首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1987,105(6):3053-3063
The major concanavalin A (Con A)-binding component in urea/deoxycholate/mercaptoethanol extracts from pig ear epidermis had an apparent Mr of 78 kD. In indirect immunofluorescence affinity- purified polyclonal antibodies against this glycopolypeptide strongly stained the surface of suprabasal cells in the epidermis of pig and human skin. Immunocytochemical labeling with gold-labeled second antibody localized this staining to externally disposed, trypsin- sensitive components of desmosomes. Western blotting showed that the 78- kD glycopolypeptide was immunologically related to several other Con A- binding components in pig epidermis. Immunoreactive components with Mr of 115 and 100 kD were membrane-bound, appeared to be susceptible to trypsin in intact epidermis, and were absent from the stratum corneum. Immunoreactive components of lower Mr (78-44 kD) were not membrane- bound, were resistant to trypsin in intact tissue, and were present predominantly in the keratinized layers of pig epidermis. The 115-44-kD glycopolypeptides were also recognized by antisera raised against desmoglein II/desmocollin glycoproteins isolated from bovine spinous layer desmosomes. In addition, these antisera reacted with 120- and 105- kD bands that were apparently not recognized by the anti-78-kD glycopolypeptide antiserum in immunoblotting. In immune precipitation the anti-78-kD glycopolypeptide and antidesmoglein II/desmocollin antisera precipitated comparable amounts of the radioiodinated 78-44-kD components. Both antisera also precipitated the 120- and 105-kD components although the anti-78-kD glycopolypeptide serum was less effective. Little reaction with the 115- and 105-kD components was observed in immune precipitation with either serum. Proteolytic peptide mapping confirmed that the various immunoreactive glycopolypeptides were biochemically as well as immunologically related. The results suggest that terminal differentiation in pig epidermis is accompanied by the orderly degradation of desmoglein II/desmocollin glycoproteins resulting in the accumulation of 78-44-kD glycopolypeptides in the stratum corneum. These glycopolypeptides may represent functionally important nonmembranous domains of cell-adhesion molecules in desmosomes.  相似文献   

2.
Correlated ultrastructural and biochemical methods were used to identify and localize Concanavalin A (Con A) receptors in the desmosomes of bovine epidermis. Specific carbohydrate residues were labeled with ferritin-Con A in thin sections of tissue embedded in a hydrophilic resin. Quantitative mapping of ferritin distribution in labeled desmosomes revealed that Con A receptors are localized in the intercellular zone and concentrated along the desmosomal midline or central dense stratum. Labeling was almost entirely absent when sections were treated with ferritin-Con A in the presence of 0.1 M α-methyl mannoside, a hapten-inhibitor of Con A. “Whole” desmosomes and desmosomal intercellular regions (desmosomal “cores”) were purified from bovine muzzle epidermis. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis reveals a limited number of major desmosomal protein constituents. Certain of these are glycoproteins and are greatly enriched in the core fraction. Almost all the desmosomal glycoproteins are intensely labeled when electrophoretic gels of whole desmosome or core fractions are exposed to fluorescent Concanavalin A.  相似文献   

3.
Pemphigus vulgaris antigen (PVA) is a member of the desmoglein subfamily of cadherin cell adhesion molecules. Because autoantibodies in this disease cause blisters due to loss of epidermal cell adhesion, and because desmoglein is found in the desmosome cell adhesion junction, we wanted to determine if PVA is also found in desmosomes. By immunofluorescence, PV IgG bound, in a dotted pattern, to the cell surface of cultured human keratinocytes induced to differentiate with calcium, suggesting junctional staining. However, by preembedding, immunogold electron microscopic studies only slight labeling could be detected in desmosomes, presumably because of difficulty in gold penetration of intact desmosomes. We therefore treated the keratinocytes with 0.01% trypsin in 1 mM calcium, conditions known to preserve cadherin antigenicity but that caused slight separation of desmosomes, before immunogold staining. In this case there was extensive labeling of the extracellular part of desmosomes but not of the interdesmosomal cell membrane which was stained with anti-beta 2- microglobulin antibodies. To confirm the specificity of this binding we showed that antibodies raised in rabbits against the extracellular portions of PVA also bound desmosomes in these cultures. In intact mouse epidermis we could also show slight, but specific, immunogold desmosomal labeling with PV IgG. Furthermore, neonatal mice injected with PV IgG affinity purified on PVA showed desmosomal separation with the IgG localized to desmosomal cores. These results indicate that PVA is organized and concentrated within the desmosome where it presumably functions to maintain the integrity of stratifying epithelia.  相似文献   

