acid dye to specifically stain live cells for imaging analysis of unique morphological characteristics of budding yeast. In addition, cell cycle analysis is performed as an alternative method for budding analysis. We were able to show comparable yeast budding percentages between manual and automated counting, as well as cell cycle analysis. The automated image cytometry method is used to analyze and characterize corn mash samples directly from fermenters during standard fermentation. Since concentration, viability, and budding percentages can be obtained simultaneously, the automated method can be integrated into the fermentation quality assurance protocol, which may improve the quality and efficiency of beer and bioethanol production processes.  相似文献   

15.
Shoot apical meristems (SAMs) of higher plants harbor stem‐cell niches. The cells of the stem‐cell niche are organized into spatial domains of distinct function and cell behaviors. A coordinated interplay between cell growth dynamics and changes in gene expression is critical to ensure stem‐cell homeostasis and organ differentiation. Exploring the causal relationships between cell growth patterns and gene expression dynamics requires quantitative methods to analyze cell behaviors from time‐lapse imagery. Although technical breakthroughs in live‐imaging methods have revealed spatio‐temporal dynamics of SAM‐cell growth patterns, robust computational methods for cell segmentation and automated tracking of cells have not been developed. Here we present a local graph matching‐based method for automated‐tracking of cells and cell divisions of SAMs of Arabidopsis thaliana. The cells of the SAM are tightly clustered in space which poses a unique challenge in computing spatio‐temporal correspondences of cells. The local graph‐matching principle efficiently exploits the geometric structure and topology of the relative positions of cells in obtaining spatio‐temporal correspondences. The tracker integrates information across multiple slices in which a cell may be properly imaged, thus providing robustness to cell tracking in noisy live‐imaging datasets. By relying on the local geometry and topology, the method is able to track cells in areas of high curvature such as regions of primordial outgrowth. The cell tracker not only computes the correspondences of cells across spatio‐temporal scale, but it also detects cell division events, and identifies daughter cells upon divisions, thus allowing automated estimation of cell lineages from images captured over a period of 72 h. The method presented here should enable quantitative analysis of cell growth patterns and thus facilitating the development of in silico models for SAM growth.  相似文献   

16.
Live-cell imaging technology using fluorescent proteins (green fluorescent protein and its homologues) has revolutionized the study of cellular dynamics. But tools that can quantitatively analyse complex spatiotemporal processes in live cells remain lacking. Here we describe a new technique--fast multi-colour four-dimensional imaging combined with automated and quantitative time-space reconstruction--to fill this gap. As a proof of principle, we apply this method to study the re-formation of the nuclear envelope in live cells. Four-dimensional imaging of three spectrally distinct fluorescent proteins is used to simultaneously visualize three different cellular compartments at high speed and with high spatial resolution. The highly complex data, comprising several thousand images from a single cell, were quantitatively reconstructed in time-space by software developed in-house. This analysis reveals quantitative and qualitative insights into the highly ordered topology of nuclear envelope formation, in correlation with chromatin expansion - results that would have been impossible to achieve by manual inspection alone. Our new technique will greatly facilitate study of the highly ordered dynamic architecture of eukaryotic cells.  相似文献   

17.
Growing evidence suggest that microglia may play an important role in the pathogenesis of neurodegenerative disease including Parkinson's disease, Alzheimer's disease, and so forth. The activation of microglia may cause neuronal damage through the release of reactive oxygen species and proinflammatory cytokines. However, the early response of microglial cells remains unclear before cells can secrete the proinflammatory cytokines. Here, a time course analysis showed the earliest expression of inducible nitric oxide synthase and cyclooxygenase-2 at 3 and 24 h following lipopolysaccharide (LPS) treatment. To further define initial response proteins of microglia after LPS treatment, we utilized a novel mass spectrometry-based quantitative proteomic technique termed SILAC (for stable isotope labeling by amino acids in cell culture) to compare the protein profiles of the cell culture-conditioned media of 1 h LPS-treated microglia as compared with controls. The proteomic analysis identified 77 secreted proteins using SignalP; of these, 28 proteins were associated with lysosome of cells and 13 lysosome-related proteins displayed significant changes in the relative abundance after 1 h LPS treatment. Four proteins were further evaluated with Western blot, demonstrating good agreement with quantitative proteomic data. These results suggested that microglia first released some lysosomal enzymes which may be involved in neuronal damage process. Furthermore, ammonium chloride, which inhibits microglia lysosomal enzyme activity, could prevent microglia from causing neuronal injury. Hence, in addition to the numerous novel proteins that are potentially important in microglial activation-mediated neurodegeneration revealed by the search, the study has indicated that the early release of lysosomal enzymes in microglial cells would contribute to LPS-activated inflammatory response.  相似文献   

18.
APOE ε4 is the major genetic risk factor for Alzheimer’s disease (AD). A precise role for apolipoprotein E (apoE) in the pathogenesis of the disease remains unclear in part due to its expression in multiple cell types of the brain. APOE is highly expressed in astrocytes and microglia, however its expression can also be induced in neurons under various conditions. The neuron-like cell line SK-N-SH is a useful model in the study of the cellular and molecular effects of apoE as it can be differentiated with retinoic acid to express and secrete high levels of apoE and it also shows the same apoE fragmentation patterns observed in the human brain. We previously found that apoE is cleaved into a 25-kDa fragment by high temperature-requirement serine protease A1 (HtrA1) in SK-N-SH cells. To further understand the endogenous functions of apoE, we used CRISPR/Cas9 to generate SK-N-SH cell lines with APOE expression knocked-down (KD). APOE KD cells showed lower APOE and HTRA1 expression than parental SK-N-SH cells but no overt differences in neuritogenesis or cell proliferation compared with the CRISPR/Cas9 control cells. This research shows that the loss of apoE and HtrA1 has a negligible effect on neuritogenesis and cell survival in SK-N-SH neuron-like cells.  相似文献   

19.
Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the original resident microglia without any apparent adverse effects in healthy adult mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号