首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem rot, caused by Sclerotinia sclerotiorum, is a serious disease of rapeseed worldwide. This paper tested the inhibitory effect of an endophytic bacterial Bacillus subtilis strain, EDR4, on the sclerotial germination and hyphal growth of S. sclerotiorum. The cell-free filtrate solution and cell suspension of strain EDR4 were sprayed on rapeseed leaves and stems one day before, at the same time and one day after inoculation in the greenhouse experiments. There was no significant difference in inhibitory efficacy between the cell-free filtrate solution and cell suspension. The best biocontrol efficacy was achieved by spraying either the cell-free filtrate solution or cell suspension at the same time as inoculation. In the field trials, the efficacy of two applications of EDR4 cell suspension at the initial flowering stage and full bloom stage was the best, but there was no significant difference in efficacy between the one-application and two-application treatments during the initial flowering stage. The efficacy decreased gradually with the culture suspension dilutions. Scanning electron microscopy revealed that EDR4 cells significantly suppressed the hyphal growth. The bacterial treatment caused shrink, cytoplasm leakage and irregular tip swelling of fungal hyphae. The hyphal cells in the treated groups had higher numbers of vacuoles in the cytoplasm than the non-treated hyphal cells. The hyphal cytoplasm was disintegrated; the hyphal biomass was reduced; the formation of infection cushions was delayed; and the infection was suppressed after spraying the bacterial culture on rapeseed leaves. The results showed that the EDR4 bacterial strain could be used to control stem rot of rapeseed.  相似文献   

2.
Two strains of Staphylococcus aureus were investigated: S. aureus H, a normal wild-type strain, and 52A5, a mutant strain whose cell wall contains no teichoic acid but is made up entirely of mucopeptide. S. aureus H cells in the lag or stationary phase of growth had an electrophoretic mobility of ?1.10 μm/s/V/cm while those in the logarithmic phase had a mobility of ?0.80 μm/s/V/cm in saline at pH 7.2, 0.6 mM NaHCO3, 25°C (I = 0.145 g-ions/l). S. aureus 52A5 cells in the same solution had a mobility of ?0.87 μm/s/V/cm in lag and stationary growth phases but a mobility of ?1.30 μm/s/V/cm in the logarithmic growth phase. The S. aureus H cell surfaces at lag phase had pKs of 3.2 and 9.5; at logarithmic phase, 4.2 and 9.0; and at stationary phase, 3.0 and 9.5. The 52A5 cell surfaces at lag phase had pKs of 2.3 and 10.3; at logarithmic phase, 1.7 and 8.5; at stationary phase, 2.6 and 10.2.  相似文献   

3.
Machlis L 《Plant physiology》1973,52(6):527-530
Optimal response of the sperm of Allomyces from the highly male strain M16 to the chemotactic agent, sirenin, was shown to occur when the sperm suspension contained 2 mm piparazine-N′, N-bis[2-ethane sulfonic acid] buffer, 3 mm CaCl2, and chelated trace elements. For the male strain M3, the CaCl2 needed was 3.5 mm with the other two components the same as for M16. The inclusion in the sperm suspension of MgCl2, KH2PO4, or NH4Cl was without effect, except that under certain conditions phosphate was detrimental. The variability of 10 replicate assays was substantially reduced by using sperm in the bioassay at a concentration of 500,000 per ml rather than the former concentration of 100,000 per ml with a concomitant reduction in the concentration of sirenin above the membrane to which the sperm were attracted.  相似文献   

4.
Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, or 20:0d39-20:1-PC at rhodopsin/lipid molar ratios from 1:70 to 1:1000 (mol/mol) were investigated. Clear evidence for matching of hydrophobic regions on rhodopsin transmembrane helices and hydrophobic thickness of lipid bilayers was observed from 2H nuclear magnetic resonance order parameter measurements at low rhodopsin concentrations. Thin bilayers stretched to match the length of transmembrane helices observed as increase of sn-1 chain order, while thicker bilayers were compressed near the protein. A quantitative analysis of lipid-order parameter changes suggested that the protein adjusts its conformation to bilayer hydrophobic thickness as well, which confirmed our earlier circular-dichroism measurements. Changes in lipid order parameters upon rhodopsin incorporation vanished for bilayers with a hydrophobic thickness of 27 ± 1 Å, suggesting that this is the bilayer thickness at which rhodopsin packs in bilayers at the lowest membrane perturbation. The lipid-order parameter studies also indicated that a hydrophobic mismatch between rhodopsin and lipids triggers rhodopsin oligomerization with increasing rhodopsin concentrations. Both hydrophobic mismatch and rhodopsin oligomerization result in substantial shifts of the equilibrium between the photointermediates metarhodopsin I and metarhodopsin II; increasing bilayer thickness favors formation of metarhodopsin II while oligomerization favors metarhodopsin I. The results highlight the importance of hydrophobic matching for rhodopsin structure, oligomerization, and function.  相似文献   