4.
《The Journal of cell biology》1989,109(4):1511-1518
A high molecular mass protein of 680 kD was identified and purified from the isolated desmosomes in bovine muzzle epidermal cells. This protein, called "desmoyokin" (from the English, yoke) here, showed no binding ability with keratin filaments in vitro, and its molecule had a characteristic dumbell shape approximately 170 nm in length. We have succeeded in obtaining one monoclonal antibody specific to desmoyokin. By the use of this monoclonal antibody and antidesmoplakin monoclonal antibody, desmoyokin was shown to be colocalized with desmoplakin at the immunofluorescence microscopic level; desmoyokin occurred only in the stratified epithelium, not in the simple epithelium nor in the other tissues. At the electron microscopic level, these two proteins were clearly seen to be sorted out in the plaque of desmosomes with desmoyokin at the periphery and desmoplakin at the center of the disk- shaped desmosomal plaque, suggesting that these two plaque proteins play distinct roles in forming and maintaining the desmosomes in stratified epithelium.  相似文献   

5.
Isolation of the intercellular glycoproteins of desmosomes   总被引:45,自引:31,他引:14       下载免费PDF全文
To characterize the desmosome components that mediate intercellular adhesion and cytoskeletal-plasma membrane attachment, we prepared whole desmosomes and isolated desmosomal intercellular regions (desmosomal "cores") from the living cell layers of bovine muzzle epidermis. The tissue was disrupted in a nonionic detergent at low pH, sonicated, and the insoluble residue fractionated by differential centrifugation and metrizamide gradient centrifugation. Transmission electron microscopic analyses reveal that a fraction obtained after differential centrifugation is greatly enriched in whole desmosomes that possess intracellular plaques. Metrizamide gradient centrifugation removes most of the plaque material, leaving the intercellular components and the adjoining plasma membranes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis coupled with methods that reveal carbohydrate-containing moieties on gels demonstrate that certain proteins present in whole desmosomes are glycosylated. These glycoproteins are specifically and greatly enriched in the desmosome cores of which they are the principal protein constituents, and thus may function as the intercellular adhesive of the desmosome.  相似文献   

6.
Pemphigus vulgaris (PV) is an autoimmune blistering disease, characterized by the loss of cell-cell adhesion between epidermal keratinocytes and the presence of autoantibody against desmoglein 3 (Dsg3), which provides adhesive integrity to desmosomes between adjacent keratinocytes. We have previously shown that PV-IgG purified from patients depletes desmosomes of Dsg3. However, PV-IgG contains not only antibodies against a variety of different epitopes of Dsg3 but also against other unknown antigens. Therefore, we examined whether the Dsg3-depleting activity of PV-IgG is generated specifically by anti-Dsg3 activity in a human squamous cell carcinoma cell line (DJM-1) and normal human keratinocytes by using four different pathogenic and nonpathogenic monoclonal antibodies against Dsg3. We demonstrate that these monoclonal antibodies deplete cells and desmosomes of Dsg3, as PV-IgG does. Individual monoclonal anti-Dsg3 antibodies display characteristic limits to their Dsg3-depleting activity, which correlates with their pathogenic activities. In combination, these antibodies exert a cumulative or synergistic effect, which may explain the potent Dsg3-depleting capability of PV-IgG, which is polyclonal. Finally, although Dsg3-depletion activity correlated with AK-monoclonal antibody pathogenicity in mouse models, the residual level of Dsg3, when below approximately 50%, does not correlate with the adhesive strength index in the present study. This may suggest that although the Dsg3 depletion is not indicative for adhesive strength, the level of Dsg3 can be used as a read-out of pathogenic changes within the cell and that the Dsg3 depletion from desmosomes plays an important role in skin fragility or susceptibility to blister formation in PV patients.  相似文献   

