首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between lepidopteran herbivory and leaf sesquiterpene hydrocarbons (composition and concentration) was analysed in 206 Copaifera langsdorfii and 86 Hymenaea stigonocarpa trees at two woodland sites in southeastern Brazil. These co-occurring leguminous species have essentially the same suite of leaf sesquiterpenes, which vary quantitatively. Leaftying oecophorids were the predominant foliovore on C. langsdorfii with a mean damage of 6% at one site and 50% at the other. On H. stigonocarpa lepidopterans other than oecophorids resulted in 2% mean leaf damage at one site and 4% at the other. Low herbivore damage was significantly correlated with higher concentrations of particular compounds (e.g. caryophyliene) combined with higher variability of most of the components of the leaf sesquiterpenes.  相似文献   

2.
We examined relative effects of traits of leaf quality of ten willow species (Salix: Salicaceae) on growth rates of five species of insect herbivores found in interior Alaska (a willow sawfly, Nematus calais; the tiger swallowtail butterfly, Papilio canadensis; and three species of chrysomelid beetles, Gonioctena occidentalis, Calligrapha verrucosa, and Chrysomela falsa). Leaf traits examined were water content, toughness, total nitrogen contnet, pubescence, and presence or absence of phenolic glycosides. Of ten Salix species, four species contain phenolic glycosides in their leaves. We examined relative effects of water content, toughness, and nitrogen content of the Salix leaves on larval growth rates at three different levels, i.e., on a single host species, between different host species, and between herbivore species. The within-host analyses showed that effects of water content, toughness and/or nitrogen content on herbivore growth rates were generally significant in early-season herbivores but not in late-season herbivores. For each herbivore species, differences in growth rates between hosts were not explained by differences in water content, toughness, or nitrogen content. The between-herbivore analysis showed that the interspecific difference in larval growth rates were related to difference in water and nitrogen content of the hosts. Pubescence of Salix leaves had little effects on herbivore growth rates. Presence of phenolic glycosides had a positive effects on growth rates of a specialist, N. calais, but no effect on the other specialist, Ch. falsa. Presence of phenolic glycosides had, in general, negative effects on growth rates of nonspecialists, G. occidentalis, C. verrucosa, and P. canadensis.  相似文献   

3.
姚婧  李颖  魏丽萍  蒋思思  杨摇松  侯继华 《生态学报》2013,33(13):3907-3915
分析植物叶片性状种内水平的异速生长关系有助于加深理解生长发育过程中叶片的资源利用模式.分析了东灵山3个主要林型(白桦林、胡桃楸林、辽东栎林)中五角枫成树、幼树、幼苗的叶面积、叶体积、叶含水量与叶干重之间的异速生长关系.结果表明:成树叶面积增长速度小于叶干重的增长速度,幼树、幼苗叶面积与叶干重保持同速增长;成树、幼树叶干重与叶体积保持同速增长,幼苗叶体积的增长速度超过了干重的增长速度;成树叶含水量的增长速度小于叶干重的增长速度,幼树、幼苗两性状间保持等速增长.叶含水量与叶干重的异速生长指数在不同的林型间有显著差异,白桦林叶含水量的增长速度小于叶干重的增长速度,其余两个林型均为等速增长趋势.这些结果揭示了不同发育阶段五角枫资源利用方式的转变.随叶干重的增加,成树将更多的叶生物量投资于同化和支持结构;幼树则保持对光合面积和光合同化结构的稳步投资;而幼苗主要投资于叶面积的增大.叶含水量与叶干重的异速曲线在不同林型间的差异说明叶片代谢活性相较于其他叶性状可塑性更高.  相似文献   

4.
Three species of creekside trees were monitored weekly during the 2007 and 2008 growing seasons. The 2007 growing season was wet early, but became drier as the season progressed. In contrast, the 2008 growing season was dry early, but became wetter as the season progressed. Creekside trees were measured to determine effects of changing water regimes on leaf-level processes. Lonicera tatarica plants were compared to Morus alba and Celtis occidentalis trees. Leaves were monitored for changes in stomatal conductance, transpiration, δ13C, δ15N, δD, leaf temperature, and heat losses via latent, sensible, and radiative pathways. δD of creek water was more similar to ground water than to rain water, but the creek was partially influenced by summer rains. δD of bulk leaf material was significantly higher in individuals of C. occidentalis compared to the other species, consistent with source water coming from shallower soil layers. Despite decreasing water levels, none of these tree species showed signs of water stress. There were no significant differences between species in stomatal conductance or transpiration. Leaf δ13C was significantly lower in individuals of L. tatarica compared to the other species. Differences in δ13C were attributed to a lower carboxylation capacity, consistent with lower leaf nitrogen content in L. tatarica plants. Leaf δ15N was significantly lower in individuals of L. tatarica compared to the other species, consistent with uptake of a different N source. Two of the three sites appeared to be affected by inorganic N from fertilizer run-off. Evidence is presented that these species acquired water and nitrogen from different sources, resulting from differences in root uptake patterns.  相似文献   