5.
It has been reported in some cases that an increase in pCO2 stimulates growth in diluted cell suspension cultures. Experiments have been designed to study the pattern of dark CO2 fixation in sycamore cells grown in liquid suspension and to correlate this pattern with the culture growth phases. Comparisons were made between enzymatic activities, CO2 incorporation, malic acid content during lag, logarithmic and stationary phases of growth. Malic enzyme (NADP-dependent) was at its maximum activity during early logarithmic growth phase, when biosynthetic capacities were at the highest. Phosphoenolpyruvate-carboxylase activity was strongly correlated with the ability of cells to fix CO2. Malic acid content decreased soon after transfer of the cells to a new medium and increased at the onset of stationary phase. Under optimal conditions, the CO2 incorporation pattern did not change during growth, with an almost identical incorporation in the basic (amino acids) and acidic (organic acids) fractions. These observations have been discussed in relation to a possible effect of increased pCO2 in the cell environment.  相似文献   

6.
9-cis-Retro-γ;rhodopsin (λmax = 420 nm) was prepared from 9-cis-retro-γ-retinal and cattle opsin. After cooling to liquid nitrogen temperature (77 K), the pigment was irradiated with light at 380 nm. The spectrum shifted to the longer wavelengths, owing to formation of a batho product. This fact indicates that the conjugated double bond system from C-5 to C-8 of the chromophoric retinal in rhodopsin was not necessary for formation of bathorhodopsin. Reirradiation of the batho product with light at wavelengths longer than 520 nm yielded a mixture composed of presumably 9- or 11-cis forms of retro-γ-rhodopsin. These three isomers are interconvertible by light at liquid nitrogen temperature. Thus the retro-γ-rhodopsin system is similar in photochemical reaction at 77 K to cattle rhodopsin system. Each system has its own batho product. Based on these results, it was infered that the formation of bathorhodopsin is due to photoisomerization of the chromophoric retinal of rhodopsin and is not due to translocation of a proton on the ring or on the side chain from C-6 to C-8 of the chromophoric retinal to the Schiff-base nitrogen.  相似文献   

7.
8.
The uptake of the lipophilic cation tetraphenylphosphonium (Ph4P+) by Saccharomyces cerevisiae was measured using yeast grown on glucose and harvested either at the logarithmic or at the stationary phase of growth. When yeast was collected at the stationary phase, Ph4P+ uptake proceeded steadily during several hours until an equilibrium was reached. When yeast was collected in the logarithmic phase of growth, a biphasic uptake was observed. The second phase of uptake began when the glucose of the incubation medium had been exhausted. From experiments in the presence of cycloheximide or chloramphenicol it is concluded that the second phase of Ph4P+ uptake is dependent on the synthesis of some protein(s) repressed by glucose but unrelated with the existence of functional mitochondria. The addition of compounds which collapse the membrane potential provokes an efflux from the yeast cells of the Ph4P+ accumulated both during the first phase and the second phase of uptake. It is concluded that accumulation of Ph4P+ in yeast cells is a complex process and that Ph4P+ cannot be used to give a quantitative measure of the yeast plasma membrane potential.  相似文献   

9.
The levels of glutamic acid dehydrogenase (GDH), phenylalanine ammonia-lyase (PAL), cinnamic acid 4-hydroxylase (CAH) and O-methyltransferase (OMT) were measured during the formation of phenolic acids in carrot cells in suspension culture. Caffeic, ferulic and p-hydroxybenzoic acids were always present as the culture proceded. Total content of these acids increased at the early logarithmic and linear phases. GDH showed high activity at the early logarithmic and stationary phases. PAL activity was much enhanced at the linear and stationary phases. CAH activity was found in actively growing cells, especially at the early and late logarithmic phases OMT behaved similarly to PAL. The increases in GDH and CAH might be responsible for the rapid synthesis of phenolic acid at the early logarithmic phase. The increase in phenolic acid at the linear phase would certainly be due to enhancements of both PAL and OMT. On the other hand, the accumulation of vanillic acid was observed in cells which were transferred and cultured on an agar medium, but not in cells in suspension culture. This accumulation is related to increases in OMT levels and also to changes in the degree of β-oxidation.  相似文献   