7.
Desmosomes isolated from bovine tongue mucosa or muzzle epidermis appeared identical by ultrastructural analyses but had some differences in their polypeptide compositions as determined by SDS-PAGE. These preparations were extracted in 9 M urea, 10 mM Tris-HCl (pH 9), and 25 mM B-mercaptoethanol and then centrifuged at 240,000g for 30 min. The urea-soluble and insoluble fractions were analyzed by SDS-PAGE. The urea soluble fractions of both tongue and muzzle desmosomes were enriched in polypeptides of 240, 210, 81, and 75 kDa and also polypeptides (40 to 70 kDa) that were keratin-like, as determined by immunoblotting analyses with keratin antisera. The urea insoluble fraction of tongue desmosomes contained glycoproteins of 165, 160, 140, 110, and 100 kDa, while this fraction from muzzle contained glycoproteins of 165, 115, and 105 kDa. Ultrastructural examinations of insoluble pellets obtained from urea extracted tongue and muzzle desmosomes showed that most of the components at the cytoplasmic faces of the desmosomes were removed, while the membrane regions of the desmosomes resisted the treatment. The urea soluble proteins were dialyzed against 10 mM Tris-HCl (pH 7.6), and the resulting preparation was pelleted by centrifugation and examined by electron microscopy. Ultrastructural examination of this material revealed that it had assembled into a fibrillar meshwork, similar to the fibrillar region adjacent to the submembranous plaque of isolated desmosomes. Thus, treatment of isolated desmosomes with 9 M urea allowed the fractionation of membrane-associated desmosomal proteins from cytoplasmic desmosomal proteins. A comparison of these fractions from tongue and muzzle indicated that the polypeptide compositions of the desmosomes varied between tissues, especially with respect to the fractions enriched in either glycoproteins or keratin.  相似文献   

8.
The probable shape, size, and orientation of desmosomes of the cells comprising the secretory tubules in rat submaxillary gland was determined by statistical and algebraic methods applied to electron micrographs. It was concluded that these desmosomes are discrete ellipsoidal discs whose principal axes are in the order of 4100 and 2500 angstrom units, and that they are preferentially oriented with their long axis more or less parallel to the base-apex axis of the cell. Densitometric interpretation agrees with the statistically based reconstruction of desmosomal shape. By densitometric analysis it was also determined that the peak to peak distances between layers within these desmosomes are in essential agreement with other reported findings. The approach described may have general applications to problems in the analysis of submicroscopic morphology.  相似文献   

9.
A unique high molecular weight protein (240,000 mol wt) has been purified from isolated desmosomes of bovine muzzle epidermis, using low-salt extraction at pH 9.5-10.5 and gel-filtration followed by calmodulin-affinity column chromatography. This protein was shown to bind to calmodulin in a Ca2+-dependent manner, so we called it desmocalmin here. Desmocalmin also bound to the reconstituted keratin filaments in vitro in the presence of Mg2+, but not to actin filaments. By use of the antibody raised against the purified desmocalmin, desmocalmin was shown by both immunoelectron and immunofluorescence microscopy to be localized at the desmosomal plaque just beneath the plasma membrane. Judging from its isoelectric point and antigenicity, desmocalmin was clearly distinct from desmoplakins I and II, which were identified in the desmosomal plaque by Mueller and Franke (1983, J. Mol. Biol., 163:647-671). In the low-angle, rotary-shadowing electron microscope, the desmocalmin molecules looked like flexible rods approximately 100-nm long consisting of two polypeptide chains lying side by side. The similar rodlike structures were clearly identified in the freeze-etch replica images of desmosomes. Taken together, these findings indicate that desmocalmin could function as a key protein responsible for the formation of desmosomes in a calmodulin-dependent manner (Trinkaus-Randall, V., and I.K. Gipson, 1984, J. Cell Biol., 98:1565-1571).  相似文献   

10.
γ-Secretase is an unconventional aspartyl protease that processes many type 1 membrane proteins within the lipid bilayer. Because its cleavage of amyloid-β precursor protein generates the amyloid-β protein (Aβ) of Alzheimer's disease, partially inhibiting γ-secretase is an attractive therapeutic strategy, but the structure of the protease remains poorly understood. We recently used electron microscopy and single particle image analysis on the purified enzyme to generate the first 3D reconstruction of γ-secretase, but at low resolution (15 Å). The limited amount of purified γ-secretase that can be produced using currently available cell lines and procedures has prevented the achievement of a high resolution crystal structure by X-ray crystallography or 2D crystallization. We report here the generation and characterization of a new mammalian cell line (S-20) that overexpresses strikingly high levels of all four γ-secretase components (presenilin, nicastrin, Aph-1 and Pen-2). We then used these cells to develop a rapid protocol for the high-grade purification of proteolytically active γ-secretase. The cells and purification methods detailed here provide a key step towards crystallographic studies of this ubiquitous enzyme.  相似文献   