5.
Kudo  Gaku 《Plant Ecology》2003,169(1):61-69
Variations in leaf traits (toughness, total nitrogen and total phenolic concentrations) and susceptibility to herbivory in Salix miyabeana were studied among individual trees within a population under field conditions. Leaf quality clearly decreased as season progressed, i.e. increases in leaf toughness and total phenolics and decrease in leaf nitrogen. Seasonal pattern and extent of herbivore attack were similar between years. Significant correlation between leaf traits and susceptibility to herbivore attack was detected, while effects of sex and plant size on leaf traits and herbivory were less clear. There was a negative correlation between total nitrogen and total phenolics, and a positive correlation between leaf toughness and total phenolics among trees. Trees with high quality leaves tended to suffer from frequent herbivore attack and leaf damage. Such a clear relationship between leaf traits and susceptibility to herbivory may be related with a life-history strategy of willows, which are rapid-growing pioneer species and generally respond to herbivorous damage not by induced resistance but by compensative growth. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Xiang H  Chen J 《Annals of botany》2004,94(3):377-384
Background and aims To understand the defensive characteristics of interspecies varieties and their responses to herbivory damage, four species of Ficus plants (Ficus altissima, F. auriculata, F. racemosa and F. hispida) were studied. They were similar in life form, but differed in successional stages. Of these, Ficus altissima is a late successional species, F. hispida is a typical pioneer and F. auriculata and F. racemosa are intermediate successional species. We addressed the following questions: (1) What is the difference in plant traits among the four species and are these traits associated with differences in herbivory damage levels? (2) What is the difference in the damage-induced changes among the four species?• Methods Herbivory damage was measured in the field on randomly planted seedlings of the four species of the same age. Defences to herbivory were also tested by feeding leaves of the four species to larvae of Asota caricae in the laboratory. A total of 14 characters such as water content, thickness, toughness, pubescence density on both sides, leaf expansion time, lifetime and the contents of total carbon (C), nitrogen (N), phosphorous (P), potassium (K), magnesium (Mg) and calcium (Ca) were measured. Leaf calcium oxalate crystal (COC) density, total Ca and N content, leaf toughness and height were measured to investigate induced responses to artificial herbivory among the four species.• Key results and conclusions Herbivory damage in the four studied species varied greatly. The pioneer species, F. hispida, suffered the most severe herbivory damage, while the late successional species, F. altissima, showed the least damage. A combination of several characteristics such as high in content of N, Ca and P and low in leaf toughness, lifetime and C : N ratio were associated with increased herbivore damage. The late successional species, F. altissima, might also incorporate induced defence strategies by means of an increase in leaf COC and toughness.Key words: Calcium oxalate crystals, defensive characteristics, Ficus; herbivory, induced defence  相似文献   

7.
To examine the susceptibility of five Costa Rican tree species to leaf-cutter ants (Atta cephalotes L.: Formicidae, Attini), young and mature leaves from trees that were grown in a plantation under full sun and partial shade were offered to six leaf-cutter colonies located in full sun and six in patial shade. In addition to offering leaf disks to the ants, we offered large pieces of leaves to assess the effect of cutting leaves on food choices. Leaf-cutters responded differently to each plant species, preferring Virola koschyni Warburg (Myristicaceae) and Hyeronima alchorneoides Allemao (Euphorbiaceae) over Stryphnodendrum microstachyum Poeppig & Endlicher (Mimosoideae), Pentaclethra macroloba Willdenow (Fabaceae) and Vochysia ferruginea Martius (Vochysiaceae). In agreement with previous studies, interspecific differences among the tree species in water and saponin content appeared to account for the observed ant preferences among the five tree species: leaf-cutter ants preferred leaves and disks with more water and less saponins and the five tree species varied significantly in these traits. An observed positive correlation between preference and phenolic/nitrogen ratio appears to be spurious, and is instead due to a negative correlation between water content and nitrogen content. For the first time, Atta nest location has been shown to affect consumption: nests located in partial shade removed more leaf material than those from the sun plots. However, nest location had no effect on preference ranking of the tree species tested. Pieces of leaves from all the tree species grown in partial shade were significantly more removed than those trees grown in full sun. Leaf age, toughness, leaf specific weights, ant activity, and colony were not correlated with food choices. Because of the observed preferences, the five tree species should not be considered as equal candidates for plantation purposes. However, complete characterization of the candidate status of tree species for plantations in the neotropics must include information on the ability of such species to tolerate pest attacks in addition to their natural defenses to attack.  相似文献   