10.
Our understanding on the folding of membrane proteins lags behind that of soluble proteins due to challenges posed by the exposure of hydrophobic regions during in vitro chemical denaturation and refolding experiments. While different folding models are accepted for soluble proteins, only the two-stage model and the long-range interactions model have been proposed so far for helical membrane proteins. To address our knowledge gap on how different membrane proteins traverse their folding pathways, we have systematically investigated the structural features of SDS-denatured states and the kinetics for reversible unfolding of sensory rhodopsin II (pSRII), a retinal-binding photophobic receptor from Natronomonas pharaonis. pSRII is difficult to denature, and only SDS can dislodge the retinal chromophore without rapid aggregation. Even in 30% SDS (0.998 ΧSDS), pSRII retains the equivalent of six out of seven transmembrane helices, while the retinal-binding pocket is disrupted, with transmembrane residues becoming more solvent exposed. Folding of pSRII from an SDS-denatured state harboring a covalently bound retinal chromophore shows deviations from an apparent two-state behavior. SDS denaturation to form the sensory opsin apo-protein is reversible. We report pSRII as a new model protein which is suitable for membrane protein folding studies and has a unique folding mechanism that differs from those of bacteriorhodopsin and bovine rhodopsin.  相似文献   

11.
Membranes enriched in ATP-dependent proton transport were prepared from suspension cultures of tomato cells (Lycopersicon esculentum Mill cv VF36). Suspension cultures were a source of large quantities of membranes from rapidly growing, undifferentiated cells. Proton transport activity was assayed as quench of acridine orange fluorescence. The activity of the proton translocating ATPase and of several other membrane enzymes was measured as a function of the cell culture cycle. The relative distribution of the enzymes between the 3,000, 10,000, and 100,000g pellets remained the same throughout the cell culture cycle, but yield of total activity and activity per gram fresh weight with time had a unique profile for each enzyme tested. Maximal yield of the proton translocating ATPase activity was obtained from cells in the middle logarithmic phase of growth, and from 50 to 90% of the activity was found in the 10,000g pellet. The proton translocating ATPase activity was separable from NADPH cytochrome c reductase and cytochrome c oxidase on a sucrose gradient. Proton transport activity had a broad pH optimum (7.0-8.0), was stimulated by KCl with a Km of 5 to 10 millimolar, stimulation being due to the anion, Cl, and not the cation, K+, and was not inhibited by vanadate, but was inhibited by NO3. The activity is tentatively identified as the tonoplast ATPase.  相似文献   

12.
Diffusion-enhanced fluorescence energy transfer was used to study the structure of photoreceptor membranes from bovine retinal rod outer segments. The fluorescent energy donor was Tb3+ chelated to dipicolinate and the acceptor was the 11-cis retinal chromophore of rhodopsin in vesicles made from disc membranes. The rapid-diffusion limit for energy transfer was attained in these experiments because of the long excited state lifetime of the terbium donor (~2 ms). Under these conditions, energy transfer is very sensitive to a, the distance of closest approach between the donor and acceptor (Thomas et al., 1978). Vesicles containing terbium dipicolinate in their inner aqueous space were prepared by sonicating disc membranes in the presence of this chelate and chromatographing this mixture on a gel filtration column. The sidedness of rhodopsin in these vesicles was the same as in native disc membranes. The transfer efficiency from terbium to retinal in this sample was 43%. For an R0 value of 46.7 Å and an average vesicle diameter of 650 Å, this corresponds to an a value of 22 Å from the inner aqueous space of the vesicle. The distance of closest approach from the external aqueous space, determined by adding terbium dipicolinate to a suspension of already formed vesicles, was found to be 28 Å. These values of a show that the retinal chromophore is far from both aqueous surfaces of the disc membrane. Hence, the transverse location of the retinal chromophore is near the center of the hydrophobic core of the disc membrane. These findings suggest that conformational changes induced by photoisomerization are transmitted through a distance of at least 20 Å within rhodopsin to trigger subsequent events in visual excitation.  相似文献   