11.
12.
Intermediate filaments and the initiation of desmosome assembly   总被引:7,自引:23,他引:7       下载免费PDF全文
The desmosome junction is an important component in the cohesion of epithelial cells, especially epidermal keratinocytes. To gain insight into the structure and function of desmosomes, their morphogenesis has been studied in a primary mouse epidermal (PME) cell culture system. When these cells are grown in approximately 0.1 mM Ca2+, they contain no desmosomes. They are induced to form desmosomes when the Ca2+ level in the culture medium is raised to approximately 1.2 mM Ca2+. PME cells in medium containing low levels of Ca2+, and then processed for indirect immunofluorescence using antibodies directed against desmoplakins (desmosomal plaque proteins), display a pattern of discrete fluorescent spots concentrated mainly in the perinuclear region. Double label immunofluorescence using keratin and desmoplakin antibodies reveals that the desmoplakin-containing spots and the cytoplasmic network of tonofibrils (bundles of intermediate filaments [IFB]) are in the same juxtanuclear region. Within 1 h after the switch to higher levels of Ca2+, the spots move toward the cell surface, primarily to areas of cell-cell contact and not to free cell surfaces. This reorganization occurs at the same time that tonofibrils also move toward cell surfaces in contact with neighboring cells. Once the desmoplakin spots have reached the cell surface, they appear to aggregate to form desmosomes. These immunofluorescence observations have been confirmed by immunogold ultrastructural localization. Preliminary biochemical and immunological studies indicate that desmoplakin appears in whole cell protein extracts and in Triton high salt insoluble residues (i.e., cytoskeletal preparations consisting primarily of IFB) prepared from PME cells maintained in medium containing both low and normal Ca2+ levels. These findings show that certain desmosome components are preformed in the cytoplasm of PME cells. These components undergo a dramatic reorganization, which parallels the changes in IFB redistribution, upon induction of desmosome formation. The reorganization depends upon both the extracellular Ca2+ level and the establishment of cell-to-cell contacts. Furthermore, the data suggests that desmosomes do not act as organizing centers for the elaboration of IFB. Indeed, we postulate that the movement of IFB and preformed desmosomal components to the cell surface is an important initiating event in desmosome morphogenesis.  相似文献   

13.
We describe procedures for the large-scale production of equine infectious anemia virus (EIAV) and for the isolation of the four major non-glycosylated virion proteins, designated p26, p15, p11, and p9. Comparisons of the purified proteins by peptide mapping procedures and by enzyme-linked immunosorbent assays demonstrated the unrelatedness of the four proteins. The characteristic properties of each purified protein were examined by determining isoelectric points and amino acid compositions. We found that EIAV p26 and p9 focus at pI values of 6.2 and 5.0, respectively, and that these proteins contain no unusual amino acids. In contrast, EIAV p15 reproducibly displayed a heterogeneous isoelectric focusing pattern, with major pI values ranging from 5.7 to 8.3. This charge variation evidently correlated with different levels of phosphorylated serine or threonine or both, which could be detected by an amino acid analysis of purified p15. EIAV p11 apparently focused at a pI of greater than 10, reflecting its high content of basic amino acids. Moreover, localization experiments indicated that all four nonglycosylated proteins constitute the internal components of the virus, with all of the virion p11 closely associated with the viral RNA genome. Thus, our results demonstrated that EIAV, a lentivirus, contains structural polypeptides which are analogous to the structural polypeptides described previously in prototype C oncoviruses.  相似文献   