8.
Oecophorid herbivory in Copaifera langsdorfii leaves along with sesquiterpene composition, concentration of most of the individual sesquiterpenes and total yield did not significantly differ between the lower and upper portions of tree canopies. Although sesquiterpene variation in leaves collected throughout individual tree canopies was less than variation among trees, leaves which were eaten by oecophorid larvae had slightly lower yields than those unattacked. Individual C. langsdorfii trees within the population were significantly different from one another in sesquiterpene yield, oecophorid herbivory and in the concentration of seven out of the 11 sesquiterpene compounds. Leaf sesquiterpenes appear to be more important in inhibiting herbivory by Stenoma aff. assignata than leaf moisture and nitrogen content and toughness.  相似文献   

9.
The content of biologically active phenolic compounds (total polyphenols, tannins, flavonoids, and phenolic acids) were determined using spectrophotometry in four wild Croatian species of Daphne L. in the family Thymelaeaceae (Daphne alpina, D. cneorum, D. laureola, and D. mezereum). The concentration of total flavonoids (TF) was highest in the leaves of these Daphne species (0.12?C0.51% dry herb weight, DW) whereas the content of other phenolic compounds analyzed were highest in the roots, including total polyphenols (TP; 2.71?C19.03% DW), tannins (T; 1.14?C7.39% DW), and total phenolic acids (TPA; 0.12?C0.87% DW). D. alpina contained the highest amount of polyphenols, with the exception of flavonoids, where maximum concentrations were found in D. laureola. We also examined the antioxidant activity of leaf, stem, and root extracts. All extracts analyzed demonstrated high free radical scavenging activity with the highest concentration in the leaf extracts of D. alpina. Leaf extracts of D. cneorum showed the highest antioxidant activity in a ??-carotene bleaching assay.  相似文献   

10.
In seasonally dry tropical forests, tree species can be deciduous, remaining without leaves throughout the dry season, or evergreen, retaining their leaves throughout the dry season. Deciduous and evergreen trees specialize in habitats that differ in water availability (hillside and riparian forest, respectively) and in their exposure to herbivore attack (seasonal and continuous, respectively). We asked whether syndromes of leaf traits in deciduous and evergreen trees were consistent with hypothesized abiotic and biotic selective pressures in their respective habitat. We measured seven leaf traits in 19 deciduous and 11 evergreen tree species in a dry tropical forest in Western Mexico, and measured rates of herbivory on 23 of these species. We investigated the covariance of leaf traits in syndromes related to phenology and associated physiology, and to anti‐herbivory defense. We found evidence for syndromes that separated phenological strategies among four traits: toughness, water content, specific leaf area, and carbon:nitrogen (C:N) ratios. We found a trade‐off between two other traits: trichomes and latex. Overall, evergreen species exhibited lower rates of herbivory than deciduous species. Lower rates of herbivory were explained by a syndrome of higher toughness, lower water content, and higher C:N ratios, which are traits representative of evergreen trees. Phenology and trait syndromes did not exhibit significant phylogenetic signal, consistent with the hypothesis of evolutionary convergence among phenologies and associated leaf‐trait syndromes. Our results suggest that deciduous and evergreen trees could respond to differential water availability and herbivory in their respective habitats by converging on distinct leaf‐trait syndromes. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