13.
When monomethylamine was the growth substrate, spontaneous disaggregation of Methanosarcina mazei S-6 commenced at the mid-exponential phase and resulted in the formation of a suspension containing 108 to 109 free cells per ml. Free cells were osmotically fragile and amenable to extraction of DNA. Hypertonic media for the manipulation and regeneration of free cells into aggregates were developed, and plating efficiencies of 100% were achieved for M. mazei S-6 and LYC. Free cells of strain S-6 required MgCl2 (10 mM) for growth, whereas aggregates did not. Specific growth rates of strains S-6 and LYC were increased by MgCl2. Treatment with pronase caused sphere formation and removal of the protein wall of cells of strain S-6, but protoplasts could not be regenerated. The disaggregating enzyme produced by strain S-6 facilitated the preparation of suspensions of free cells of some strains of Methanosarcina barkeri. Although this provided a means of extracting high-molecular-weight DNA from M. barkeri, less than 0.1% of free cells were viable.  相似文献   

14.
Rhodopsin is a kinetically stable protein constituting >90% of rod outer segment disk membrane protein. To investigate the bilayer contribution to rhodopsin kinetic stability, disk membranes were systematically disrupted by octyl-β-D-glucopyranoside. Rhodopsin kinetic stability was examined under subsolubilizing (rhodopsin in a bilayer environment perturbed by octyl-β-D-glucopyranoside) and under fully solubilizing conditions (rhodopsin in a micelle with cosolubilized phospholipids). As determined by DSC, rhodopsin exhibited a scan-rate-dependent irreversible endothermic transition at all stages of solubilization. The transition temperature (Tm) decreased in the subsolubilizing stage. However, once the rhodopsin was in a micelle environment there was little change of the Tm as the phospholipid/rhodopsin ratio in the mixed micelles decreased during the fully solubilized stage. Rhodopsin thermal denaturation is consistent with the two-state irreversible model at all stages of solubilization. The activation energy of denaturation (Eact) was calculated from the scan rate dependence of the Tm and from the rate of rhodopsin thermal bleaching at all stages of solubilization. The Eact as determined by both techniques decreased in the subsolubilizing stage, but remained constant once fully solubilized. These results indicate the bilayer structure increases the Eact to rhodopsin denaturation.  相似文献   

15.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the “business end” of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the β-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

16.
Transverse relaxation times (T2) of tissue water (1H) in leaves and suspension cultured cells of grape hybrids (Vitis spp. cv `Venus' and `Veeblanc') were measured by nuclear magnetic resonance at various temperatures. The tissue water was characterized by two T2 time constants. A sharp decrease in T2 for the major fraction of tissue water was observed in association with heat injury, as measured by electrolyte leakage and triphenyltetrazolium chloride reduction in both leaves and suspension cultured cells. The changes in T2 as a result of heat injury were irreversible, as indicated by a temperature dependent hysteresis of T2. Studies using a paramagnetic probe (Mn+2) indicated that the plasma membrane was irreversibly damaged at the killing temperature, resulting in a loss of cell compartmentalization. Tissue water in heat-killed samples was characterized by only a single T2.  相似文献   

17.
In vitro experiments were carried out to investigate the cause(s) of the immunosuppression induced by the graft-versus-host (GVH) reaction in F1 hybrid mice injected with parental strain lymphoid cells. A modified Marbrook culture chamber, made up of two cell compartments separated by a cell impermeable membrane, was used in these studies. Spleen cells from either normal animals (NSC) or from animals experiencing a GVH reaction (GVH-SC) were cultured with sheep red blood cells (SRBC) and the direct plaque-forming cell (PFC) response to SRBC was measured. It was found that normal thymus, lymph node and spleen cells, separated from the GVH-SC by a cell impermeable membrane, restored partially or totally the immune response of the suppressed cells, while bone marrow cells did not. It was also found that GVH-SC inhibited the PFC response to SRBC of NSC when mixed in culture at a ratio of 1:5. Conversely the inhibitory effect of GVH-SC on the immune response of NSC was abrogated when the two cell populations were separated by a cell impermeable membrane. These observations demonstrate that GVH-induced immunosuppression is caused, at least in part, by the deficiency of a T-cell derived factor which is a necessary component of the normal immune response. It is suggested that the suppressive effect of GVH-SC on the immune response of NSC is mediated by a non-T cell which regulates the release and/or production of the T-cell derived factor.  相似文献   