14.
《The Journal of cell biology》1994,127(4):1049-1060
In epidermal cells, keratin intermediate filaments connect with desmosomes to form extensive cadherin-mediated cytoskeletal architectures. Desmoplakin (DPI), a desmosomal component lacking a transmembrane domain, has been implicated in this interaction, although most studies have been conducted with cells that contain few or no desmosomes, and efforts to demonstrate direct interactions between desmoplakin and intermediate filaments have not been successful. In this report, we explore the biochemical nature of the connections between keratin filaments and desmosomes in epidermal keratinocytes. We show that the carboxy terminal "tail" of DPI associates directly with the amino terminal "head" of type II epidermal keratins, including K1, K2, K5, and K6. We have engineered and purified recombinant K5 head and DPI tail, and we demonstrate direct interaction in vitro by solution- binding assays and by ligand blot assays. This marked association is not seen with simple epithelial type II keratins, vimentin, or with type I keratins, providing a possible explanation for the greater stability of the epidermal keratin filament architecture over that of other cell types. We have identified an 18-amino acid residue stretch in the K5 head that is conserved only among type II epidermal keratins and that appears to play some role in DPI tail binding. This finding might have important implications for understanding a recent point mutation found within this binding site in a family with a blistering skin disorder.  相似文献   

15.
Plakoglobin (gamma-catenin), a member of the armadillo family of proteins, is a constituent of the cytoplasmic plaque of desmosomes as well as of other adhering cell junctions, and is involved in anchorage of cytoskeletal filaments to specific cadherins. We have generated a null mutation of the plakoglobin gene in mice. Homozygous -/- mutant animals die between days 12-16 of embryogenesis due to defects in heart function. Often, heart ventricles burst and blood floods the pericard. This tissue instability correlates with the absence of desmosomes in heart, but not in epithelia organs. Instead, extended adherens junctions are formed in the heart, which contain desmosomal proteins, i.e., desmoplakin. Thus, plakoglobin is an essential component of myocardiac desmosomes and seems to play a crucial role in the sorting out of desmosomal and adherens junction components, and consequently in the architecture of intercalated discs and the stabilization of heart tissue.  相似文献   

16.
Organization of cytokeratin bundles by desmosomes in rat mammary cells   总被引:13,自引:11,他引:2       下载免费PDF全文
In a rat mammary epithelial cell line, LA-7, cytokeratin bundles recognized in immunofluorescence by a monoclonal antibody (24B42) disappear after trypsinization of cultures and are gradually reformed after replating. We have followed the time course of cytokeratin filament reappearance by growing cells in low calcium medium (0.1 mM) which prevents desmosome formation, and then shifting to high calcium (1.8 mM) to start the process. By fixing the cells at various intervals and staining them in immunofluorescence for 24B42 cytokeratin and for desmosomal proteins, we found that cell to cell contact and desmosome formation are prerequisites for keratin filament formation in these cells. EGTA treatment, by disassembling desmosomes, causes the cytokeratin filaments to disappear and the 24B42 protein to pass into a soluble form in this cell line, as ascertained by 100,000 g fractionation and immunoenzymatic assay. Cycloheximide treatment also causes cytokeratin filaments to disappear, indicating that protein synthesis is needed for normal filament maintenance. In another related cell line (106A-10a) and in HeLa cells, trypsinization and EGTA exposure do not cause a complete loss of 24B42 immunofluorescence, although distinct filaments disappear, indicating the presence in these cells of different organizing centers, besides desmosomes, for cytokeratin bundle formation. LA7 cells therefore seem to have a cytokeratin system strictly dependent on the presence of desmosomes, which act as an organizing center for filament assembly. 106A-10a cells (also rich in desmosomes) and HeLa cells (showing instead a reduced number of desmosomes) have a cytokeratin system partially or totally independent from that of desmosomes, with different organizing centers.  相似文献   

17.
Using several biochemical approaches, we have characterized the relatedness of the various glycoprotein components of the bovine epidermal desomosome. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of purified epidermal desmosomes reveals 12 proteins, of which 8 are glycosylated. Analysis with monoclonal antibodies indicates that the 8 glycoproteins comprise 3 antigenically distinct protein families. Members of the highest molecular weight glycoprotein family (a triplet of Mr = 150,000) were not distinguishable by partial proteolytic peptide mapping. At least 6 different monoclonal antibodies have been identified that recognize unique antigenic determinants shared by these proteins. Members of a 97,000-118,000-dalton glycoprotein family (about 4 bands) generate very similar but not identical partial proteolytic peptide maps. At least 3 different monoclonal antibodies have been identified that recognize unique antigenic determinants shared by these proteins. A Mr = 22,000 glycoprotein is immunologically unrelated to either of the high molecular weight glycoprotein families. Lectin-binding profiles indicate that within each immunologically related family the glycoproteins are similar in their oligosaccharide composition. Some lectins distinguish among the families. These glycoproteins probably mediate the specific intercellular recognition and adhesive functions of the desmosome.  相似文献   