11.
Abstract For 150 years mistletoe host-resemblance has been an unsolved puzzle. Mimicry, camouflage, host protection and shape modification by the host tree have all been advanced as possible solutions. No extended examination of herbivory of host-parasite pairs has ever been done, however, to put these explanations to the test. The study was carried out in northeastern Australia from March to July 1994. Rates of leaf herbivory were estimated for seven individuals of Amyema biniflora Barlow (a cryptic mistletoe species), Dendrophthoe glabrescens (Blakely) Barlow (a non-cryptic mistletoe species) and their host trees (Eucalyptus tessellaris F. Muell. and Eucalyptus platyphylla F. Muell., respectively). In addition three measures of leaf palatability–nitrogen content, moisture content and toughness–were also assessed. Variability in mistletoe leaf shape was quantified by measuring the leaf widths of mistletoes on a variety of host tree species. Mistletoes sustained greater levels of herbivory compared to their host trees, but herbivory did not differ between mistletoe species. The non-cryptic mistletoe had lower levels of nitrogen compared to its host tree, but there was no difference in nitrogen levels between the cryptic mistletoe and its host. The moisture content of mistletoe leaves was greater than that of their hosts but not between mistletoe or host species. The mistletoe species had tougher leaves than their host trees. Leaf shape was different for one species of mistletoe growing on different host trees, but constant for another species of mistletoe. The results contradict, in some crucial aspect, all of the mimicry hypotheses currently on offer.  相似文献   

12.
Leaf miners typically show non-random distributions both between and within plants. We tested the hypothesis that leaf miners on two oak species were clumped on individual host trees and individual branches and addressed whether clumping was influenced by aspects of plant quality and how clumping and/or interactions with other oak herbivores affected leaf-miner survivorship. Null models were used to test whether oak herbivores and different herbivore guilds co-occur at the plant scale. Twenty individual Quercus geminata plants and 20 Quercus laevis plants were followed over the season for the appearance of leaf miners and other herbivores, and foliar nitrogen, tannin concentration, leaf toughness and leaf water content were evaluated monthly for each individual tree. The survivorship of the most common leaf miners was evaluated by following the fate of marked mines in several combinations that involved intra- and inter-specific associations. We observed that all leaf miners studied were clumped at the plant and branch scale, and the abundance of most leaf-miner species was influenced by plant quality traits. Mines that occurred singly on leaves exhibited significantly higher survivorship than double and triple mines and leaves that contained a mine or a leaf gall and a mine and damage by chewers exhibited lowest survivorship. Although leaf miners were clumped at individual host trees, null model analyses indicated that oak herbivores do not co-occur significantly less than expected by chance and there was no evidence for biological mechanisms such as inter-specific competition determining community structure at the plant scale. Thus, despite co-occurrence resulting in reduced survivorship at the leaf scale, such competition was not strong enough to structure separation of these oak herbivore communities.  相似文献   

13.
雌雄异株植物资源分配模式上往往表现出显著的性别二态性,但在叶片光合及功能性状上是否有差异目前仍未有定论,且与发育阶段的关系尚不明确。阐明上述问题,能够进一步了解雌雄异株植物的生理生态特征,并为理解性别对性二态植物生长发育的影响机制提供理论依据。以雌雄异株绒毛白蜡(Fraxinus velutina Torr.)为研究对象,针对不同发育阶段不同性别植株进行光合特征及叶功能性状测定,采用双因素方差分析了不同发育阶段下雌雄植株光合能力及叶功能性状的性别间差异,采用Pearson检验了雌雄植株各叶功能性状之间的相关性,并采用标准化主轴分析(Standardized major axis regression, SMA)分析不同性别植株净光合速率与叶功能性状的相关性。结果表明性别和发育阶段显著影响植物个体的光合能力和叶功能性状。总体而言,雄树在坐果期和果实成熟期均表现出更强的净光合速率(Pn)、更高的比叶面积(SLA)、叶绿素含量(Chl)和叶氮含量(LNC);而雌树在果实膨大期表现出更强Pn、SLA和Chl。雌雄性别内Pn与SLA、Chl和LNC间均呈显著正相关(P<0.05),雄树的S...  相似文献   

14.
Herbivory has significant impacts on individual plants and plant communities, both at ecological and evolutionary time scales. In this context, this study aims to evaluate herbivore damage and its relationship with leaf chemical and structural traits, nutritional status, and forest structural complexity along a successional gradient. We predicted that trees in early successional stages support conservative traits related to drought tolerance (high specific leaf mass and phenolics), whereas trees in light-limited, late successional stages tend to enhance light acquisition strategies (high nitrogen content). We sampled 261 trees from 26 species in 15 plots (50 × 20 m; five per successional stage). From each tree, twenty leaves were collected for leaf trait measures. Phenolic content increased whereas specific leaf mass and nitrogen content decreased from early to late stages. However, leaf damage did not differ among successional stages. Our results partially corroborate the hypothesis that early successional plants in tropical dry forests exhibit leaf traits involved in the conservative use of water. The unexpected decrease in nitrogen content along the chronosequence is likely related to the fact that thinner leaves with low specific leaf mass could have less nitrogen-containing mesophyll per unit area. Mechanisms affecting herbivory intensity varied across scales: at the species level, leaf damage was negatively correlated with tannin concentration and specific leaf mass; at the plot level, leaf damage was positively affected by forest structural complexity. Herbivory patterns in tropical forests are difficult to detect because abiotic factors and multiple top-down and bottom-up forces directly and indirectly affect herbivores.  相似文献   