18.
Plasma membrane vesicles from wild carrot cells grown in suspension culture were isolated by aqueous two-phase partitioning, and ATP-dependent phosphorylation was measured with [γ-32P]ATP in the presence and absence of calcium. Treatment of the carrot cells with the cell wall digestion enzymes, driselase, in a sorbitol osmoticum for 1.5 min altered the protein phosphorylation pattern compared to that of cells treated with sorbitol alone. Driselase treatment resulted in decreased phosphorylation of a band of Mr 80,000 which showed almost complete calcium dependence in the osmoticum treated cells; decreased phosphorylation of a band of Mr 15,000 which showed little calcium activation, and appearance of a new band of calcium-dependent phosphorylation at Mr 22,000. These effects appeared not to be due to nonspecific protease activity and neither in vivo nor in vitro exposure to driselase caused a significant loss of Coomassie blue-staining bands on the gels of the isolated plasma membranes. However, protein phosphorylation was decreased. Adding driselase to the in vitro reaction mixture caused a general decrease in the membrane protein phosphorylation either in the presence or absence of calcium which did not mimic the in vivo response. Cells labeled in vivo with inorganic 32P also showed a response to the Driselase treatment. An enzymically active driselase preparation was required for the observed responses.  相似文献   

19.
The effects of sea salts, NaCl, KCl, MgCl2, MgSO4, and CaCl2, on the growth of protoplast cultures of two mangrove species, Sonneratia alba and Avicennia alba, were investigated using 96-well culture plates. Plants of these two species naturally grow at the seaward side of a mangrove forest. Cotyledon protoplasts of S. alba showed halophilic nature to NaCl, KCl, and MgCl2 at low concentrations (10–50 mM) when cultured in Murashige and Skoog’s (MS) medium containing 0.6 M mannitol. CaCl2 at a concentration higher than 25 mM was inhibitory to cell growth. On the other hand, in protoplast culture of A. alba suspension cells, which were induced from cotyledon tissues, in the modified amino acid (mAA) medium containing 1.2 M sorbitol, tolerance to NaCl, MgCl2 and MgSO4 were observed at a wide range of concentrations up to 400 mM. CaCl2 was always inhibitory for cell divisions in A. alba, but stimulatory for spherical enlargement of cells. However, no difference in cell enlargement was observed among other salts. Similarity and difference in reactivity to salts between protoplasts and suspension cells from our previous studies were discussed in relation to the site of salt tolerance or halophilic adaptation within mangrove cells. For protoplast cultures, the site(s) for response of S. alba and A. alba are located in the cytoplasm and/or the cell membrane.  相似文献   

20.
The response of free-swimming Rhodobacter sphaeroides to increases and decreases in the intensity of light of different wavelengths was analyzed. There was a transient (1 to 2 s) increase in swimming speed in response to an increase in light intensity, and there was a similar transient stop when the light intensity decreased. Measurement of changes in membrane potential and the use of electron transport inhibitors showed that the transient increase in swimming speed, following an increase in light intensity, and the stop following its decrease were the result of changes in photosynthetic electron transport. R. sphaeroides has two operons coding for multiple homologs of the enteric chemosensory genes. Mutants in the first chemosensory operon showed wild-type photoresponses. Mutants with the cheA gene of the second operon (cheAII) deleted, either with or without the first operon present, showed inverted photoresponses, with free-swimming cells stopping on an increase in light intensity and increasing swimming speed on a decrease. These mutants also lacked adaptation. Transposon mutants with mutations in cheAII, which also reduced expression of downstream genes, however, showed no photoresponses. These results show that (i) free-swimming cells respond to both an increase and a decrease in light intensity (tethered cells only show the stopping on a step down in light intensity), (ii) the signal comes from photosynthetic electron transfer, and (iii) the signal is primarily channelled through the second chemosensory pathway. The different responses shown by the cheAII deletion and insertion mutants suggest that CheWII is required for photoresponses, and a third sensory pathway can substitute for CheAII as long as CheWII is present. The inverted response suggests that transducers are involved in photoresponses as well as chemotactic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号