18.
We describe the introduction of the yeasts Saccharomyces cerevisiae and Pichia pastoris as eukaryotic hosts for the routine production of recombinant proteins for a structural genomics initiative. We have previously shown that human cDNAs can be efficiently expressed in both hosts using high throughput procedures. Expression clones derived from these screening procedures were grown in bioreactors and the over-expressed human proteins were purified, resulting in obtaining significant amounts suitable for structural analysis. We have also developed and optimized protocols enabling a high throughput, low cost fermentation and purification strategy for recombinant proteins for both S. cerevisiae and P. pastoris on a scale of 5 to 10 mg. Both batch and fed batch fermentation methods were applied to S. cerevisiae. The fed batch fermentations yielded a higher biomass production in all the strains as well as a higher productivity for some of the proteins. We carried out only fed batch fermentations on P. pastoris strains. Biomass was produced by cultivation on glycerol, followed by feeding methanol as carbon source to induce protein expression. The recombinant proteins were expressed as fusion proteins that include a N-terminal His-tag and a C-terminal Strep-tag. They were then purified by a two-step chromatographic procedure using metal-affinity chromatography and StrepTactin-affinity chromatography. This was followed by gel filtration for further purification and for buffer exchange. This three-step purification procedure is necessary to obtain highly purified proteins from yeast. The purified proteins have successfully been subjected to crystallization and biophysical analysis.  相似文献   

19.
20.
Pemphigus is an autoimmune disease that causes blistering of human epidermis. We have recently shown that autoantibodies in the serum of three pemphigus patients bind to desmosomes (Jones, J. C. R., J. Arnn, L. A. Staehelin, and R. D. Goldman, 1984, Proc. Natl. Acad. Sci. USA., 81:2781-2785), and we suggested that pemphigus blisters form, at least in part, from a specific antibody-induced disruption of desmosomes in the epidermis. In this paper, experiments are described that extend our initial observations. 13 pemphigus serum samples, which include four known pemphigus vulgaris (Pv) and four known pemphigus foliaceus (Pf) serum samples, have been analyzed by both immunofluorescence and by immunoblotting using cell-free desmosome preparations. Tissue sections of mouse skin processed for double indirect immunofluorescence using each of the pemphigus serum samples and a rabbit antiserum directed against a component of the desmosomal plaque (desmoplakin) show similar punctate cell surface staining patterns. This suggests that all 13 pemphigus serum samples contain autoantibodies that recognize desmosomes. These autoantibodies appear specific for stratified squamous epithelial cell desmosomes and do not recognize desmosomes of other tissues (e.g., mouse heart and mouse intestine). Cultured mouse keratinocytes, which possess well-defined desmosomes, were processed for indirect immunofluorescence using the pemphigus serum samples. Eight of the 13 sera (including the four known Pv samples but not the known Pf sera) stain desmosomes in these preparations. By double indirect immunofluorescence the desmoplakin antiserum stains a double fluorescent line along the contacting edges of cultured keratinocytes, whereas the positive pemphigus serum samples stain a single fluorescent line along this same border. We believe that these pemphigus autoantibodies recognize extracellular antigens located somewhere within the region between the two apposing membranes that comprise the desmosome. The pemphigus sera exhibit positive immunoblotting reactions with desmosome-enriched fractions obtained from bovine tongue epithelium. Three serum samples (including two of the four known Pf serum samples) react with 160- and 165-kD desmosome-associated polypeptides (Koulu, L., A. Kusimi, M. S. Steinberg, V. Klaus-Kovtun, and J. R. Stanley, 1984, J. Exp. Med., 160:1509-1518). Another eight serum samples (including the four known Pv sera) recognize a 140-kD desmosome-associated polypeptide. We propose that the antigens recognized by these human autoantibodies may play important roles in the adhesion of cells within the epidermis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号