15.
胡杨枝芽生长特征及其展叶物候特征   总被引:1,自引:0,他引:1  
郑亚琼  冯梅  李志军 《生态学报》2015,35(4):1198-1207
以5个不同发育阶段的胡杨(Populus euphratica Oliv.)个体为研究对象,观测记录了枝芽展叶物候、枝芽生长特征和叶形变化的空间分布规律。结果表明:不同发育阶段的胡杨个体以及同一个体树冠的不同层次,其枝芽生长及其展叶物候期表现出不同的时空特征。随着树龄的增加和树冠层次的增高(由基向顶),当年新生枝条长度、枝条叶片数和叶形指数逐渐减小,但叶面积和叶片干重逐渐增大。5个不同发育阶段胡杨个体均表现出展叶物候始于树冠顶层,依次向下结束于树冠基部;展叶物候期共性表现在枝芽萌动期均在4月上旬,起始展叶期集中在4月中旬,展叶终期则在5月上旬到下旬;树龄较大的个体其枝芽萌动期、起始展叶期、展叶终期较树龄较小的个体早;其枝芽萌动期到展叶终期的时间进程较树龄较小的个体短;不同发育阶段的个体枝芽萌动期出现的时间较为离散,起始展叶期和展叶终期出现的时间较为集中。相关分析表明,出叶周期与枝条长度、枝条叶片数量和叶形指数呈极显著正相关,与叶面积和叶片干重呈显著负相关。  相似文献   

16.

Key message

The relative shade tolerance of T. cordata , F. sylvatica , and C. betulus in mature stands is based on different species-specific carbon and nitrogen allocation patterns.

Abstract

The leaf morphology and photosynthetic capacity of trees are remarkably plastic in response to intra-canopy light gradients. While most studies examined seedlings, it is not well understood how plasticity differs in mature trees among species with contrasting shade tolerance. We studied light-saturated net photosynthesis (A max), maximum carboxylation rate (V cmax), electron transport capacity (J max) and leaf dark respiration (R d) along natural light gradients in the canopies of 26 adult trees of five broad-leaved tree species in a mixed temperate old-growth forest (Fraxinus excelsior, Acer pseudoplatanus, Carpinus betulus, Tilia cordata and Fagus sylvatica), representing a sequence from moderately light-demanding to highly shade-tolerant species. We searched for species differences in the dependence of photosynthetic capacity on relative irradiance (RI), specific leaf area (SLA) and nitrogen per leaf area (N a ). The three shade-tolerant species (C. betulus, T. cordata, F. sylvatica) differed from the two more light-demanding species by the formation of shade leaves with particularly high SLA but relatively low N a and consequently lower area-based A max, and a generally higher leaf morphological and functional plasticity across the canopy. Sun leaf morphology and physiology were more similar among the two groups. The three shade-tolerant species differed in their shade acclimation strategies which are primarily determined by the species’ plasticity in SLA. Under low light, T. cordata and F. sylvatica increased SLA, mass-based foliar N and leaf size, while C. betulus increased solely SLA exhibiting only low intra-crown plasticity in leaf morphology and N allocation patterns. This study with mature trees adds to our understanding of tree species differences in shade acclimation strategies under the natural conditions of a mixed old-growth forest.  相似文献   

17.
Summary Rosettes of Heterotheca subaxillaris were grown at four levels of nitrate. Individual leaf volatile mono- and sesquiterpene content, leaf nitrogen content, and root and shoot dry weight were measured on individual leaves every two weeks for 18 weeks. Rosettes with the highest nitrate availability had 2.2-fold greater leaf nitrogen levels compared to plants with the lowest availability. As nitrate availability became increasingly limited, carbon allocation to both volatile leaf terpenes and root growht increased. Leaf mono- and sesquiterpene content was greatest in the young leaves of individuals growing at the lowest nitrate availability conditions. Higher levels of carbon-based herbivore-deterring chemicals in nitrate-limited plants may increase net productivity through retention of nitrogen that would otherwise be lost to herbivory.  相似文献   

18.
This study examined the effects of elevated CO2 on secondary metabolites for saplings of tropical trees. In the first experiment, nine species of trees were grown in the ground in open-top chambers in central Panama at ambient and elevated CO2 (about twice ambient). On average, leaf phenolic contents were 48% higher under elevated CO2. Biomass accumulation was not affected by CO2, but starch, total non-structural carbohydrates and C/N ratios all increased. In a second experiment with Ficus, an early successional species, and Virola, a late successional species, treatments were enriched for both CO2 and nutrients. For both species, nutrient fertilization increased plant growth and decreased leaf carbohydrates, C/N ratios and phenolic contents, as predicted by the carbon/nutrient balance hypothesis. Changes in leaf C/N levels were correlated with changes in phenolic contents for Virola (r=0.95, P<0.05), but not for Ficus. Thus, elevated CO2, particularly under conditions of low soil fertility, significantly increased phenolic content as well as the C/N ratio of leaves. The magnitude of the changes is sufficient to negatively affect herbivore growth, survival and fecundity, which should have impacts on plant/herbivore interactions.  相似文献   

19.
长柄双花木(Disanthus cercidifolius var. longipes)是一种仅分布于我国东南地区的珍稀濒危植物。为研究该物种叶性状异速生长关系和叶片资源利用策略及其随发育阶段和海拔梯度的变化规律,该文以分布于江西省不同海拔梯度的长柄双花木群落为研究对象,调查分析了群落中不同发育阶段长柄双花木植株的叶片面积、叶片体积以及叶片含水量与叶片干重之间的异速关系。结果表明:不同发育阶段植株之间叶性状异速生长关系有着显著差异。成树叶片面积的增长速度低于或等于叶片干重的增长速度,幼树、幼苗叶片面积的增长速度低于叶片干重的增长速度; 成树叶片体积与叶片干重呈等速增长,幼树、幼苗叶片体积的增长速度高于叶干重的增长速度; 成树叶片含水量的增长速度低于叶干重的增长速度,幼树、幼苗两性状间保持等速增长。海拔梯度对长柄双花木叶性状异速生长关系也有影响,植株叶体积和叶含水量与叶干重的异速生长指数在不同海拔间有显著性差异。在低海拔区域,叶体积与叶干重呈等速增长,叶含水量的增长速度低于叶片干重的增长速度。在高海拔区域,叶体积的生长速度低于叶干重的生长速度,叶含水量和叶片干重呈等速增长。这说明长柄双花木叶片资源投资策略随着发育阶段和海拔梯度的不同发生变化。成树主要将叶生物量投资于光捕获面积和同化结构,幼树和幼苗则主要投资于维管组织的建设。由于海拔升高会引起风力增大、光强增强和土壤理化性质改变,长柄双花木在中低海拔倾向于增大叶体积以抢占资源,在高海拔倾向于加强机械组织和维管组织的建设来抵抗外界因子干扰。  相似文献   

20.
Effects of salinity and nutrients on carbon gain in relation to water use were studied in the grey mangrove, Avicennia marina, growing along a natural salinity gradient in south‐eastern Australia. Tall trees characterized areas of seawater salinities (fringe zone) and stunted trees dominated landward hypersaline areas (scrub zone). Trees were fertilized with nitrogen (+N) or phosphorus (+P) or unfertilized. There was no significant effect of +P on shoot growth, whereas +N enhanced canopy development, particularly in scrub trees. Scrub trees maintained greater CO2 assimilation per unit water transpired (water‐use efficiency, WUE) and had lower nitrogen‐use efficiency (NUE; CO2 assimilation rate per unit leaf nitrogen) than fringe trees. The CO2 assimilation rates of +N trees were similar to those in other treatments, but were achieved at lower transpiration rates, stomatal conductance and intercellular CO2 concentrations. Maintaining comparable assimilation rates at lower stomatal conductance requires greater ribulose 1·5‐bisphosphate carboxylase/oxygenase activity, consistent with greater N content per unit leaf area in +N trees. Hence, +N enhanced WUE at the expense of NUE. Instantaneous WUE estimates were supported by less negative foliar δ13C values for +N trees and scrub control trees. Thus, nutrient enrichment may alter the structure and function of mangrove forests along salinity gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号